crypto.c revision 1.99 1 /* $NetBSD: crypto.c,v 1.99 2017/07/31 04:23:48 knakahara Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.99 2017/07/31 04:23:48 knakahara Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/proc.h>
62 #include <sys/pool.h>
63 #include <sys/kthread.h>
64 #include <sys/once.h>
65 #include <sys/sysctl.h>
66 #include <sys/intr.h>
67 #include <sys/errno.h>
68 #include <sys/module.h>
69 #include <sys/xcall.h>
70 #include <sys/device.h>
71 #include <sys/cpu.h>
72 #include <sys/percpu.h>
73 #include <sys/kmem.h>
74
75 #if defined(_KERNEL_OPT)
76 #include "opt_ocf.h"
77 #endif
78
79 #include <opencrypto/cryptodev.h>
80 #include <opencrypto/xform.h> /* XXX for M_XDATA */
81
82 /*
83 * Crypto drivers register themselves by allocating a slot in the
84 * crypto_drivers table with crypto_get_driverid() and then registering
85 * each algorithm they support with crypto_register() and crypto_kregister().
86 */
87 /* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
88 static struct {
89 kmutex_t mtx;
90 int num;
91 struct cryptocap *list;
92 } crypto_drv __cacheline_aligned;
93 #define crypto_drv_mtx (crypto_drv.mtx)
94 #define crypto_drivers_num (crypto_drv.num)
95 #define crypto_drivers (crypto_drv.list)
96
97 static void *crypto_q_si;
98 static void *crypto_ret_si;
99
100 /*
101 * There are two queues for crypto requests; one for symmetric (e.g.
102 * cipher) operations and one for asymmetric (e.g. MOD) operations.
103 * See below for how synchronization is handled.
104 */
105 TAILQ_HEAD(crypto_crp_q, cryptop);
106 TAILQ_HEAD(crypto_crp_kq, cryptkop);
107 struct crypto_crp_qs {
108 struct crypto_crp_q crp_q;
109 struct crypto_crp_kq crp_kq;
110 };
111 static percpu_t *crypto_crp_qs_percpu;
112
113 static inline struct crypto_crp_qs *
114 crypto_get_crp_qs(int *s)
115 {
116
117 KASSERT(s != NULL);
118
119 *s = splsoftnet();
120 return percpu_getref(crypto_crp_qs_percpu);
121 }
122
123 static inline void
124 crypto_put_crp_qs(int *s)
125 {
126
127 KASSERT(s != NULL);
128
129 percpu_putref(crypto_crp_qs_percpu);
130 splx(*s);
131 }
132
133 static void
134 crypto_crp_q_is_busy_pc(void *p, void *arg, struct cpu_info *ci __unused)
135 {
136 struct crypto_crp_qs *qs_pc = p;
137 bool *isempty = arg;
138
139 if (!TAILQ_EMPTY(&qs_pc->crp_q) || !TAILQ_EMPTY(&qs_pc->crp_kq))
140 *isempty = true;
141 }
142
143 static void
144 crypto_crp_qs_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
145 {
146 struct crypto_crp_qs *qs = p;
147
148 TAILQ_INIT(&qs->crp_q);
149 TAILQ_INIT(&qs->crp_kq);
150 }
151
152 /*
153 * There are two queues for processing completed crypto requests; one
154 * for the symmetric and one for the asymmetric ops. We only need one
155 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
156 * for how synchronization is handled.
157 */
158 TAILQ_HEAD(crypto_crp_ret_q, cryptop);
159 TAILQ_HEAD(crypto_crp_ret_kq, cryptkop);
160 struct crypto_crp_ret_qs {
161 kmutex_t crp_ret_q_mtx;
162 bool crp_ret_q_exit_flag;
163
164 struct crypto_crp_ret_q crp_ret_q;
165 int crp_ret_q_len;
166 int crp_ret_q_maxlen; /* queue length limit. <=0 means unlimited. */
167 int crp_ret_q_drops;
168
169 struct crypto_crp_ret_kq crp_ret_kq;
170 int crp_ret_kq_len;
171 int crp_ret_kq_maxlen; /* queue length limit. <=0 means unlimited. */
172 int crp_ret_kq_drops;
173 };
174 struct crypto_crp_ret_qs **crypto_crp_ret_qs_list;
175
176
177 static inline struct crypto_crp_ret_qs *
178 crypto_get_crp_ret_qs(struct cpu_info *ci)
179 {
180 u_int cpuid;
181 struct crypto_crp_ret_qs *qs;
182
183 KASSERT(ci != NULL);
184
185 cpuid = cpu_index(ci);
186 qs = crypto_crp_ret_qs_list[cpuid];
187 mutex_enter(&qs->crp_ret_q_mtx);
188 return qs;
189 }
190
191 static inline void
192 crypto_put_crp_ret_qs(struct cpu_info *ci)
193 {
194 u_int cpuid;
195 struct crypto_crp_ret_qs *qs;
196
197 KASSERT(ci != NULL);
198
199 cpuid = cpu_index(ci);
200 qs = crypto_crp_ret_qs_list[cpuid];
201 mutex_exit(&qs->crp_ret_q_mtx);
202 }
203
204 #ifndef CRYPTO_RET_Q_MAXLEN
205 #define CRYPTO_RET_Q_MAXLEN 0
206 #endif
207 #ifndef CRYPTO_RET_KQ_MAXLEN
208 #define CRYPTO_RET_KQ_MAXLEN 0
209 #endif
210
211 static int
212 sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
213 {
214 int error, len = 0;
215 struct sysctlnode node = *rnode;
216
217 for (int i = 0; i < ncpu; i++) {
218 struct crypto_crp_ret_qs *qs;
219 struct cpu_info *ci = cpu_lookup(i);
220
221 qs = crypto_get_crp_ret_qs(ci);
222 len += qs->crp_ret_q_len;
223 crypto_put_crp_ret_qs(ci);
224 }
225
226 node.sysctl_data = &len;
227 error = sysctl_lookup(SYSCTLFN_CALL(&node));
228 if (error || newp == NULL)
229 return error;
230
231 return 0;
232 }
233
234 static int
235 sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
236 {
237 int error, drops = 0;
238 struct sysctlnode node = *rnode;
239
240 for (int i = 0; i < ncpu; i++) {
241 struct crypto_crp_ret_qs *qs;
242 struct cpu_info *ci = cpu_lookup(i);
243
244 qs = crypto_get_crp_ret_qs(ci);
245 drops += qs->crp_ret_q_drops;
246 crypto_put_crp_ret_qs(ci);
247 }
248
249 node.sysctl_data = &drops;
250 error = sysctl_lookup(SYSCTLFN_CALL(&node));
251 if (error || newp == NULL)
252 return error;
253
254 return 0;
255 }
256
257 static int
258 sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
259 {
260 int error, maxlen;
261 struct crypto_crp_ret_qs *qs;
262 struct sysctlnode node = *rnode;
263
264 /* each crp_ret_kq_maxlen is the same. */
265 qs = crypto_get_crp_ret_qs(curcpu());
266 maxlen = qs->crp_ret_q_maxlen;
267 crypto_put_crp_ret_qs(curcpu());
268
269 node.sysctl_data = &maxlen;
270 error = sysctl_lookup(SYSCTLFN_CALL(&node));
271 if (error || newp == NULL)
272 return error;
273
274 for (int i = 0; i < ncpu; i++) {
275 struct cpu_info *ci = cpu_lookup(i);
276
277 qs = crypto_get_crp_ret_qs(ci);
278 qs->crp_ret_q_maxlen = maxlen;
279 crypto_put_crp_ret_qs(ci);
280 }
281
282 return 0;
283 }
284
285 static int
286 sysctl_opencrypto_kq_len(SYSCTLFN_ARGS)
287 {
288 int error, len = 0;
289 struct sysctlnode node = *rnode;
290
291 for (int i = 0; i < ncpu; i++) {
292 struct crypto_crp_ret_qs *qs;
293 struct cpu_info *ci = cpu_lookup(i);
294
295 qs = crypto_get_crp_ret_qs(ci);
296 len += qs->crp_ret_kq_len;
297 crypto_put_crp_ret_qs(ci);
298 }
299
300 node.sysctl_data = &len;
301 error = sysctl_lookup(SYSCTLFN_CALL(&node));
302 if (error || newp == NULL)
303 return error;
304
305 return 0;
306 }
307
308 static int
309 sysctl_opencrypto_kq_drops(SYSCTLFN_ARGS)
310 {
311 int error, drops = 0;
312 struct sysctlnode node = *rnode;
313
314 for (int i = 0; i < ncpu; i++) {
315 struct crypto_crp_ret_qs *qs;
316 struct cpu_info *ci = cpu_lookup(i);
317
318 qs = crypto_get_crp_ret_qs(ci);
319 drops += qs->crp_ret_kq_drops;
320 crypto_put_crp_ret_qs(ci);
321 }
322
323 node.sysctl_data = &drops;
324 error = sysctl_lookup(SYSCTLFN_CALL(&node));
325 if (error || newp == NULL)
326 return error;
327
328 return 0;
329 }
330
331 static int
332 sysctl_opencrypto_kq_maxlen(SYSCTLFN_ARGS)
333 {
334 int error, maxlen;
335 struct crypto_crp_ret_qs *qs;
336 struct sysctlnode node = *rnode;
337
338 /* each crp_ret_kq_maxlen is the same. */
339 qs = crypto_get_crp_ret_qs(curcpu());
340 maxlen = qs->crp_ret_kq_maxlen;
341 crypto_put_crp_ret_qs(curcpu());
342
343 node.sysctl_data = &maxlen;
344 error = sysctl_lookup(SYSCTLFN_CALL(&node));
345 if (error || newp == NULL)
346 return error;
347
348 for (int i = 0; i < ncpu; i++) {
349 struct cpu_info *ci = cpu_lookup(i);
350
351 qs = crypto_get_crp_ret_qs(ci);
352 qs->crp_ret_kq_maxlen = maxlen;
353 crypto_put_crp_ret_qs(ci);
354 }
355
356 return 0;
357 }
358
359 /*
360 * Crypto op and desciptor data structures are allocated
361 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
362 */
363 struct pool cryptop_pool;
364 struct pool cryptodesc_pool;
365 struct pool cryptkop_pool;
366
367 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
368 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
369 /*
370 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
371 * access to hardware versus software transforms as below:
372 *
373 * crypto_devallowsoft < 0: Force userlevel requests to use software
374 * transforms, always
375 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
376 * requests for non-accelerated transforms
377 * (handling the latter in software)
378 * crypto_devallowsoft > 0: Allow user requests only for transforms which
379 * are hardware-accelerated.
