cryptosoft.c revision 1.18 1 /* $NetBSD: cryptosoft.c,v 1.18 2008/02/01 04:52:35 tls Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.2.2.1 2002/11/21 23:34:23 sam Exp $ */
3 /* $OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $ */
4
5 /*
6 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
7 *
8 * This code was written by Angelos D. Keromytis in Athens, Greece, in
9 * February 2000. Network Security Technologies Inc. (NSTI) kindly
10 * supported the development of this code.
11 *
12 * Copyright (c) 2000, 2001 Angelos D. Keromytis
13 *
14 * Permission to use, copy, and modify this software with or without fee
15 * is hereby granted, provided that this entire notice is included in
16 * all source code copies of any software which is or includes a copy or
17 * modification of this software.
18 *
19 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
20 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
21 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
22 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
23 * PURPOSE.
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: cryptosoft.c,v 1.18 2008/02/01 04:52:35 tls Exp $");
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/malloc.h>
32 #include <sys/mbuf.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
35
36 #include <opencrypto/cryptodev.h>
37 #include <opencrypto/cryptosoft.h>
38 #include <opencrypto/xform.h>
39
40 #include <opencrypto/cryptosoft_xform.c>
41
42 union authctx {
43 MD5_CTX md5ctx;
44 SHA1_CTX sha1ctx;
45 RMD160_CTX rmd160ctx;
46 SHA256_CTX sha256ctx;
47 SHA384_CTX sha384ctx;
48 SHA512_CTX sha512ctx;
49 };
50
51 struct swcr_data **swcr_sessions = NULL;
52 u_int32_t swcr_sesnum = 0;
53 int32_t swcr_id = -1;
54
55 #define COPYBACK(x, a, b, c, d) \
56 (x) == CRYPTO_BUF_MBUF ? m_copyback((struct mbuf *)a,b,c,d) \
57 : cuio_copyback((struct uio *)a,b,c,d)
58 #define COPYDATA(x, a, b, c, d) \
59 (x) == CRYPTO_BUF_MBUF ? m_copydata((struct mbuf *)a,b,c,d) \
60 : cuio_copydata((struct uio *)a,b,c,d)
61
62 static int swcr_encdec(struct cryptodesc *, struct swcr_data *, void *, int);
63 static int swcr_compdec(struct cryptodesc *, struct swcr_data *, void *, int);
64 static int swcr_process(void *, struct cryptop *, int);
65 static int swcr_newsession(void *, u_int32_t *, struct cryptoini *);
66 static int swcr_freesession(void *, u_int64_t);
67
68 /*
69 * Apply a symmetric encryption/decryption algorithm.
70 */
71 static int
72 swcr_encdec(struct cryptodesc *crd, struct swcr_data *sw, void *bufv,
73 int outtype)
74 {
75 char *buf = bufv;
76 unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
77 unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN];
78 const struct swcr_enc_xform *exf;
79 int i, k, j, blks;
80 int count, ind;
81
82 exf = sw->sw_exf;
83 blks = exf->enc_xform->blocksize;
84
85 /* Check for non-padded data */
86 if (crd->crd_len % blks)
87 return EINVAL;
88
89 /* Initialize the IV */
90 if (crd->crd_flags & CRD_F_ENCRYPT) {
91 /* IV explicitly provided ? */
92 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
93 bcopy(crd->crd_iv, iv, blks);
94 else {
95 /* Get random IV */
96 for (i = 0;
97 i + sizeof (u_int32_t) < EALG_MAX_BLOCK_LEN;
98 i += sizeof (u_int32_t)) {
99 u_int32_t temp = arc4random();
100
101 bcopy(&temp, iv + i, sizeof(u_int32_t));
102 }
103 /*
104 * What if the block size is not a multiple
105 * of sizeof (u_int32_t), which is the size of
106 * what arc4random() returns ?
