Home | History | Annotate | Line # | Download | only in opencrypto
cryptosoft.c revision 1.19
      1 /*	$NetBSD: cryptosoft.c,v 1.19 2008/02/02 04:46:29 tls Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.2.2.1 2002/11/21 23:34:23 sam Exp $	*/
      3 /*	$OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $	*/
      4 
      5 /*
      6  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
      7  *
      8  * This code was written by Angelos D. Keromytis in Athens, Greece, in
      9  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     10  * supported the development of this code.
     11  *
     12  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     13  *
     14  * Permission to use, copy, and modify this software with or without fee
     15  * is hereby granted, provided that this entire notice is included in
     16  * all source code copies of any software which is or includes a copy or
     17  * modification of this software.
     18  *
     19  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     20  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     21  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     22  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     23  * PURPOSE.
     24  */
     25 
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: cryptosoft.c,v 1.19 2008/02/02 04:46:29 tls Exp $");
     28 
     29 #include <sys/param.h>
     30 #include <sys/systm.h>
     31 #include <sys/malloc.h>
     32 #include <sys/mbuf.h>
     33 #include <sys/sysctl.h>
     34 #include <sys/errno.h>
     35 
     36 #include <opencrypto/cryptodev.h>
     37 #include <opencrypto/cryptosoft.h>
     38 #include <opencrypto/xform.h>
     39 
     40 #include <opencrypto/cryptosoft_xform.c>
     41 
     42 union authctx {
     43 	MD5_CTX md5ctx;
     44 	SHA1_CTX sha1ctx;
     45 	RMD160_CTX rmd160ctx;
     46 	SHA256_CTX sha256ctx;
     47 	SHA384_CTX sha384ctx;
     48 	SHA512_CTX sha512ctx;
     49 };
     50 
     51 struct swcr_data **swcr_sessions = NULL;
     52 u_int32_t swcr_sesnum = 0;
     53 int32_t swcr_id = -1;
     54 
     55 #define COPYBACK(x, a, b, c, d) \
     56 	(x) == CRYPTO_BUF_MBUF ? m_copyback((struct mbuf *)a,b,c,d) \
     57 	: cuio_copyback((struct uio *)a,b,c,d)
     58 #define COPYDATA(x, a, b, c, d) \
     59 	(x) == CRYPTO_BUF_MBUF ? m_copydata((struct mbuf *)a,b,c,d) \
     60 	: cuio_copydata((struct uio *)a,b,c,d)
     61 
     62 static	int swcr_encdec(struct cryptodesc *, struct swcr_data *, void *, int);
     63 static	int swcr_compdec(struct cryptodesc *, struct swcr_data *, void *, int);
     64 static	int swcr_process(void *, struct cryptop *, int);
     65 static	int swcr_newsession(void *, u_int32_t *, struct cryptoini *);
     66 static	int swcr_freesession(void *, u_int64_t);
     67 
     68 /*
     69  * Apply a symmetric encryption/decryption algorithm.
     70  */
     71 static int
     72 swcr_encdec(struct cryptodesc *crd, struct swcr_data *sw, void *bufv,
     73     int outtype)
     74 {
     75 	char *buf = bufv;
     76 	unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
     77 	unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN];
     78 	const struct swcr_enc_xform *exf;
     79 	int i, k, j, blks;
     80 	int count, ind;
     81 
     82 	exf = sw->sw_exf;
     83 	blks = exf->enc_xform->blocksize;
     84 
     85 	/* Check for non-padded data */
     86 	if (crd->crd_len % blks)
     87 		return EINVAL;
     88 
     89 	/* Initialize the IV */
     90 	if (crd->crd_flags & CRD_F_ENCRYPT) {
     91 		/* IV explicitly provided ? */
     92 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
     93 			bcopy(crd->crd_iv, iv, blks);
     94 		else {
     95 			/* Get random IV */
     96 			for (i = 0;
     97 			    i + sizeof (u_int32_t) < EALG_MAX_BLOCK_LEN;
     98 			    i += sizeof (u_int32_t)) {
     99 				u_int32_t temp = arc4random();
    100 
    101 				bcopy(&temp, iv + i, sizeof(u_int32_t));
    102 			}
    103 			/*
    104 			 * What if the block size is not a multiple
    105 			 * of sizeof (u_int32_t), which is the size of
    106 			 * what arc4random() returns ?