380 */
381 int crypto_devallowsoft = 1; /* only use hardware crypto */
382
383 static void
384 sysctl_opencrypto_setup(struct sysctllog **clog)
385 {
386 const struct sysctlnode *ocnode;
387 const struct sysctlnode *retqnode, *retkqnode;
388
389 sysctl_createv(clog, 0, NULL, NULL,
390 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
391 CTLTYPE_INT, "usercrypto",
392 SYSCTL_DESCR("Enable/disable user-mode access to "
393 "crypto support"),
394 NULL, 0, &crypto_usercrypto, 0,
395 CTL_KERN, CTL_CREATE, CTL_EOL);
396 sysctl_createv(clog, 0, NULL, NULL,
397 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
398 CTLTYPE_INT, "userasymcrypto",
399 SYSCTL_DESCR("Enable/disable user-mode access to "
400 "asymmetric crypto support"),
401 NULL, 0, &crypto_userasymcrypto, 0,
402 CTL_KERN, CTL_CREATE, CTL_EOL);
403 sysctl_createv(clog, 0, NULL, NULL,
404 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
405 CTLTYPE_INT, "cryptodevallowsoft",
406 SYSCTL_DESCR("Enable/disable use of software "
407 "asymmetric crypto support"),
408 NULL, 0, &crypto_devallowsoft, 0,
409 CTL_KERN, CTL_CREATE, CTL_EOL);
410
411 sysctl_createv(clog, 0, NULL, &ocnode,
412 CTLFLAG_PERMANENT,
413 CTLTYPE_NODE, "opencrypto",
414 SYSCTL_DESCR("opencrypto related entries"),
415 NULL, 0, NULL, 0,
416 CTL_CREATE, CTL_EOL);
417
418 sysctl_createv(clog, 0, &ocnode, &retqnode,
419 CTLFLAG_PERMANENT,
420 CTLTYPE_NODE, "crypto_ret_q",
421 SYSCTL_DESCR("crypto_ret_q related entries"),
422 NULL, 0, NULL, 0,
423 CTL_CREATE, CTL_EOL);
424 sysctl_createv(clog, 0, &retqnode, NULL,
425 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
426 CTLTYPE_INT, "len",
427 SYSCTL_DESCR("Current queue length"),
428 sysctl_opencrypto_q_len, 0,
429 NULL, 0,
430 CTL_CREATE, CTL_EOL);
431 sysctl_createv(clog, 0, &retqnode, NULL,
432 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
433 CTLTYPE_INT, "drops",
434 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
435 sysctl_opencrypto_q_drops, 0,
436 NULL, 0,
437 CTL_CREATE, CTL_EOL);
438 sysctl_createv(clog, 0, &retqnode, NULL,
439 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
440 CTLTYPE_INT, "maxlen",
441 SYSCTL_DESCR("Maximum allowed queue length"),
442 sysctl_opencrypto_q_maxlen, 0,
443 NULL, 0,
444 CTL_CREATE, CTL_EOL);
445
446
447 sysctl_createv(clog, 0, &ocnode, &retkqnode,
448 CTLFLAG_PERMANENT,
449 CTLTYPE_NODE, "crypto_ret_kq",
450 SYSCTL_DESCR("crypto_ret_kq related entries"),
451 NULL, 0, NULL, 0,
452 CTL_CREATE, CTL_EOL);
453 sysctl_createv(clog, 0, &retkqnode, NULL,
454 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
455 CTLTYPE_INT, "len",
456 SYSCTL_DESCR("Current queue length"),
457 sysctl_opencrypto_kq_len, 0,
458 NULL, 0,
459 CTL_CREATE, CTL_EOL);
460 sysctl_createv(clog, 0, &retkqnode, NULL,
461 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
462 CTLTYPE_INT, "drops",
463 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
464 sysctl_opencrypto_kq_drops, 0,
465 NULL, 0,
466 CTL_CREATE, CTL_EOL);
467 sysctl_createv(clog, 0, &retkqnode, NULL,
468 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
469 CTLTYPE_INT, "maxlen",
470 SYSCTL_DESCR("Maximum allowed queue length"),
471 sysctl_opencrypto_kq_maxlen, 0,
472 NULL, 0,
473 CTL_CREATE, CTL_EOL);
474 }
475
476 /*
477 * Synchronization: read carefully, this is non-trivial.
478 *
479 * Crypto requests are submitted via crypto_dispatch. Typically
480 * these come in from network protocols at spl0 (output path) or
481 * spl[,soft]net (input path).
482 *
483 * Requests are typically passed on the driver directly, but they
484 * may also be queued for processing by a software interrupt thread,
485 * cryptointr, that runs at splsoftcrypto. This thread dispatches
486 * the requests to crypto drivers (h/w or s/w) who call crypto_done
487 * when a request is complete. Hardware crypto drivers are assumed
488 * to register their IRQ's as network devices so their interrupt handlers
489 * and subsequent "done callbacks" happen at spl[imp,net].
490 *
491 * Completed crypto ops are queued for a separate kernel thread that
492 * handles the callbacks at spl0. This decoupling insures the crypto
493 * driver interrupt service routine is not delayed while the callback
494 * takes place and that callbacks are delivered after a context switch
495 * (as opposed to a software interrupt that clients must block).
496 *
497 * This scheme is not intended for SMP machines.