107 */
108 if (EALG_MAX_BLOCK_LEN % sizeof (u_int32_t) != 0) {
109 u_int32_t temp = arc4random();
110
111 bcopy (&temp, iv + i,
112 EALG_MAX_BLOCK_LEN - i);
113 }
114 }
115
116 /* Do we need to write the IV */
117 if (!(crd->crd_flags & CRD_F_IV_PRESENT)) {
118 COPYBACK(outtype, buf, crd->crd_inject, blks, iv);
119 }
120
121 } else { /* Decryption */
122 /* IV explicitly provided ? */
123 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
124 bcopy(crd->crd_iv, iv, blks);
125 else {
126 /* Get IV off buf */
127 COPYDATA(outtype, buf, crd->crd_inject, blks, iv);
128 }
129 }
130
131 ivp = iv;
132
133 if (outtype == CRYPTO_BUF_CONTIG) {
134 if (crd->crd_flags & CRD_F_ENCRYPT) {
135 for (i = crd->crd_skip;
136 i < crd->crd_skip + crd->crd_len; i += blks) {
137 /* XOR with the IV/previous block, as appropriate. */
138 if (i == crd->crd_skip)
139 for (k = 0; k < blks; k++)
140 buf[i + k] ^= ivp[k];
141 else
142 for (k = 0; k < blks; k++)
143 buf[i + k] ^= buf[i + k - blks];
144 exf->encrypt(sw->sw_kschedule, buf + i);
145 }
146 } else { /* Decrypt */
147 /*
148 * Start at the end, so we don't need to keep the encrypted
149 * block as the IV for the next block.
150 */
151 for (i = crd->crd_skip + crd->crd_len - blks;
152 i >= crd->crd_skip; i -= blks) {
153 exf->decrypt(sw->sw_kschedule, buf + i);
154
155 /* XOR with the IV/previous block, as appropriate */
156 if (i == crd->crd_skip)
157 for (k = 0; k < blks; k++)
158 buf[i + k] ^= ivp[k];
159 else
160 for (k = 0; k < blks; k++)
161 buf[i + k] ^= buf[i + k - blks];
162 }
163 }
164
165 return 0;
166 } else if (outtype == CRYPTO_BUF_MBUF) {
167 struct mbuf *m = (struct mbuf *) buf;
168
169 /* Find beginning of data */
170 m = m_getptr(m, crd->crd_skip, &k);
171 if (m == NULL)
172 return EINVAL;
173
174 i = crd->crd_len;
175
176 while (i > 0) {
177 /*
178 * If there's insufficient data at the end of
179 * an mbuf, we have to do some copying.
180 */
181 if (m->m_len < k + blks && m->m_len != k) {
182 m_copydata(m, k, blks, blk);
183
184 /* Actual encryption/decryption */
185 if (crd->crd_flags & CRD_F_ENCRYPT) {
186 /* XOR with previous block */
187 for (j = 0; j < blks; j++)
188 blk[j] ^= ivp[j];
189
190 exf->encrypt(sw->sw_kschedule, blk);
191
192 /*
193 * Keep encrypted block for XOR'ing
194 * with next block
195 */
196 bcopy(blk, iv, blks);
197 ivp = iv;
198 } else { /* decrypt */
199 /*
200 * Keep encrypted block for XOR'ing
201 * with next block
202 */
203 if (ivp == iv)
204 bcopy(blk, piv, blks);
205 else
206 bcopy(blk, iv, blks);
207
208 exf->decrypt(sw->sw_kschedule, blk);
209
210 /* XOR with previous block */
211 for (j = 0; j < blks; j++)
212 blk[j] ^= ivp[j];
213
214 if (ivp == iv)
215 bcopy(piv, iv, blks);
216 else
217 ivp = iv;
218 }
219
220 /* Copy back decrypted block */
221 m_copyback(m, k, blks, blk);
222
223 /* Advance pointer */
224 m = m_getptr(m, k + blks, &k);
225 if (m == NULL)
226 return EINVAL;
227
228 i -= blks;
229
230 /* Could be done... */
231 if (i == 0)
232 break;
233 }
234
235 /* Skip possibly empty mbufs */
236 if (k == m->m_len) {
237 for (m = m->m_next; m && m->m_len == 0;
238 m = m->m_next)
239 ;
240 k = 0;
241 }
242
243 /* Sanity check */
244 if (m == NULL)
245 return EINVAL;
246
247 /*
248 * Warning: idat may point to garbage here, but
249 * we only use it in the while() loop, only if
250 * there are indeed enough data.
251 */
252 idat = mtod(m, unsigned char *) + k;
253
254 while (m->m_len >= k + blks && i > 0) {
255 if (crd->crd_flags & CRD_F_ENCRYPT) {
256 /* XOR with previous block/IV */
257 for (j = 0; j < blks; j++)
258 idat[j] ^= ivp[j];
259
260 exf->encrypt(sw->sw_kschedule, idat);
261 ivp = idat;
262 } else { /* decrypt */
263 /*
264 * Keep encrypted block to be used
265 * in next block's processing.