    107 			 */
    108 			if (EALG_MAX_BLOCK_LEN % sizeof (u_int32_t) != 0) {
    109 				u_int32_t temp = arc4random();
    110 
    111 				bcopy (&temp, iv + i,
    112 				    EALG_MAX_BLOCK_LEN - i);
    113 			}
    114 		}
    115 
    116 		/* Do we need to write the IV */
    117 		if (!(crd->crd_flags & CRD_F_IV_PRESENT)) {
    118 			COPYBACK(outtype, buf, crd->crd_inject, blks, iv);
    119 		}
    120 
    121 	} else {	/* Decryption */
    122 			/* IV explicitly provided ? */
    123 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    124 			bcopy(crd->crd_iv, iv, blks);
    125 		else {
    126 			/* Get IV off buf */
    127 			COPYDATA(outtype, buf, crd->crd_inject, blks, iv);
    128 		}
    129 	}
    130 
    131 	ivp = iv;
    132 
    133 	if (outtype == CRYPTO_BUF_CONTIG) {
    134 		if (crd->crd_flags & CRD_F_ENCRYPT) {
    135 			for (i = crd->crd_skip;
    136 			    i < crd->crd_skip + crd->crd_len; i += blks) {
    137 				/* XOR with the IV/previous block, as appropriate. */
    138 				if (i == crd->crd_skip)
    139 					for (k = 0; k < blks; k++)
    140 						buf[i + k] ^= ivp[k];
    141 				else
    142 					for (k = 0; k < blks; k++)
    143 						buf[i + k] ^= buf[i + k - blks];
    144 				exf->encrypt(sw->sw_kschedule, buf + i);
    145 			}
    146 		} else {		/* Decrypt */
    147 			/*
    148 			 * Start at the end, so we don't need to keep the encrypted
    149 			 * block as the IV for the next block.
    150 			 */
    151 			for (i = crd->crd_skip + crd->crd_len - blks;
    152 			    i >= crd->crd_skip; i -= blks) {
    153 				exf->decrypt(sw->sw_kschedule, buf + i);
    154 
    155 				/* XOR with the IV/previous block, as appropriate */
    156 				if (i == crd->crd_skip)
    157 					for (k = 0; k < blks; k++)
    158 						buf[i + k] ^= ivp[k];
    159 				else
    160 					for (k = 0; k < blks; k++)
    161 						buf[i + k] ^= buf[i + k - blks];
    162 			}
    163 		}
    164 
    165 		return 0;
    166 	} else if (outtype == CRYPTO_BUF_MBUF) {
    167 		struct mbuf *m = (struct mbuf *) buf;
    168 
    169 		/* Find beginning of data */
    170 		m = m_getptr(m, crd->crd_skip, &k);
    171 		if (m == NULL)
    172 			return EINVAL;
    173 
    174 		i = crd->crd_len;
    175 
    176 		while (i > 0) {
    177 			/*
    178 			 * If there's insufficient data at the end of
    179 			 * an mbuf, we have to do some copying.
    180 			 */
    181 			if (m->m_len < k + blks && m->m_len != k) {
    182 				m_copydata(m, k, blks, blk);
    183 
    184 				/* Actual encryption/decryption */
    185 				if (crd->crd_flags & CRD_F_ENCRYPT) {
    186 					/* XOR with previous block */
    187 					for (j = 0; j < blks; j++)
    188 						blk[j] ^= ivp[j];
    189 
    190 					exf->encrypt(sw->sw_kschedule, blk);
    191 
    192 					/*
    193 					 * Keep encrypted block for XOR'ing
    194 					 * with next block
    195 					 */
    196 					bcopy(blk, iv, blks);
    197 					ivp = iv;
    198 				} else {	/* decrypt */
    199 					/*
    200 					 * Keep encrypted block for XOR'ing
    201 					 * with next block
    202 					 */
    203 					if (ivp == iv)
    204 						bcopy(blk, piv, blks);
    205 					else
    206 						bcopy(blk, iv, blks);
    207 
    208 					exf->decrypt(sw->sw_kschedule, blk);
    209 
    210 					/* XOR with previous block */
    211 					for (j = 0; j < blks; j++)
    212 						blk[j] ^= ivp[j];
    213 
    214 					if (ivp == iv)
    215 						bcopy(piv, iv, blks);
    216 					else
    217 						ivp = iv;
    218 				}
    219 
    220 				/* Copy back decrypted block */
    221 				m_copyback(m, k, blks, blk);
    222 
    223 				/* Advance pointer */
    224 				m = m_getptr(m, k + blks, &k);
    225 				if (m == NULL)
    226 					return EINVAL;
    227 
    228 				i -= blks;
    229 
    230 				/* Could be done... */
    231 				if (i == 0)
    232 					break;
    233 			}
    234 
    235 			/* Skip possibly empty mbufs */
    236 			if (k == m->m_len) {
    237 				for (m = m->m_next; m && m->m_len == 0;
    238 				    m = m->m_next)
    239 					;
    240 				k = 0;
    241 			}
    242 
    243 			/* Sanity check */
    244 			if (m == NULL)
    245 				return EINVAL;
    246 
    247 			/*
    248 			 * Warning: idat may point to garbage here, but
    249 			 * we only use it in the while() loop, only if
    250 			 * there are indeed enough data.