498 */
499 static void cryptointr(void *); /* swi thread to dispatch ops */
500 static void cryptoret_softint(void *); /* kernel thread for callbacks*/
501 static int crypto_destroy(bool);
502 static int crypto_invoke(struct cryptop *crp, int hint);
503 static int crypto_kinvoke(struct cryptkop *krp, int hint);
504
505 static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
506 static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
507 static struct cryptocap *crypto_checkdriver(u_int32_t);
508 static void crypto_driver_lock(struct cryptocap *);
509 static void crypto_driver_unlock(struct cryptocap *);
510 static void crypto_driver_clear(struct cryptocap *);
511
512 static int crypto_init_finalize(device_t);
513
514 static struct cryptostats cryptostats;
515 #ifdef CRYPTO_TIMING
516 static int crypto_timing = 0;
517 #endif
518
519 static struct sysctllog *sysctl_opencrypto_clog;
520
521 static int
522 crypto_crp_ret_qs_init(void)
523 {
524 int i, j;
525
526 crypto_crp_ret_qs_list = kmem_alloc(sizeof(struct crypto_crp_ret_qs *) * ncpu,
527 KM_NOSLEEP);
528 if (crypto_crp_ret_qs_list == NULL) {
529 printf("crypto_init: crypto_crp_qs_list\n");
530 return ENOMEM;
531 }
532
533 for (i = 0; i < ncpu; i++) {
534 struct crypto_crp_ret_qs *qs;
535 qs = kmem_alloc(sizeof(struct crypto_crp_ret_qs), KM_NOSLEEP);
536 if (qs == NULL)
537 break;
538
539 mutex_init(&qs->crp_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
540 qs->crp_ret_q_exit_flag = false;
541
542 TAILQ_INIT(&qs->crp_ret_q);
543 qs->crp_ret_q_len = 0;
544 qs->crp_ret_q_maxlen = CRYPTO_RET_Q_MAXLEN;
545 qs->crp_ret_q_drops = 0;
546
547 TAILQ_INIT(&qs->crp_ret_kq);
548 qs->crp_ret_kq_len = 0;
549 qs->crp_ret_kq_maxlen = CRYPTO_RET_KQ_MAXLEN;
550 qs->crp_ret_kq_drops = 0;
551
552 crypto_crp_ret_qs_list[i] = qs;
553 }
554 if (i == ncpu)
555 return 0;
556
557 for (j = 0; j < i; j++) {
558 struct crypto_crp_ret_qs *qs = crypto_crp_ret_qs_list[j];
559
560 mutex_destroy(&qs->crp_ret_q_mtx);
561 kmem_free(qs, sizeof(struct crypto_crp_ret_qs));
562 }
563 kmem_free(crypto_crp_ret_qs_list, sizeof(struct crypto_crp_ret_qs *) * ncpu);
564
565 return ENOMEM;
566 }
567
568 static int
569 crypto_init0(void)
570 {
571 int error;
572
573 mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
574 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
575 0, "cryptop", NULL, IPL_NET);
576 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
577 0, "cryptodesc", NULL, IPL_NET);
578 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
579 0, "cryptkop", NULL, IPL_NET);
580
581 crypto_crp_qs_percpu = percpu_alloc(sizeof(struct crypto_crp_qs));
582 percpu_foreach(crypto_crp_qs_percpu, crypto_crp_qs_init_pc, NULL);
583
584 error = crypto_crp_ret_qs_init();
585 if (error) {
586 printf("crypto_init: cannot malloc ret_q list\n");
587 return ENOMEM;
588 }
589
590 crypto_drivers = kmem_zalloc(CRYPTO_DRIVERS_INITIAL *
591 sizeof(struct cryptocap), KM_NOSLEEP);
592 if (crypto_drivers == NULL) {
593 printf("crypto_init: cannot malloc driver table\n");
594 return ENOMEM;
595 }
596 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
597
598 crypto_q_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, cryptointr, NULL);
599 if (crypto_q_si == NULL) {
600 printf("crypto_init: cannot establish request queue handler\n");
601 return crypto_destroy(false);
602 }
603
604 /*
605 * Some encryption devices (such as mvcesa) are attached before
606 * ipi_sysinit(). That causes an assertion in ipi_register() as
607 * crypto_ret_si softint uses SOFTINT_RCPU.
608 */
609 if (config_finalize_register(NULL, crypto_init_finalize) != 0) {
610 printf("crypto_init: cannot register crypto_init_finalize\n");
611 return crypto_destroy(false);
612 }
613
614 sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
615
616 return 0;
617 }
618
619 static int
620 crypto_init_finalize(device_t self __unused)
621 {
622
623 crypto_ret_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE|SOFTINT_RCPU,
624 &cryptoret_softint, NULL);
625 KASSERT(crypto_ret_si != NULL);
626
627 return 0;
628 }
629
630 int
631 crypto_init(void)
632 {
633 static ONCE_DECL(crypto_init_once);
634
635 return RUN_ONCE(&crypto_init_once, crypto_init0);
636 }
637
638 static int
639 crypto_destroy(bool exit_kthread)
640 {
641 int i;
642
643 if (exit_kthread) {
644 struct cryptocap *cap = NULL;
645 uint64_t where;
646 bool is_busy = false;
647
648 /* if we have any in-progress requests, don't unload */
649 percpu_foreach(crypto_crp_qs_percpu, crypto_crp_q_is_busy_pc,
650 &is_busy);
651 if (is_busy)
652 return EBUSY;
653 /* FIXME:
654 * prohibit enqueue to crp_q and crp_kq after here.
655 */
656
657 mutex_enter(&crypto_drv_mtx);
658 for (i = 0; i < crypto_drivers_num; i++) {
659 cap = crypto_checkdriver(i);
660 if (cap == NULL)
661 continue;
662 if (cap->cc_sessions != 0) {
663 mutex_exit(&crypto_drv_mtx);
664 return EBUSY;
665 }
666 }
667 mutex_exit(&crypto_drv_mtx);
668 /* FIXME:
669 * prohibit touch crypto_drivers[] and each element after here.
670 */
671
672 /*
673 * Ensure cryptoret_softint() is never scheduled and then wait
674 * for last softint_execute().
675 */
676 for (i = 0; i < ncpu; i++) {
677 struct crypto_crp_ret_qs *qs;
678 struct cpu_info *ci = cpu_lookup(i);
679
680 qs = crypto_get_crp_ret_qs(ci);
681 qs->crp_ret_q_exit_flag = true;
682 crypto_put_crp_ret_qs(ci);
683 }
684 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
685 xc_wait(where);
686 }
687
688 if (sysctl_opencrypto_clog != NULL)
689 sysctl_teardown(&sysctl_opencrypto_clog);
690
691 if (crypto_ret_si != NULL)
692 softint_disestablish(crypto_ret_si);
693
694 if (crypto_q_si != NULL)
695 softint_disestablish(crypto_q_si);
696
697 mutex_enter(&crypto_drv_mtx);
698 if (crypto_drivers != NULL)
699 kmem_free(crypto_drivers,
700 crypto_drivers_num * sizeof(struct cryptocap));
701 mutex_exit(&crypto_drv_mtx);
702
703 percpu_free(crypto_crp_qs_percpu, sizeof(struct crypto_crp_qs));
704
705 pool_destroy(&cryptop_pool);
706 pool_destroy(&cryptodesc_pool);
707 pool_destroy(&cryptkop_pool);
708
709 mutex_destroy(&crypto_drv_mtx);
710
711 return 0;
712 }
713
714 static bool
715 crypto_driver_suitable(struct cryptocap *cap, struct cryptoini *cri)
716 {
717 struct cryptoini *cr;
718
719 for (cr = cri; cr; cr = cr->cri_next)
720 if (cap->cc_alg[cr->cri_alg] == 0) {
721 DPRINTF("alg %d not supported\n", cr->cri_alg);
722 return false;
723 }
724
725 return true;
726 }
727
728 #define CRYPTO_ACCEPT_HARDWARE 0x1
729 #define CRYPTO_ACCEPT_SOFTWARE 0x2
730 /*
731 * The algorithm we use here is pretty stupid; just use the
732 * first driver that supports all the algorithms we need.
733 * If there are multiple drivers we choose the driver with
734 * the fewest active sessions. We prefer hardware-backed
735 * drivers to software ones.
736 *
737 * XXX We need more smarts here (in real life too, but that's
738 * XXX another story altogether).
739 */
740 static struct cryptocap *
741 crypto_select_driver_lock(struct cryptoini *cri, int hard)
742 {
743 u_int32_t hid;
744 int accept;
745 struct cryptocap *cap, *best;
746
747 best = NULL;
748 /*
749 * hard == 0 can use both hardware and software drivers.
750 * We use hardware drivers prior to software drivers, so search
751 * hardware drivers at first time.
752 */
753 if (hard >= 0)
754 accept = CRYPTO_ACCEPT_HARDWARE;
755 else
756 accept = CRYPTO_ACCEPT_SOFTWARE;
757 again:
758 for (hid = 0; hid < crypto_drivers_num; hid++) {
759 cap = crypto_checkdriver(hid);
760 if (cap == NULL)
761 continue;
762
763 crypto_driver_lock(cap);
764
765 /*
766 * If it's not initialized or has remaining sessions
767 * referencing it, skip.