266 */
267 if (ivp == iv)
268 bcopy(idat, piv, blks);
269 else
270 bcopy(idat, iv, blks);
271
272 exf->decrypt(sw->sw_kschedule, idat);
273
274 /* XOR with previous block/IV */
275 for (j = 0; j < blks; j++)
276 idat[j] ^= ivp[j];
277
278 if (ivp == iv)
279 bcopy(piv, iv, blks);
280 else
281 ivp = iv;
282 }
283
284 idat += blks;
285 k += blks;
286 i -= blks;
287 }
288 }
289
290 return 0; /* Done with mbuf encryption/decryption */
291 } else if (outtype == CRYPTO_BUF_IOV) {
292 struct uio *uio = (struct uio *) buf;
293
294 /* Find beginning of data */
295 count = crd->crd_skip;
296 ind = cuio_getptr(uio, count, &k);
297 if (ind == -1)
298 return EINVAL;
299
300 i = crd->crd_len;
301
302 while (i > 0) {
303 /*
304 * If there's insufficient data at the end,
305 * we have to do some copying.
306 */
307 if (uio->uio_iov[ind].iov_len < k + blks &&
308 uio->uio_iov[ind].iov_len != k) {
309 cuio_copydata(uio, k, blks, blk);
310
311 /* Actual encryption/decryption */
312 if (crd->crd_flags & CRD_F_ENCRYPT) {
313 /* XOR with previous block */
314 for (j = 0; j < blks; j++)
315 blk[j] ^= ivp[j];
316
317 exf->encrypt(sw->sw_kschedule, blk);
318
319 /*
320 * Keep encrypted block for XOR'ing
321 * with next block
322 */
323 bcopy(blk, iv, blks);
324 ivp = iv;
325 } else { /* decrypt */
326 /*
327 * Keep encrypted block for XOR'ing
328 * with next block
329 */
330 if (ivp == iv)
331 bcopy(blk, piv, blks);
332 else
333 bcopy(blk, iv, blks);
334
335 exf->decrypt(sw->sw_kschedule, blk);
336
337 /* XOR with previous block */
338 for (j = 0; j < blks; j++)
339 blk[j] ^= ivp[j];
340
341 if (ivp == iv)
342 bcopy(piv, iv, blks);
343 else
344 ivp = iv;
345 }
346
347 /* Copy back decrypted block */
348 cuio_copyback(uio, k, blks, blk);
349
350 count += blks;
351
352 /* Advance pointer */
353 ind = cuio_getptr(uio, count, &k);
354 if (ind == -1)
355 return (EINVAL);
356
357 i -= blks;
358
359 /* Could be done... */
360 if (i == 0)
361 break;
362 }
363
364 /*
365 * Warning: idat may point to garbage here, but
366 * we only use it in the while() loop, only if
367 * there are indeed enough data.
368 */
369 idat = ((char *)uio->uio_iov[ind].iov_base) + k;
370
371 while (uio->uio_iov[ind].iov_len >= k + blks &&
372 i > 0) {
373 if (crd->crd_flags & CRD_F_ENCRYPT) {
374 /* XOR with previous block/IV */
375 for (j = 0; j < blks; j++)
376 idat[j] ^= ivp[j];
377
378 exf->encrypt(sw->sw_kschedule, idat);
379 ivp = idat;
380 } else { /* decrypt */
381 /*
382 * Keep encrypted block to be used
383 * in next block's processing.
384 */
385 if (ivp == iv)
386 bcopy(idat, piv, blks);
387 else
388 bcopy(idat, iv, blks);
389
390 exf->decrypt(sw->sw_kschedule, idat);
391
392 /* XOR with previous block/IV */
393 for (j = 0; j < blks; j++)
394 idat[j] ^= ivp[j];
395
396 if (ivp == iv)
397 bcopy(piv, iv, blks);
398 else
399 ivp = iv;
400 }
401
402 idat += blks;
403 count += blks;
404 k += blks;
405 i -= blks;
406 }
407 }
408 return 0; /* Done with mbuf encryption/decryption */
409 }
410
411 /* Unreachable */
412 return EINVAL;
413 }
414
415 /*
416 * Compute keyed-hash authenticator.