    251 			 */
    252 			idat = mtod(m, unsigned char *) + k;
    253 
    254 			while (m->m_len >= k + blks && i > 0) {
    255 				if (crd->crd_flags & CRD_F_ENCRYPT) {
    256 					/* XOR with previous block/IV */
    257 					for (j = 0; j < blks; j++)
    258 						idat[j] ^= ivp[j];
    259 
    260 					exf->encrypt(sw->sw_kschedule, idat);
    261 					ivp = idat;
    262 				} else {	/* decrypt */
    263 					/*
    264 					 * Keep encrypted block to be used
    265 					 * in next block's processing.
    266 					 */
    267 					if (ivp == iv)
    268 						bcopy(idat, piv, blks);
    269 					else
    270 						bcopy(idat, iv, blks);
    271 
    272 					exf->decrypt(sw->sw_kschedule, idat);
    273 
    274 					/* XOR with previous block/IV */
    275 					for (j = 0; j < blks; j++)
    276 						idat[j] ^= ivp[j];
    277 
    278 					if (ivp == iv)
    279 						bcopy(piv, iv, blks);
    280 					else
    281 						ivp = iv;
    282 				}
    283 
    284 				idat += blks;
    285 				k += blks;
    286 				i -= blks;
    287 			}
    288 		}
    289 
    290 		return 0; /* Done with mbuf encryption/decryption */
    291 	} else if (outtype == CRYPTO_BUF_IOV) {
    292 		struct uio *uio = (struct uio *) buf;
    293 
    294 		/* Find beginning of data */
    295 		count = crd->crd_skip;
    296 		ind = cuio_getptr(uio, count, &k);
    297 		if (ind == -1)
    298 			return EINVAL;
    299 
    300 		i = crd->crd_len;
    301 
    302 		while (i > 0) {
    303 			/*
    304 			 * If there's insufficient data at the end,
    305 			 * we have to do some copying.
    306 			 */
    307 			if (uio->uio_iov[ind].iov_len < k + blks &&
    308 			    uio->uio_iov[ind].iov_len != k) {
    309 				cuio_copydata(uio, k, blks, blk);
    310 
    311 				/* Actual encryption/decryption */
    312 				if (crd->crd_flags & CRD_F_ENCRYPT) {
    313 					/* XOR with previous block */
    314 					for (j = 0; j < blks; j++)
    315 						blk[j] ^= ivp[j];
    316 
    317 					exf->encrypt(sw->sw_kschedule, blk);
    318 
    319 					/*
    320 					 * Keep encrypted block for XOR'ing
    321 					 * with next block
    322 					 */
    323 					bcopy(blk, iv, blks);
    324 					ivp = iv;
    325 				} else {	/* decrypt */
    326 					/*
    327 					 * Keep encrypted block for XOR'ing
    328 					 * with next block
    329 					 */
    330 					if (ivp == iv)
    331 						bcopy(blk, piv, blks);
    332 					else
    333 						bcopy(blk, iv, blks);
    334 
    335 					exf->decrypt(sw->sw_kschedule, blk);
    336 
    337 					/* XOR with previous block */
    338 					for (j = 0; j < blks; j++)
    339 						blk[j] ^= ivp[j];
    340 
    341 					if (ivp == iv)
    342 						bcopy(piv, iv, blks);
    343 					else
    344 						ivp = iv;
    345 				}
    346 
    347 				/* Copy back decrypted block */
    348 				cuio_copyback(uio, k, blks, blk);
    349 
    350 				count += blks;
    351 
    352 				/* Advance pointer */
    353 				ind = cuio_getptr(uio, count, &k);
    354 				if (ind == -1)
    355 					return (EINVAL);
    356 
    357 				i -= blks;
    358 
    359 				/* Could be done... */
    360 				if (i == 0)
    361 					break;
    362 			}
    363 
    364 			/*
    365 			 * Warning: idat may point to garbage here, but
    366 			 * we only use it in the while() loop, only if
    367 			 * there are indeed enough data.
    368 			 */
    369 			idat = ((char *)uio->uio_iov[ind].iov_base) + k;
    370 
    371 			while (uio->uio_iov[ind].iov_len >= k + blks &&
    372 			    i > 0) {
    373 				if (crd->crd_flags & CRD_F_ENCRYPT) {
    374 					/* XOR with previous block/IV */
    375 					for (j = 0; j < blks; j++)
    376 						idat[j] ^= ivp[j];
    377 
    378 					exf->encrypt(sw->sw_kschedule, idat);
    379 					ivp = idat;
    380 				} else {	/* decrypt */
    381 					/*
    382 					 * Keep encrypted block to be used
    383 					 * in next block's processing.