768 */
769 if (cap->cc_newsession == NULL ||
770 (cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
771 crypto_driver_unlock(cap);
772 continue;
773 }
774
775 /* Hardware required -- ignore software drivers. */
776 if ((accept & CRYPTO_ACCEPT_SOFTWARE) == 0
777 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
778 crypto_driver_unlock(cap);
779 continue;
780 }
781 /* Software required -- ignore hardware drivers. */
782 if ((accept & CRYPTO_ACCEPT_HARDWARE) == 0
783 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
784 crypto_driver_unlock(cap);
785 continue;
786 }
787
788 /* See if all the algorithms are supported. */
789 if (crypto_driver_suitable(cap, cri)) {
790 if (best == NULL) {
791 /* keep holding crypto_driver_lock(cap) */
792 best = cap;
793 continue;
794 } else if (cap->cc_sessions < best->cc_sessions) {
795 crypto_driver_unlock(best);
796 /* keep holding crypto_driver_lock(cap) */
797 best = cap;
798 continue;
799 }
800 }
801
802 crypto_driver_unlock(cap);
803 }
804 if (best == NULL && hard == 0
805 && (accept & CRYPTO_ACCEPT_SOFTWARE) == 0) {
806 accept = CRYPTO_ACCEPT_SOFTWARE;
807 goto again;
808 }
809
810 return best;
811 }
812
813 /*
814 * Create a new session.
815 */
816 int
817 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
818 {
819 struct cryptocap *cap;
820 int err = EINVAL;
821
822 mutex_enter(&crypto_drv_mtx);
823
824 cap = crypto_select_driver_lock(cri, hard);
825 if (cap != NULL) {
826 u_int32_t hid, lid;
827
828 hid = cap - crypto_drivers;
829 /*
830 * Can't do everything in one session.
831 *
832 * XXX Fix this. We need to inject a "virtual" session layer right
833 * XXX about here.
834 */
835
836 /* Call the driver initialization routine. */
837 lid = hid; /* Pass the driver ID. */
838 crypto_driver_unlock(cap);
839 err = cap->cc_newsession(cap->cc_arg, &lid, cri);
840 crypto_driver_lock(cap);
841 if (err == 0) {
842 (*sid) = hid;
843 (*sid) <<= 32;
844 (*sid) |= (lid & 0xffffffff);
845 (cap->cc_sessions)++;
846 } else {
847 DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
848 hid, err);
849 }
850 crypto_driver_unlock(cap);
851 }
852
853 mutex_exit(&crypto_drv_mtx);
854
855 return err;
856 }
857
858 /*
859 * Delete an existing session (or a reserved session on an unregistered
860 * driver).
861 */
862 int
863 crypto_freesession(u_int64_t sid)
864 {
865 struct cryptocap *cap;
866 int err = 0;
867
868 /* Determine two IDs. */
869 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
870 if (cap == NULL)
871 return ENOENT;
872
873 if (cap->cc_sessions)
874 (cap->cc_sessions)--;
875
876 /* Call the driver cleanup routine, if available. */
877 if (cap->cc_freesession)
878 err = cap->cc_freesession(cap->cc_arg, sid);
879 else
880 err = 0;
881
882 /*
883 * If this was the last session of a driver marked as invalid,
884 * make the entry available for reuse.
885 */
886 if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
887 crypto_driver_clear(cap);
888
889 crypto_driver_unlock(cap);
890 return err;
891 }
892
893 static bool
894 crypto_checkdriver_initialized(const struct cryptocap *cap)
895 {
896
897 return cap->cc_process != NULL ||
898 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) != 0 ||
899 cap->cc_sessions != 0;
900 }
901
902 /*
903 * Return an unused driver id. Used by drivers prior to registering
904 * support for the algorithms they handle.
905 */
906 int32_t
907 crypto_get_driverid(u_int32_t flags)
908 {
909 struct cryptocap *newdrv;
910 struct cryptocap *cap = NULL;
911 int i;
912
913 (void)crypto_init(); /* XXX oh, this is foul! */
914
915 mutex_enter(&crypto_drv_mtx);
916 for (i = 0; i < crypto_drivers_num; i++) {
917 cap = crypto_checkdriver_uninit(i);
918 if (cap == NULL || crypto_checkdriver_initialized(cap))
919 continue;
920 break;
921 }
922
923 /* Out of entries, allocate some more. */
924 if (cap == NULL) {
925 /* Be careful about wrap-around. */
926 if (2 * crypto_drivers_num <= crypto_drivers_num) {
927 mutex_exit(&crypto_drv_mtx);
928 printf("crypto: driver count wraparound!\n");
929 return -1;
930 }
931
932 newdrv = kmem_zalloc(2 * crypto_drivers_num *
933 sizeof(struct cryptocap), KM_NOSLEEP);
934 if (newdrv == NULL) {
935 mutex_exit(&crypto_drv_mtx);
936 printf("crypto: no space to expand driver table!\n");
937 return -1;
938 }
939
940 memcpy(newdrv, crypto_drivers,
941 crypto_drivers_num * sizeof(struct cryptocap));
942 kmem_free(crypto_drivers,
943 crypto_drivers_num * sizeof(struct cryptocap));
944
945 crypto_drivers_num *= 2;
946 crypto_drivers = newdrv;
947
948 cap = crypto_checkdriver_uninit(i);
949 KASSERT(cap != NULL);
950 }
951
952 /* NB: state is zero'd on free */
953 cap->cc_sessions = 1; /* Mark */
954 cap->cc_flags = flags;
955 mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
956
957 if (bootverbose)
958 printf("crypto: assign driver %u, flags %u\n", i, flags);
959
960 mutex_exit(&crypto_drv_mtx);
961
962 return i;
963 }
964
965 static struct cryptocap *
966 crypto_checkdriver_lock(u_int32_t hid)
967 {
968 struct cryptocap *cap;
969
970 KASSERT(crypto_drivers != NULL);
971
972 if (hid >= crypto_drivers_num)
973 return NULL;
974
975 cap = &crypto_drivers[hid];
976 mutex_enter(&cap->cc_lock);
977 return cap;
978 }
979
980 /*
981 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
982 * situations
983 * - crypto_drivers[] may not be allocated
984 * - crypto_drivers[hid] may not be initialized
985 */
986 static struct cryptocap *
987 crypto_checkdriver_uninit(u_int32_t hid)
988 {
989
990 KASSERT(mutex_owned(&crypto_drv_mtx));
991
992 if (crypto_drivers == NULL)
993 return NULL;
994
995 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
996 }
997
998 /*
999 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
1000 * situations
1001 * - crypto_drivers[] may not be allocated
1002 * - crypto_drivers[hid] may not be initialized
1003 */
1004 static struct cryptocap *
1005 crypto_checkdriver(u_int32_t hid)
1006 {
1007
1008 KASSERT(mutex_owned(&crypto_drv_mtx));
1009
1010 if (crypto_drivers == NULL || hid >= crypto_drivers_num)
1011 return NULL;
1012
1013 struct cryptocap *cap = &crypto_drivers[hid];
1014 return crypto_checkdriver_initialized(cap) ? cap : NULL;
1015 }
1016
1017 static inline void
1018 crypto_driver_lock(struct cryptocap *cap)
1019 {
1020
1021 KASSERT(cap != NULL);
1022
1023 mutex_enter(&cap->cc_lock);
1024 }
1025
1026 static inline void
1027 crypto_driver_unlock(struct cryptocap *cap)
1028 {
1029
1030 KASSERT(cap != NULL);
1031
1032 mutex_exit(&cap->cc_lock);
1033 }
1034
1035 static void
1036 crypto_driver_clear(struct cryptocap *cap)
1037 {
1038
1039 if (cap == NULL)
1040 return;
1041
1042 KASSERT(mutex_owned(&cap->cc_lock));
1043
1044 cap->cc_sessions = 0;
1045 memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
1046 memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
1047 memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
1048 cap->cc_flags = 0;
1049 cap->cc_qblocked = 0;
1050 cap->cc_kqblocked = 0;
1051
1052 cap->cc_arg = NULL;
1053 cap->cc_newsession = NULL;
1054 cap->cc_process = NULL;
1055 cap->cc_freesession = NULL;
1056 cap->cc_kprocess = NULL;
1057 }
1058
1059 /*
1060 * Register support for a key-related algorithm. This routine
1061 * is called once for each algorithm supported a driver.