417 */
418 int
419 swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
420 struct swcr_data *sw, void *buf, int outtype)
421 {
422 unsigned char aalg[AALG_MAX_RESULT_LEN];
423 const struct swcr_auth_hash *axf;
424 union authctx ctx;
425 int err;
426
427 if (sw->sw_ictx == 0)
428 return EINVAL;
429
430 axf = sw->sw_axf;
431
432 bcopy(sw->sw_ictx, &ctx, axf->auth_hash->ctxsize);
433
434 switch (outtype) {
435 case CRYPTO_BUF_CONTIG:
436 axf->Update(&ctx, (char *)buf + crd->crd_skip, crd->crd_len);
437 break;
438 case CRYPTO_BUF_MBUF:
439 err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
440 (int (*)(void*, void *, unsigned int)) axf->Update,
441 (void *) &ctx);
442 if (err)
443 return err;
444 break;
445 case CRYPTO_BUF_IOV:
446 err = cuio_apply((struct uio *) buf, crd->crd_skip,
447 crd->crd_len,
448 (int (*)(void *, void *, unsigned int)) axf->Update,
449 (void *) &ctx);
450 if (err) {
451 return err;
452 }
453 break;
454 default:
455 return EINVAL;
456 }
457
458 switch (sw->sw_alg) {
459 case CRYPTO_MD5_HMAC:
460 case CRYPTO_SHA1_HMAC:
461 case CRYPTO_SHA2_HMAC:
462 case CRYPTO_RIPEMD160_HMAC:
463 if (sw->sw_octx == NULL)
464 return EINVAL;
465
466 axf->Final(aalg, &ctx);
467 bcopy(sw->sw_octx, &ctx, axf->auth_hash->ctxsize);
468 axf->Update(&ctx, aalg, axf->auth_hash->hashsize);
469 axf->Final(aalg, &ctx);
470 break;
471
472 case CRYPTO_MD5_KPDK:
473 case CRYPTO_SHA1_KPDK:
474 if (sw->sw_octx == NULL)
475 return EINVAL;
476
477 axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
478 axf->Final(aalg, &ctx);
479 break;
480
481 case CRYPTO_NULL_HMAC:
482 case CRYPTO_MD5:
483 case CRYPTO_SHA1:
484 axf->Final(aalg, &ctx);
485 break;
486 }
487
488 /* Inject the authentication data */
489 switch (outtype) {
490 case CRYPTO_BUF_CONTIG:
491 (void)memcpy((char *)buf + crd->crd_inject, aalg,
492 axf->auth_hash->authsize);
493 break;
494 case CRYPTO_BUF_MBUF:
495 m_copyback((struct mbuf *) buf, crd->crd_inject,
496 axf->auth_hash->authsize, aalg);
497 break;
498 case CRYPTO_BUF_IOV:
499 bcopy(aalg, crp->crp_mac, axf->auth_hash->authsize);
500 break;
501 default:
502 return EINVAL;
503 }
504 return 0;
505 }
506
507 /*
508 * Apply a compression/decompression algorithm
509 */
510 static int
511 swcr_compdec(struct cryptodesc *crd, struct swcr_data *sw,
512 void *buf, int outtype)
513 {
514 u_int8_t *data, *out;
515 const struct swcr_comp_algo *cxf;
516 int adj;
517 u_int32_t result;
518
519 cxf = sw->sw_cxf;
520
521 /* We must handle the whole buffer of data in one time
522 * then if there is not all the data in the mbuf, we must
523 * copy in a buffer.
524 */
525
526 data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
527 if (data == NULL)
528 return (EINVAL);
529 COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
530
531 if (crd->crd_flags & CRD_F_COMP)
532 result = cxf->compress(data, crd->crd_len, &out);
533 else
534 result = cxf->decompress(data, crd->crd_len, &out);
535
536 FREE(data, M_CRYPTO_DATA);
537 if (result == 0)
538 return EINVAL;
539
540 /* Copy back the (de)compressed data. m_copyback is
541 * extending the mbuf as necessary.