1062 */
1063 int
1064 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
1065 int (*kprocess)(void *, struct cryptkop *, int),
1066 void *karg)
1067 {
1068 struct cryptocap *cap;
1069 int err;
1070
1071 mutex_enter(&crypto_drv_mtx);
1072
1073 cap = crypto_checkdriver_lock(driverid);
1074 if (cap != NULL &&
1075 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1076 /*
1077 * XXX Do some performance testing to determine placing.
1078 * XXX We probably need an auxiliary data structure that
1079 * XXX describes relative performances.
1080 */
1081
1082 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1083 if (bootverbose) {
1084 printf("crypto: driver %u registers key alg %u "
1085 " flags %u\n",
1086 driverid,
1087 kalg,
1088 flags
1089 );
1090 }
1091
1092 if (cap->cc_kprocess == NULL) {
1093 cap->cc_karg = karg;
1094 cap->cc_kprocess = kprocess;
1095 }
1096 err = 0;
1097 } else
1098 err = EINVAL;
1099
1100 mutex_exit(&crypto_drv_mtx);
1101 return err;
1102 }
1103
1104 /*
1105 * Register support for a non-key-related algorithm. This routine
1106 * is called once for each such algorithm supported by a driver.
1107 */
1108 int
1109 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
1110 u_int32_t flags,
1111 int (*newses)(void *, u_int32_t*, struct cryptoini*),
1112 int (*freeses)(void *, u_int64_t),
1113 int (*process)(void *, struct cryptop *, int),
1114 void *arg)
1115 {
1116 struct cryptocap *cap;
1117 int err;
1118
1119 cap = crypto_checkdriver_lock(driverid);
1120 if (cap == NULL)
1121 return EINVAL;
1122
1123 /* NB: algorithms are in the range [1..max] */
1124 if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
1125 /*
1126 * XXX Do some performance testing to determine placing.
1127 * XXX We probably need an auxiliary data structure that
1128 * XXX describes relative performances.
1129 */
1130
1131 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1132 cap->cc_max_op_len[alg] = maxoplen;
1133 if (bootverbose) {
1134 printf("crypto: driver %u registers alg %u "
1135 "flags %u maxoplen %u\n",
1136 driverid,
1137 alg,
1138 flags,
1139 maxoplen
1140 );
1141 }
1142
1143 if (cap->cc_process == NULL) {
1144 cap->cc_arg = arg;
1145 cap->cc_newsession = newses;
1146 cap->cc_process = process;
1147 cap->cc_freesession = freeses;
1148 cap->cc_sessions = 0; /* Unmark */
1149 }
1150 err = 0;
1151 } else
1152 err = EINVAL;
1153
1154 crypto_driver_unlock(cap);
1155
1156 return err;
1157 }
1158
1159 static int
1160 crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
1161 {
1162 int i;
1163 u_int32_t ses;
1164 bool lastalg = true;
1165
1166 KASSERT(cap != NULL);
1167 KASSERT(mutex_owned(&cap->cc_lock));
1168
1169 if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
1170 return EINVAL;
1171
1172 if (!all && cap->cc_alg[alg] == 0)
1173 return EINVAL;
1174
1175 cap->cc_alg[alg] = 0;
1176 cap->cc_max_op_len[alg] = 0;
1177
1178 if (all) {
1179 if (alg != CRYPTO_ALGORITHM_MAX)
1180 lastalg = false;
1181 } else {
1182 /* Was this the last algorithm ? */
1183 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
1184 if (cap->cc_alg[i] != 0) {
1185 lastalg = false;
1186 break;
1187 }
1188 }
1189 if (lastalg) {
1190 ses = cap->cc_sessions;
1191 crypto_driver_clear(cap);
1192 if (ses != 0) {
1193 /*
1194 * If there are pending sessions, just mark as invalid.
1195 */
1196 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1197 cap->cc_sessions = ses;
1198 }
1199 }
1200
1201 return 0;
1202 }
1203
1204 /*
1205 * Unregister a crypto driver. If there are pending sessions using it,
1206 * leave enough information around so that subsequent calls using those
1207 * sessions will correctly detect the driver has been unregistered and
1208 * reroute requests.
1209 */
1210 int
1211 crypto_unregister(u_int32_t driverid, int alg)
1212 {
1213 int err;
1214 struct cryptocap *cap;
1215
1216 cap = crypto_checkdriver_lock(driverid);
1217 err = crypto_unregister_locked(cap, alg, false);
1218 crypto_driver_unlock(cap);
1219
1220 return err;
1221 }
1222
1223 /*
1224 * Unregister all algorithms associated with a crypto driver.
1225 * If there are pending sessions using it, leave enough information
1226 * around so that subsequent calls using those sessions will
1227 * correctly detect the driver has been unregistered and reroute
1228 * requests.
1229 */
1230 int
1231 crypto_unregister_all(u_int32_t driverid)
1232 {
1233 int err, i;
1234 struct cryptocap *cap;
1235
1236 cap = crypto_checkdriver_lock(driverid);
1237 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
1238 err = crypto_unregister_locked(cap, i, true);
1239 if (err)
1240 break;
1241 }
1242 crypto_driver_unlock(cap);
1243
1244 return err;
1245 }
1246
1247 /*
1248 * Clear blockage on a driver. The what parameter indicates whether
1249 * the driver is now ready for cryptop's and/or cryptokop's.
1250 */
1251 int
1252 crypto_unblock(u_int32_t driverid, int what)
1253 {
1254 struct cryptocap *cap;
1255 int needwakeup = 0;
1256
1257 cap = crypto_checkdriver_lock(driverid);
1258 if (cap == NULL)
1259 return EINVAL;
1260
1261 if (what & CRYPTO_SYMQ) {
1262 needwakeup |= cap->cc_qblocked;
1263 cap->cc_qblocked = 0;
1264 }
1265 if (what & CRYPTO_ASYMQ) {
1266 needwakeup |= cap->cc_kqblocked;
1267 cap->cc_kqblocked = 0;
1268 }
1269 crypto_driver_unlock(cap);
1270 if (needwakeup) {
1271 kpreempt_disable();
1272 softint_schedule(crypto_q_si);
1273 kpreempt_enable();
1274 }
1275
1276 return 0;
1277 }
1278
1279 /*
1280 * Dispatch a crypto request to a driver or queue
1281 * it, to be processed by the kernel thread.
1282 */
1283 int
1284 crypto_dispatch(struct cryptop *crp)
1285 {
1286 int result, s;
1287 struct cryptocap *cap;
1288 struct crypto_crp_qs *crp_qs;
1289 struct crypto_crp_q *crp_q;
1290
1291 KASSERT(crp != NULL);
1292
1293 DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
1294
1295 cryptostats.cs_ops++;
1296
1297 #ifdef CRYPTO_TIMING
1298 if (crypto_timing)
1299 nanouptime(&crp->crp_tstamp);
1300 #endif
1301
1302 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1303 int wasempty;
1304 /*
1305 * Caller marked the request as ``ok to delay'';
1306 * queue it for the swi thread. This is desirable
1307 * when the operation is low priority and/or suitable
1308 * for batching.
1309 *
1310 * don't care list order in batch job.
1311 */
1312 crp_qs = crypto_get_crp_qs(&s);
1313 crp_q = &crp_qs->crp_q;
1314 wasempty = TAILQ_EMPTY(crp_q);
1315 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1316 crypto_put_crp_qs(&s);
1317 crp_q = NULL;
1318 if (wasempty) {
1319 kpreempt_disable();
1320 softint_schedule(crypto_q_si);
1321 kpreempt_enable();
1322 }
1323
1324 return 0;
1325 }
1326
1327 crp_qs = crypto_get_crp_qs(&s);
1328 crp_q = &crp_qs->crp_q;
1329 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1330 /*
1331 * TODO:
1332 * If we can ensure the driver has been valid until the driver is
1333 * done crypto_unregister(), this migrate operation is not required.
1334 */
1335 if (cap == NULL) {
1336 /*
1337 * The driver must be detached, so this request will migrate
1338 * to other drivers in cryptointr() later.
1339 */
1340 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1341 result = 0;
1342 goto out;
1343 }
1344
1345 if (cap->cc_qblocked != 0) {
1346 crypto_driver_unlock(cap);
1347 /*
1348 * The driver is blocked, just queue the op until
1349 * it unblocks and the swi thread gets kicked.
1350 */
1351 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1352 result = 0;
1353 goto out;
1354 }
1355
1356 /*
1357 * Caller marked the request to be processed
1358 * immediately; dispatch it directly to the
1359 * driver unless the driver is currently blocked.
1360 */
1361 crypto_driver_unlock(cap);
1362 result = crypto_invoke(crp, 0);
1363 if (result == ERESTART) {
1364 /*
1365 * The driver ran out of resources, mark the
1366 * driver ``blocked'' for cryptop's and put
1367 * the op on the queue.
1368 */
1369 crypto_driver_lock(cap);
1370 cap->cc_qblocked = 1;
1371 crypto_driver_unlock(cap);
1372 TAILQ_INSERT_HEAD(crp_q, crp, crp_next);
1373 cryptostats.cs_blocks++;
1374
1375 /*
1376 * The crp is enqueued to crp_q, that is,
1377 * no error occurs. So, this function should
1378 * not return error.
1379 */
1380 result = 0;
1381 }
1382
1383 out:
1384 crypto_put_crp_qs(&s);
1385 return result;
1386 }
1387
1388 /*
1389 * Add an asymetric crypto request to a queue,
1390 * to be processed by the kernel thread.
1391 */
1392 int
1393 crypto_kdispatch(struct cryptkop *krp)
1394 {
1395 int result, s;
1396 struct cryptocap *cap;
1397 struct crypto_crp_qs *crp_qs;
1398 struct crypto_crp_kq *crp_kq;
1399
1400 KASSERT(krp != NULL);
1401
1402 cryptostats.cs_kops++;
1403
1404 crp_qs = crypto_get_crp_qs(&s);
1405 crp_kq = &crp_qs->crp_kq;
1406 cap = crypto_checkdriver_lock(krp->krp_hid);
1407 /*
1408 * TODO:
1409 * If we can ensure the driver has been valid until the driver is
1410 * done crypto_unregister(), this migrate operation is not required.
1411 */
1412 if (cap == NULL) {
1413 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1414 result = 0;
1415 goto out;
1416 }
1417
1418 if (cap->cc_kqblocked != 0) {
1419 crypto_driver_unlock(cap);
1420 /*
1421 * The driver is blocked, just queue the op until
1422 * it unblocks and the swi thread gets kicked.
1423 */
1424 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1425 result = 0;
1426 goto out;
1427 }
1428
1429 crypto_driver_unlock(cap);
1430 result = crypto_kinvoke(krp, 0);
1431 if (result == ERESTART) {
1432 /*
1433 * The driver ran out of resources, mark the
1434 * driver ``blocked'' for cryptop's and put
1435 * the op on the queue.
1436 */
1437 crypto_driver_lock(cap);
1438 cap->cc_kqblocked = 1;
1439 crypto_driver_unlock(cap);
1440 TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
1441 cryptostats.cs_kblocks++;
1442
1443 /*
1444 * The krp is enqueued to crp_kq, that is,
1445 * no error occurs. So, this function should
1446 * not return error.
1447 */
1448 result = 0;
1449 }
1450
1451 out:
1452 crypto_put_crp_qs(&s);
1453 return result;
1454 }
1455
1456 /*
1457 * Dispatch an assymetric crypto request to the appropriate crypto devices.
1458 */
1459 static int
1460 crypto_kinvoke(struct cryptkop *krp, int hint)
1461 {
1462 struct cryptocap *cap = NULL;
1463 u_int32_t hid;
1464 int error;
1465
1466 KASSERT(krp != NULL);
1467
1468 /* Sanity checks. */
1469 if (krp->krp_callback == NULL) {
1470 cv_destroy(&krp->krp_cv);
1471 crypto_kfreereq(krp);
1472 return EINVAL;
1473 }
1474
1475 mutex_enter(&crypto_drv_mtx);
1476 for (hid = 0; hid < crypto_drivers_num; hid++) {
1477 cap = crypto_checkdriver(hid);
1478 if (cap == NULL)
1479 continue;
1480 crypto_driver_lock(cap);
1481 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1482 crypto_devallowsoft == 0) {
1483 crypto_driver_unlock(cap);
1484 continue;
1485 }
1486 if (cap->cc_kprocess == NULL) {
1487 crypto_driver_unlock(cap);
1488 continue;
1489 }
1490 if ((cap->cc_kalg[krp->krp_op] &
1491 CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
1492 crypto_driver_unlock(cap);
1493 continue;
1494 }
1495 break;
1496 }
1497 mutex_exit(&crypto_drv_mtx);
1498 if (cap != NULL) {
1499 int (*process)(void *, struct cryptkop *, int);
1500 void *arg;
1501
1502 process = cap->cc_kprocess;
1503 arg = cap->cc_karg;
1504 krp->krp_hid = hid;
1505 krp->reqcpu = curcpu();
1506 crypto_driver_unlock(cap);
1507 error = (*process)(arg, krp, hint);
1508 } else {
1509 error = ENODEV;
1510 }
1511
1512 if (error) {
1513 krp->krp_status = error;
1514 crypto_kdone(krp);
1515 }
1516 return 0;
1517 }
1518
1519 #ifdef CRYPTO_TIMING
1520 static void
1521 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
1522 {
1523 struct timespec now, t;
1524
1525 nanouptime(&now);
1526 t.tv_sec = now.tv_sec - tv->tv_sec;
1527 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
1528 if (t.tv_nsec < 0) {
1529 t.tv_sec--;
1530 t.tv_nsec += 1000000000;
1531 }
1532 timespecadd(&ts->acc, &t, &t);
1533 if (timespeccmp(&t, &ts->min, <))
1534 ts->min = t;
1535 if (timespeccmp(&t, &ts->max, >))
1536 ts->max = t;
1537 ts->count++;
1538
1539 *tv = now;
1540 }
1541 #endif
1542
1543 /*
1544 * Dispatch a crypto request to the appropriate crypto devices.
1545 */
1546 static int
1547 crypto_invoke(struct cryptop *crp, int hint)
1548 {
1549 struct cryptocap *cap;
1550
1551 KASSERT(crp != NULL);
1552
1553 #ifdef CRYPTO_TIMING
1554 if (crypto_timing)
1555 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1556 #endif
1557 /* Sanity checks. */
1558 if (crp->crp_callback == NULL) {
1559 return EINVAL;
1560 }
1561 if (crp->crp_desc == NULL) {
1562 crp->crp_etype = EINVAL;
1563 crypto_done(crp);
1564 return 0;
1565 }
1566
1567 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1568 if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
1569 int (*process)(void *, struct cryptop *, int);
1570 void *arg;
1571
1572 process = cap->cc_process;
1573 arg = cap->cc_arg;
1574 crp->reqcpu = curcpu();
1575
1576 /*
1577 * Invoke the driver to process the request.
1578 */
1579 DPRINTF("calling process for %p\n", crp);
1580 crypto_driver_unlock(cap);
1581 return (*process)(arg, crp, hint);
1582 } else {
1583 struct cryptodesc *crd;
1584 u_int64_t nid = 0;
1585
1586 if (cap != NULL)
1587 crypto_driver_unlock(cap);
1588
1589 /*
1590 * Driver has unregistered; migrate the session and return
1591 * an error to the caller so they'll resubmit the op.
1592 */
1593 crypto_freesession(crp->crp_sid);
1594
1595 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1596 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1597
1598 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
1599 crp->crp_sid = nid;
1600
1601 crp->crp_etype = EAGAIN;
1602
1603 crypto_done(crp);
1604 return 0;
1605 }
1606 }
1607
1608 /*
1609 * Release a set of crypto descriptors.
1610 */
1611 void
1612 crypto_freereq(struct cryptop *crp)
1613 {
1614 struct cryptodesc *crd;
1615
1616 if (crp == NULL)
1617 return;
1618 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1619
1620 /* sanity check */
1621 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
1622 panic("crypto_freereq() freeing crp on RETQ\n");
1623 }
1624
1625 while ((crd = crp->crp_desc) != NULL) {
1626 crp->crp_desc = crd->crd_next;
1627 pool_put(&cryptodesc_pool, crd);
1628 }
1629 pool_put(&cryptop_pool, crp);
1630 }
1631
1632 /*
1633 * Acquire a set of crypto descriptors.