542 */
543 sw->sw_size = result;
544 /* Check the compressed size when doing compression */
545 if (crd->crd_flags & CRD_F_COMP) {
546 if (result > crd->crd_len) {
547 /* Compression was useless, we lost time */
548 FREE(out, M_CRYPTO_DATA);
549 return 0;
550 }
551 }
552
553 COPYBACK(outtype, buf, crd->crd_skip, result, out);
554 if (result < crd->crd_len) {
555 adj = result - crd->crd_len;
556 if (outtype == CRYPTO_BUF_MBUF) {
557 adj = result - crd->crd_len;
558 m_adj((struct mbuf *)buf, adj);
559 } else {
560 struct uio *uio = (struct uio *)buf;
561 int ind;
562
563 adj = crd->crd_len - result;
564 ind = uio->uio_iovcnt - 1;
565
566 while (adj > 0 && ind >= 0) {
567 if (adj < uio->uio_iov[ind].iov_len) {
568 uio->uio_iov[ind].iov_len -= adj;
569 break;
570 }
571
572 adj -= uio->uio_iov[ind].iov_len;
573 uio->uio_iov[ind].iov_len = 0;
574 ind--;
575 uio->uio_iovcnt--;
576 }
577 }
578 }
579 FREE(out, M_CRYPTO_DATA);
580 return 0;
581 }
582
583 /*
584 * Generate a new software session.
585 */
586 static int
587 swcr_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
588 {
589 struct swcr_data **swd;
590 const struct swcr_auth_hash *axf;
591 const struct swcr_enc_xform *txf;
592 const struct swcr_comp_algo *cxf;
593 u_int32_t i;
594 int k, error;
595
596 if (sid == NULL || cri == NULL)
597 return EINVAL;
598
599 if (swcr_sessions) {
600 for (i = 1; i < swcr_sesnum; i++)
601 if (swcr_sessions[i] == NULL)
602 break;
603 } else
604 i = 1; /* NB: to silence compiler warning */
605
606 if (swcr_sessions == NULL || i == swcr_sesnum) {
607 if (swcr_sessions == NULL) {
608 i = 1; /* We leave swcr_sessions[0] empty */
609 swcr_sesnum = CRYPTO_SW_SESSIONS;
610 } else
611 swcr_sesnum *= 2;
612
613 swd = malloc(swcr_sesnum * sizeof(struct swcr_data *),
614 M_CRYPTO_DATA, M_NOWAIT);
615 if (swd == NULL) {
616 /* Reset session number */
617 if (swcr_sesnum == CRYPTO_SW_SESSIONS)
618 swcr_sesnum = 0;
619 else
620 swcr_sesnum /= 2;
621 return ENOBUFS;
622 }
623
624 bzero(swd, swcr_sesnum * sizeof(struct swcr_data *));
625
626 /* Copy existing sessions */
627 if (swcr_sessions) {
628 bcopy(swcr_sessions, swd,
629 (swcr_sesnum / 2) * sizeof(struct swcr_data *));
630 free(swcr_sessions, M_CRYPTO_DATA);
631 }
632
633 swcr_sessions = swd;
634 }
635
636 swd = &swcr_sessions[i];
637 *sid = i;
638
639 while (cri) {
640 *swd = malloc(sizeof **swd, M_CRYPTO_DATA, M_NOWAIT);
641 if (*swd == NULL) {
642 swcr_freesession(NULL, i);
643 return ENOBUFS;
644 }
645 bzero(*swd, sizeof(struct swcr_data));
646
647 switch (cri->cri_alg) {
648 case CRYPTO_DES_CBC:
649 txf = &swcr_enc_xform_des;
650 goto enccommon;
651 case CRYPTO_3DES_CBC:
652 txf = &swcr_enc_xform_3des;
653 goto enccommon;
654 case CRYPTO_BLF_CBC:
655 txf = &swcr_enc_xform_blf;
656 goto enccommon;
657 case CRYPTO_CAST_CBC:
658 txf = &swcr_enc_xform_cast5;
659 goto enccommon;
660 case CRYPTO_SKIPJACK_CBC:
661 txf = &swcr_enc_xform_skipjack;
662 goto enccommon;
663 case CRYPTO_RIJNDAEL128_CBC:
664 txf = &swcr_enc_xform_rijndael128;
665 goto enccommon;
666 case CRYPTO_NULL_CBC:
667 txf = &swcr_enc_xform_null;
668 goto enccommon;
669 enccommon:
670 error = txf->setkey(&((*swd)->sw_kschedule),
671 cri->cri_key, cri->cri_klen / 8);
672 if (error) {
673 swcr_freesession(NULL, i);
674 return error;
675 }
676 (*swd)->sw_exf = txf;
677 break;
678
679 case CRYPTO_MD5_HMAC:
680 axf = &swcr_auth_hash_hmac_md5_96;
681 goto authcommon;
682 case CRYPTO_SHA1_HMAC:
683 axf = &swcr_auth_hash_hmac_sha1_96;
684 goto authcommon;
685 case CRYPTO_SHA2_HMAC:
686 if (cri->cri_klen == 256)
687 axf = &swcr_auth_hash_hmac_sha2_256;
688 else if (cri->cri_klen == 384)
689 axf = &swcr_auth_hash_hmac_sha2_384;
690 else if (cri->cri_klen == 512)
691 axf = &swcr_auth_hash_hmac_sha2_512;
692 else {
693 swcr_freesession(NULL, i);
694 return EINVAL;
695 }
696 goto authcommon;
697 case CRYPTO_NULL_HMAC:
698 axf = &swcr_auth_hash_null;
699 goto authcommon;
700 case CRYPTO_RIPEMD160_HMAC:
701 axf = &swcr_auth_hash_hmac_ripemd_160_96;
702 authcommon:
703 (*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
704 M_CRYPTO_DATA, M_NOWAIT);
705 if ((*swd)->sw_ictx == NULL) {
706 swcr_freesession(NULL, i);
707 return ENOBUFS;
708 }
709
710 (*swd)->sw_octx = malloc(axf->auth_hash->ctxsize,
711 M_CRYPTO_DATA, M_NOWAIT);
712 if ((*swd)->sw_octx == NULL) {
713 swcr_freesession(NULL, i);
714 return ENOBUFS;
715 }
716
717 for (k = 0; k < cri->cri_klen / 8; k++)
718 cri->cri_key[k] ^= HMAC_IPAD_VAL;
719
720 axf->Init((*swd)->sw_ictx);
721 axf->Update((*swd)->sw_ictx, cri->cri_key,
722 cri->cri_klen / 8);
723 axf->Update((*swd)->sw_ictx, hmac_ipad_buffer,
724 HMAC_BLOCK_LEN - (cri->cri_klen / 8));
725
726 for (k = 0; k < cri->cri_klen / 8; k++)
727 cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
728
729 axf->Init((*swd)->sw_octx);
730 axf->Update((*swd)->sw_octx, cri->cri_key,
731 cri->cri_klen / 8);
732 axf->Update((*swd)->sw_octx, hmac_opad_buffer,
733 HMAC_BLOCK_LEN - (cri->cri_klen / 8));
734
735 for (k = 0; k < cri->cri_klen / 8; k++)
736 cri->cri_key[k] ^= HMAC_OPAD_VAL;
737 (*swd)->sw_axf = axf;
738 break;
739
740 case CRYPTO_MD5_KPDK:
741 axf = &swcr_auth_hash_key_md5;
742 goto auth2common;
743
744 case CRYPTO_SHA1_KPDK:
745 axf = &swcr_auth_hash_key_sha1;
746 auth2common:
747 (*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
748 M_CRYPTO_DATA, M_NOWAIT);
749 if ((*swd)->sw_ictx == NULL) {
750 swcr_freesession(NULL, i);
751 return ENOBUFS;
752 }
753
754 /* Store the key so we can "append" it to the payload */
755 (*swd)->sw_octx = malloc(cri->cri_klen / 8, M_CRYPTO_DATA,
756 M_NOWAIT);
757 if ((*swd)->sw_octx == NULL) {
758 swcr_freesession(NULL, i);
759 return ENOBUFS;
760 }
761
762 (*swd)->sw_klen = cri->cri_klen / 8;
763 bcopy(cri->cri_key, (*swd)->sw_octx, cri->cri_klen / 8);
764 axf->Init((*swd)->sw_ictx);
765 axf->Update((*swd)->sw_ictx, cri->cri_key,
766 cri->cri_klen / 8);
767 axf->Final(NULL, (*swd)->sw_ictx);
768 (*swd)->sw_axf = axf;
769 break;
770
771 case CRYPTO_MD5:
772 axf = &swcr_auth_hash_md5;
773 goto auth3common;
774
775 case CRYPTO_SHA1:
776 axf = &swcr_auth_hash_sha1;
777 auth3common:
778 (*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
779 M_CRYPTO_DATA, M_NOWAIT);
780 if ((*swd)->sw_ictx == NULL) {
781 swcr_freesession(NULL, i);
782 return ENOBUFS;
783 }
784
785 axf->Init((*swd)->sw_ictx);
786 (*swd)->sw_axf = axf;
787 break;
788
789 case CRYPTO_DEFLATE_COMP:
790 cxf = &swcr_comp_algo_deflate;
791 (*swd)->sw_cxf = cxf;
792 break;
793 default:
794 swcr_freesession(NULL, i);
795 return EINVAL;
796 }
797
798 (*swd)->sw_alg = cri->cri_alg;
799 cri = cri->cri_next;
800 swd = &((*swd)->sw_next);
801 }
802 return 0;
803 }
804
805 /*
806 * Free a session.