1634 */
1635 struct cryptop *
1636 crypto_getreq(int num)
1637 {
1638 struct cryptodesc *crd;
1639 struct cryptop *crp;
1640 struct crypto_crp_ret_qs *qs;
1641
1642 /*
1643 * When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
1644 * by error callback.
1645 */
1646 qs = crypto_get_crp_ret_qs(curcpu());
1647 if (qs->crp_ret_q_maxlen > 0
1648 && qs->crp_ret_q_len > qs->crp_ret_q_maxlen) {
1649 qs->crp_ret_q_drops++;
1650 crypto_put_crp_ret_qs(curcpu());
1651 return NULL;
1652 }
1653 crypto_put_crp_ret_qs(curcpu());
1654
1655 crp = pool_get(&cryptop_pool, 0);
1656 if (crp == NULL) {
1657 return NULL;
1658 }
1659 memset(crp, 0, sizeof(struct cryptop));
1660
1661 while (num--) {
1662 crd = pool_get(&cryptodesc_pool, 0);
1663 if (crd == NULL) {
1664 crypto_freereq(crp);
1665 return NULL;
1666 }
1667
1668 memset(crd, 0, sizeof(struct cryptodesc));
1669 crd->crd_next = crp->crp_desc;
1670 crp->crp_desc = crd;
1671 }
1672
1673 return crp;
1674 }
1675
1676 /*
1677 * Release a set of asymmetric crypto descriptors.
1678 * Currently, support one descriptor only.
1679 */
1680 void
1681 crypto_kfreereq(struct cryptkop *krp)
1682 {
1683
1684 if (krp == NULL)
1685 return;
1686
1687 DPRINTF("krp %p\n", krp);
1688
1689 /* sanity check */
1690 if (krp->krp_flags & CRYPTO_F_ONRETQ) {
1691 panic("crypto_kfreereq() freeing krp on RETQ\n");
1692 }
1693
1694 pool_put(&cryptkop_pool, krp);
1695 }
1696
1697 /*
1698 * Acquire a set of asymmetric crypto descriptors.
1699 * Currently, support one descriptor only.
1700 */
1701 struct cryptkop *
1702 crypto_kgetreq(int num __unused, int prflags)
1703 {
1704 struct cryptkop *krp;
1705 struct crypto_crp_ret_qs *qs;
1706
1707 /*
1708 * When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
1709 * overflow by error callback.
1710 */
1711 qs = crypto_get_crp_ret_qs(curcpu());
1712 if (qs->crp_ret_kq_maxlen > 0
1713 && qs->crp_ret_kq_len > qs->crp_ret_kq_maxlen) {
1714 qs->crp_ret_kq_drops++;
1715 crypto_put_crp_ret_qs(curcpu());
1716 return NULL;
1717 }
1718 crypto_put_crp_ret_qs(curcpu());
1719
1720 krp = pool_get(&cryptkop_pool, prflags);
1721 if (krp == NULL) {
1722 return NULL;
1723 }
1724 memset(krp, 0, sizeof(struct cryptkop));
1725
1726 return krp;
1727 }
1728
1729 /*
1730 * Invoke the callback on behalf of the driver.
1731 */
1732 void
1733 crypto_done(struct cryptop *crp)
1734 {
1735
1736 KASSERT(crp != NULL);
1737
1738 if (crp->crp_etype != 0)
1739 cryptostats.cs_errs++;
1740 #ifdef CRYPTO_TIMING
1741 if (crypto_timing)
1742 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1743 #endif
1744 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1745
1746 /*
1747 * Normal case; queue the callback for the thread.
1748 *
1749 * The return queue is manipulated by the swi thread
1750 * and, potentially, by crypto device drivers calling
1751 * back to mark operations completed. Thus we need
1752 * to mask both while manipulating the return queue.
1753 */
1754 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1755 /*
1756 * Do the callback directly. This is ok when the
1757 * callback routine does very little (e.g. the
1758 * /dev/crypto callback method just does a wakeup).
1759 */
1760 crp->crp_flags |= CRYPTO_F_DONE;
1761
1762 #ifdef CRYPTO_TIMING
1763 if (crypto_timing) {
1764 /*
1765 * NB: We must copy the timestamp before
1766 * doing the callback as the cryptop is
1767 * likely to be reclaimed.
1768 */
1769 struct timespec t = crp->crp_tstamp;
1770 crypto_tstat(&cryptostats.cs_cb, &t);
1771 crp->crp_callback(crp);
1772 crypto_tstat(&cryptostats.cs_finis, &t);
1773 } else
1774 #endif
1775 crp->crp_callback(crp);
1776 } else {
1777 crp->crp_flags |= CRYPTO_F_DONE;
1778 #if 0
1779 if (crp->crp_flags & CRYPTO_F_USER) {
1780 /*
1781 * TODO:
1782 * If crp->crp_flags & CRYPTO_F_USER and the used
1783 * encryption driver does all the processing in
1784 * the same context, we can skip enqueueing crp_ret_q
1785 * and softint_schedule(crypto_ret_si).
1786 */
1787 DPRINTF("lid[%u]: crp %p CRYPTO_F_USER\n",
1788 CRYPTO_SESID2LID(crp->crp_sid), crp);
1789 } else
1790 #endif
1791 {
1792 int wasempty;
1793 struct crypto_crp_ret_qs *qs;
1794 struct crypto_crp_ret_q *crp_ret_q;;
1795
1796 qs = crypto_get_crp_ret_qs(crp->reqcpu);
1797 crp_ret_q = &qs->crp_ret_q;
1798 wasempty = TAILQ_EMPTY(crp_ret_q);
1799 DPRINTF("lid[%u]: queueing %p\n",
1800 CRYPTO_SESID2LID(crp->crp_sid), crp);
1801 crp->crp_flags |= CRYPTO_F_ONRETQ;
1802 TAILQ_INSERT_TAIL(crp_ret_q, crp, crp_next);
1803 qs->crp_ret_q_len++;
1804 if (wasempty && !qs->crp_ret_q_exit_flag) {
1805 DPRINTF("lid[%u]: waking cryptoret,"
1806 "crp %p hit empty queue\n.",
1807 CRYPTO_SESID2LID(crp->crp_sid), crp);
1808 softint_schedule_cpu(crypto_ret_si, crp->reqcpu);
1809 }
1810 crypto_put_crp_ret_qs(crp->reqcpu);
1811 }
1812 }
1813 }
1814
1815 /*
1816 * Invoke the callback on behalf of the driver.
1817 */
1818 void
1819 crypto_kdone(struct cryptkop *krp)
1820 {
1821
1822 KASSERT(krp != NULL);
1823
1824 if (krp->krp_status != 0)
1825 cryptostats.cs_kerrs++;
1826
1827 krp->krp_flags |= CRYPTO_F_DONE;
1828
1829 /*
1830 * The return queue is manipulated by the swi thread
1831 * and, potentially, by crypto device drivers calling
1832 * back to mark operations completed. Thus we need
1833 * to mask both while manipulating the return queue.
1834 */
1835 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1836 krp->krp_callback(krp);
1837 } else {
1838 int wasempty;
1839 struct crypto_crp_ret_qs *qs;
1840 struct crypto_crp_ret_kq *crp_ret_kq;;
1841
1842 qs = crypto_get_crp_ret_qs(krp->reqcpu);
1843 crp_ret_kq = &qs->crp_ret_kq;
1844
1845 wasempty = TAILQ_EMPTY(crp_ret_kq);
1846 krp->krp_flags |= CRYPTO_F_ONRETQ;
1847 TAILQ_INSERT_TAIL(crp_ret_kq, krp, krp_next);
1848 qs->crp_ret_kq_len++;
1849 if (wasempty && !qs->crp_ret_q_exit_flag)
1850 softint_schedule_cpu(crypto_ret_si, krp->reqcpu);
1851 crypto_put_crp_ret_qs(krp->reqcpu);
1852 }
1853 }
1854
1855 int
1856 crypto_getfeat(int *featp)
1857 {
1858
1859 if (crypto_userasymcrypto == 0) {
1860 *featp = 0;
1861 return 0;
1862 }
1863
1864 mutex_enter(&crypto_drv_mtx);
1865
1866 int feat = 0;
1867 for (int hid = 0; hid < crypto_drivers_num; hid++) {
1868 struct cryptocap *cap;
1869 cap = crypto_checkdriver(hid);
1870 if (cap == NULL)
1871 continue;
1872
1873 crypto_driver_lock(cap);
1874
1875 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1876 crypto_devallowsoft == 0)
1877 goto unlock;
1878
1879 if (cap->cc_kprocess == NULL)
1880 goto unlock;
1881
1882 for (int kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1883 if ((cap->cc_kalg[kalg] &
1884 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1885 feat |= 1 << kalg;
1886
1887 unlock: crypto_driver_unlock(cap);
1888 }
1889
1890 mutex_exit(&crypto_drv_mtx);
1891 *featp = feat;
1892 return (0);
1893 }
1894
1895 /*
1896 * Software interrupt thread to dispatch crypto requests.