807 */
808 static int
809 swcr_freesession(void *arg, u_int64_t tid)
810 {
811 struct swcr_data *swd;
812 const struct swcr_enc_xform *txf;
813 const struct swcr_auth_hash *axf;
814 const struct swcr_comp_algo *cxf;
815 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
816
817 if (sid > swcr_sesnum || swcr_sessions == NULL ||
818 swcr_sessions[sid] == NULL)
819 return EINVAL;
820
821 /* Silently accept and return */
822 if (sid == 0)
823 return 0;
824
825 while ((swd = swcr_sessions[sid]) != NULL) {
826 swcr_sessions[sid] = swd->sw_next;
827
828 switch (swd->sw_alg) {
829 case CRYPTO_DES_CBC:
830 case CRYPTO_3DES_CBC:
831 case CRYPTO_BLF_CBC:
832 case CRYPTO_CAST_CBC:
833 case CRYPTO_SKIPJACK_CBC:
834 case CRYPTO_RIJNDAEL128_CBC:
835 case CRYPTO_NULL_CBC:
836 txf = swd->sw_exf;
837
838 if (swd->sw_kschedule)
839 txf->zerokey(&(swd->sw_kschedule));
840 break;
841
842 case CRYPTO_MD5_HMAC:
843 case CRYPTO_SHA1_HMAC:
844 case CRYPTO_SHA2_HMAC:
845 case CRYPTO_RIPEMD160_HMAC:
846 case CRYPTO_NULL_HMAC:
847 axf = swd->sw_axf;
848
849 if (swd->sw_ictx) {
850 bzero(swd->sw_ictx, axf->auth_hash->ctxsize);
851 free(swd->sw_ictx, M_CRYPTO_DATA);
852 }
853 if (swd->sw_octx) {
854 bzero(swd->sw_octx, axf->auth_hash->ctxsize);
855 free(swd->sw_octx, M_CRYPTO_DATA);
856 }
857 break;
858
859 case CRYPTO_MD5_KPDK:
860 case CRYPTO_SHA1_KPDK:
861 axf = swd->sw_axf;
862
863 if (swd->sw_ictx) {
864 bzero(swd->sw_ictx, axf->auth_hash->ctxsize);
865 free(swd->sw_ictx, M_CRYPTO_DATA);
866 }
867 if (swd->sw_octx) {
868 bzero(swd->sw_octx, swd->sw_klen);
869 free(swd->sw_octx, M_CRYPTO_DATA);
870 }
871 break;
872
873 case CRYPTO_MD5:
874 case CRYPTO_SHA1:
875 axf = swd->sw_axf;
876
877 if (swd->sw_ictx)
878 free(swd->sw_ictx, M_CRYPTO_DATA);
879 break;
880
881 case CRYPTO_DEFLATE_COMP:
882 cxf = swd->sw_cxf;
883 break;
884 }
885
886 FREE(swd, M_CRYPTO_DATA);
887 }
888 return 0;
889 }
890
891 /*
892 * Process a software request.
893 */
894 static int
895 swcr_process(void *arg, struct cryptop *crp, int hint)
896 {
897 struct cryptodesc *crd;
898 struct swcr_data *sw;
899 u_int32_t lid;
900 int type;
901
902 /* Sanity check */
903 if (crp == NULL)
904 return EINVAL;
905
906 if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
907 crp->crp_etype = EINVAL;
908 goto done;
909 }
910
911 lid = crp->crp_sid & 0xffffffff;
912 if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
913 crp->crp_etype = ENOENT;
914 goto done;
915 }
916
917 if (crp->crp_flags & CRYPTO_F_IMBUF) {
918 type = CRYPTO_BUF_MBUF;
919 } else if (crp->crp_flags & CRYPTO_F_IOV) {
920 type = CRYPTO_BUF_IOV;
921 } else {
922 type = CRYPTO_BUF_CONTIG;
923 }
924
925 /* Go through crypto descriptors, processing as we go */
926 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
927 /*
928 * Find the crypto context.