1897 */
1898 static void
1899 cryptointr(void *arg __unused)
1900 {
1901 struct cryptop *crp, *submit, *cnext;
1902 struct cryptkop *krp, *knext;
1903 struct cryptocap *cap;
1904 struct crypto_crp_qs *crp_qs;
1905 struct crypto_crp_q *crp_q;
1906 struct crypto_crp_kq *crp_kq;
1907 int result, hint, s;
1908
1909 cryptostats.cs_intrs++;
1910 crp_qs = crypto_get_crp_qs(&s);
1911 crp_q = &crp_qs->crp_q;
1912 crp_kq = &crp_qs->crp_kq;
1913 do {
1914 /*
1915 * Find the first element in the queue that can be
1916 * processed and look-ahead to see if multiple ops
1917 * are ready for the same driver.
1918 */
1919 submit = NULL;
1920 hint = 0;
1921 TAILQ_FOREACH_SAFE(crp, crp_q, crp_next, cnext) {
1922 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1923 cap = crypto_checkdriver_lock(hid);
1924 if (cap == NULL || cap->cc_process == NULL) {
1925 if (cap != NULL)
1926 crypto_driver_unlock(cap);
1927 /* Op needs to be migrated, process it. */
1928 submit = crp;
1929 break;
1930 }
1931
1932 /*
1933 * skip blocked crp regardless of CRYPTO_F_BATCH
1934 */
1935 if (cap->cc_qblocked != 0) {
1936 crypto_driver_unlock(cap);
1937 continue;
1938 }
1939 crypto_driver_unlock(cap);
1940
1941 /*
1942 * skip batch crp until the end of crp_q
1943 */
1944 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1945 if (submit == NULL) {
1946 submit = crp;
1947 } else {
1948 if (CRYPTO_SESID2HID(submit->crp_sid)
1949 == hid)
1950 hint = CRYPTO_HINT_MORE;
1951 }
1952
1953 continue;
1954 }
1955
1956 /*
1957 * found first crp which is neither blocked nor batch.
1958 */
1959 submit = crp;
1960 /*
1961 * batch crp can be processed much later, so clear hint.
1962 */
1963 hint = 0;
1964 break;
1965 }
1966 if (submit != NULL) {
1967 TAILQ_REMOVE(crp_q, submit, crp_next);
1968 result = crypto_invoke(submit, hint);
1969 /* we must take here as the TAILQ op or kinvoke
1970 may need this mutex below. sigh. */
1971 if (result == ERESTART) {
1972 /*
1973 * The driver ran out of resources, mark the
1974 * driver ``blocked'' for cryptop's and put
1975 * the request back in the queue. It would
1976 * best to put the request back where we got
1977 * it but that's hard so for now we put it
1978 * at the front. This should be ok; putting
1979 * it at the end does not work.
1980 */
1981 /* validate sid again */
1982 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
1983 if (cap == NULL) {
1984 /* migrate again, sigh... */
1985 TAILQ_INSERT_TAIL(crp_q, submit, crp_next);
1986 } else {
1987 cap->cc_qblocked = 1;
1988 crypto_driver_unlock(cap);
1989 TAILQ_INSERT_HEAD(crp_q, submit, crp_next);
1990 cryptostats.cs_blocks++;
1991 }
1992 }
1993 }
1994
1995 /* As above, but for key ops */
1996 TAILQ_FOREACH_SAFE(krp, crp_kq, krp_next, knext) {
1997 cap = crypto_checkdriver_lock(krp->krp_hid);
1998 if (cap == NULL || cap->cc_kprocess == NULL) {
1999 if (cap != NULL)
2000 crypto_driver_unlock(cap);
2001 /* Op needs to be migrated, process it. */
2002 break;
2003 }
2004 if (!cap->cc_kqblocked) {
2005 crypto_driver_unlock(cap);
2006 break;
2007 }
2008 crypto_driver_unlock(cap);
2009 }
2010 if (krp != NULL) {
2011 TAILQ_REMOVE(crp_kq, krp, krp_next);
2012 result = crypto_kinvoke(krp, 0);
2013 /* the next iteration will want the mutex. :-/ */
2014 if (result == ERESTART) {
2015 /*
2016 * The driver ran out of resources, mark the
2017 * driver ``blocked'' for cryptkop's and put
2018 * the request back in the queue. It would
2019 * best to put the request back where we got
2020 * it but that's hard so for now we put it
2021 * at the front. This should be ok; putting
2022 * it at the end does not work.
2023 */
2024 /* validate sid again */
2025 cap = crypto_checkdriver_lock(krp->krp_hid);
2026 if (cap == NULL) {
2027 /* migrate again, sigh... */
2028 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
2029 } else {
2030 cap->cc_kqblocked = 1;
2031 crypto_driver_unlock(cap);
2032 TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
2033 cryptostats.cs_kblocks++;
2034 }
2035 }
2036 }
2037 } while (submit != NULL || krp != NULL);
2038 crypto_put_crp_qs(&s);
2039 }
2040
2041 /*
2042 * softint handler to do callbacks.
2043 */
2044 static void
2045 cryptoret_softint(void *arg __unused)
2046 {
2047 struct crypto_crp_ret_qs *qs;
2048 struct crypto_crp_ret_q *crp_ret_q;;
2049 struct crypto_crp_ret_kq *crp_ret_kq;;
2050
2051 qs = crypto_get_crp_ret_qs(curcpu());
2052 crp_ret_q = &qs->crp_ret_q;
2053 crp_ret_kq = &qs->crp_ret_kq;
2054 for (;;) {
2055 struct cryptop *crp;
2056 struct cryptkop *krp;
2057
2058 crp = TAILQ_FIRST(crp_ret_q);
2059 if (crp != NULL) {
2060 TAILQ_REMOVE(crp_ret_q, crp, crp_next);
2061 qs->crp_ret_q_len--;
2062 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
2063 }
2064 krp = TAILQ_FIRST(crp_ret_kq);
2065 if (krp != NULL) {
2066 TAILQ_REMOVE(crp_ret_kq, krp, krp_next);
2067 qs->crp_ret_q_len--;
2068 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
2069 }
2070
2071 /* drop before calling any callbacks. */
2072 if (crp == NULL && krp == NULL)
2073 break;
2074
2075 mutex_spin_exit(&qs->crp_ret_q_mtx);
2076 if (crp != NULL) {
2077 #ifdef CRYPTO_TIMING
2078 if (crypto_timing) {
2079 /*
2080 * NB: We must copy the timestamp before
2081 * doing the callback as the cryptop is
2082 * likely to be reclaimed.
2083 */
2084 struct timespec t = crp->crp_tstamp;
2085 crypto_tstat(&cryptostats.cs_cb, &t);
2086 crp->crp_callback(crp);
2087 crypto_tstat(&cryptostats.cs_finis, &t);
2088 } else
2089 #endif
2090 {
2091 crp->crp_callback(crp);
2092 }
2093 }
2094 if (krp != NULL)
2095 krp->krp_callback(krp);
2096
2097 mutex_spin_enter(&qs->crp_ret_q_mtx);
2098 }
2099 crypto_put_crp_ret_qs(curcpu());
2100 }
2101
2102 /* NetBSD module interface */
2103
2104 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
2105
2106 static int
2107 opencrypto_modcmd(modcmd_t cmd, void *opaque)
2108 {
2109 int error = 0;
2110
2111 switch (cmd) {
2112 case MODULE_CMD_INIT:
2113 #ifdef _MODULE
2114 error = crypto_init();
2115 #endif
2116 break;
2117 case MODULE_CMD_FINI:
2118 #ifdef _MODULE
2119 error = crypto_destroy(true);
2120 #endif
2121 break;
2122 default:
2123 error = ENOTTY;
2124 }
2125 return error;
2126 }
2127