929 *
930 * XXX Note that the logic here prevents us from having
931 * XXX the same algorithm multiple times in a session
932 * XXX (or rather, we can but it won't give us the right
933 * XXX results). To do that, we'd need some way of differentiating
934 * XXX between the various instances of an algorithm (so we can
935 * XXX locate the correct crypto context).
936 */
937 for (sw = swcr_sessions[lid];
938 sw && sw->sw_alg != crd->crd_alg;
939 sw = sw->sw_next)
940 ;
941
942 /* No such context ? */
943 if (sw == NULL) {
944 crp->crp_etype = EINVAL;
945 goto done;
946 }
947
948 switch (sw->sw_alg) {
949 case CRYPTO_DES_CBC:
950 case CRYPTO_3DES_CBC:
951 case CRYPTO_BLF_CBC:
952 case CRYPTO_CAST_CBC:
953 case CRYPTO_SKIPJACK_CBC:
954 case CRYPTO_RIJNDAEL128_CBC:
955 if ((crp->crp_etype = swcr_encdec(crd, sw,
956 crp->crp_buf, type)) != 0)
957 goto done;
958 break;
959 case CRYPTO_NULL_CBC:
960 crp->crp_etype = 0;
961 break;
962 case CRYPTO_MD5_HMAC:
963 case CRYPTO_SHA1_HMAC:
964 case CRYPTO_SHA2_HMAC:
965 case CRYPTO_RIPEMD160_HMAC:
966 case CRYPTO_NULL_HMAC:
967 case CRYPTO_MD5_KPDK:
968 case CRYPTO_SHA1_KPDK:
969 case CRYPTO_MD5:
970 case CRYPTO_SHA1:
971 if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
972 crp->crp_buf, type)) != 0)
973 goto done;
974 break;
975
976 case CRYPTO_DEFLATE_COMP:
977 if ((crp->crp_etype = swcr_compdec(crd, sw,
978 crp->crp_buf, type)) != 0)
979 goto done;
980 else
981 crp->crp_olen = (int)sw->sw_size;
982 break;
983
984 default:
985 /* Unknown/unsupported algorithm */
986 crp->crp_etype = EINVAL;
987 goto done;
988 }
989 }
990
991 done:
992 crypto_done(crp);
993 return 0;
994 }
995
996 static void
997 swcr_init(void)
998 {
999 swcr_id = crypto_get_driverid(CRYPTOCAP_F_SOFTWARE);
1000 if (swcr_id < 0) {
1001 /* This should never happen */
1002 panic("Software crypto device cannot initialize!");
1003 }
1004
1005 crypto_register(swcr_id, CRYPTO_DES_CBC,
1006 0, 0, swcr_newsession, swcr_freesession, swcr_process, NULL);
1007 #define REGISTER(alg) \
1008 crypto_register(swcr_id, alg, 0, 0, NULL, NULL, NULL, NULL)
1009
1010 REGISTER(CRYPTO_3DES_CBC);
1011 REGISTER(CRYPTO_BLF_CBC);
1012 REGISTER(CRYPTO_CAST_CBC);
1013 REGISTER(CRYPTO_SKIPJACK_CBC);
1014 REGISTER(CRYPTO_NULL_CBC);
1015 REGISTER(CRYPTO_MD5_HMAC);
1016 REGISTER(CRYPTO_SHA1_HMAC);
1017 REGISTER(CRYPTO_SHA2_HMAC);
1018 REGISTER(CRYPTO_RIPEMD160_HMAC);
1019 REGISTER(CRYPTO_NULL_HMAC);
1020 REGISTER(CRYPTO_MD5_KPDK);
1021 REGISTER(CRYPTO_SHA1_KPDK);
1022 REGISTER(CRYPTO_MD5);
1023 REGISTER(CRYPTO_SHA1);
1024 REGISTER(CRYPTO_RIJNDAEL128_CBC);
1025 REGISTER(CRYPTO_DEFLATE_COMP);
1026 #undef REGISTER
1027 }
1028
1029
1030 /*
1031 * Pseudo-device init routine for software crypto.
1032 */
1033 void swcryptoattach(int);
1034
1035 void
1036 swcryptoattach(int num)
1037 {
1038
1039 swcr_init();
1040 }
1041