    384 					 */
    385 					if (ivp == iv)
    386 						bcopy(idat, piv, blks);
    387 					else
    388 						bcopy(idat, iv, blks);
    389 
    390 					exf->decrypt(sw->sw_kschedule, idat);
    391 
    392 					/* XOR with previous block/IV */
    393 					for (j = 0; j < blks; j++)
    394 						idat[j] ^= ivp[j];
    395 
    396 					if (ivp == iv)
    397 						bcopy(piv, iv, blks);
    398 					else
    399 						ivp = iv;
    400 				}
    401 
    402 				idat += blks;
    403 				count += blks;
    404 				k += blks;
    405 				i -= blks;
    406 			}
    407 		}
    408 		return 0; /* Done with mbuf encryption/decryption */
    409 	}
    410 
    411 	/* Unreachable */
    412 	return EINVAL;
    413 }
    414 
    415 /*
    416  * Compute keyed-hash authenticator.
    417  */
    418 int
    419 swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
    420     struct swcr_data *sw, void *buf, int outtype)
    421 {
    422 	unsigned char aalg[AALG_MAX_RESULT_LEN];
    423 	const struct swcr_auth_hash *axf;
    424 	union authctx ctx;
    425 	int err;
    426 
    427 	if (sw->sw_ictx == 0)
    428 		return EINVAL;
    429 
    430 	axf = sw->sw_axf;
    431 
    432 	bcopy(sw->sw_ictx, &ctx, axf->auth_hash->ctxsize);
    433 
    434 	switch (outtype) {
    435 	case CRYPTO_BUF_CONTIG:
    436 		axf->Update(&ctx, (char *)buf + crd->crd_skip, crd->crd_len);
    437 		break;
    438 	case CRYPTO_BUF_MBUF:
    439 		err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
    440 		    (int (*)(void*, void *, unsigned int)) axf->Update,
    441 		    (void *) &ctx);
    442 		if (err)
    443 			return err;
    444 		break;
    445 	case CRYPTO_BUF_IOV:
    446 		err = cuio_apply((struct uio *) buf, crd->crd_skip,
    447 		    crd->crd_len,
    448 		    (int (*)(void *, void *, unsigned int)) axf->Update,
    449 		    (void *) &ctx);
    450 		if (err) {
    451 			return err;
    452 		}
    453 		break;
    454 	default:
    455 		return EINVAL;
    456 	}
    457 
    458 	switch (sw->sw_alg) {
    459 	case CRYPTO_MD5_HMAC:
    460 	case CRYPTO_MD5_HMAC_96:
    461 	case CRYPTO_SHA1_HMAC:
    462 	case CRYPTO_SHA1_HMAC_96:
    463 	case CRYPTO_SHA2_HMAC:
    464 	case CRYPTO_RIPEMD160_HMAC:
    465 	case CRYPTO_RIPEMD160_HMAC_96:
    466 		if (sw->sw_octx == NULL)
    467 			return EINVAL;
    468 
    469 		axf->Final(aalg, &ctx);
    470 		bcopy(sw->sw_octx, &ctx, axf->auth_hash->ctxsize);
    471 		axf->Update(&ctx, aalg, axf->auth_hash->hashsize);
    472 		axf->Final(aalg, &ctx);
    473 		break;
    474 
    475 	case CRYPTO_MD5_KPDK:
    476 	case CRYPTO_SHA1_KPDK:
    477 		if (sw->sw_octx == NULL)
    478 			return EINVAL;
    479 
    480 		axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
    481 		axf->Final(aalg, &ctx);
    482 		break;
    483 
    484 	case CRYPTO_NULL_HMAC:
    485 	case CRYPTO_MD5:
    486 	case CRYPTO_SHA1:
    487 		axf->Final(aalg, &ctx);
    488 		break;
    489 	}
    490 
    491 	/* Inject the authentication data */
    492 	switch (outtype) {
    493 	case CRYPTO_BUF_CONTIG:
    494 		(void)memcpy((char *)buf + crd->crd_inject, aalg,
    495 		    axf->auth_hash->authsize);
    496 		break;
    497 	case CRYPTO_BUF_MBUF:
    498 		m_copyback((struct mbuf *) buf, crd->crd_inject,
    499 		    axf->auth_hash->authsize, aalg);
    500 		break;
    501 	case CRYPTO_BUF_IOV:
    502 		bcopy(aalg, crp->crp_mac, axf->auth_hash->authsize);
    503 		break;
    504 	default:
    505 		return EINVAL;
    506 	}
    507 	return 0;
    508 }
    509 
    510 /*
    511  * Apply a compression/decompression algorithm
    512  */
    513 static int
    514 swcr_compdec(struct cryptodesc *crd, struct swcr_data *sw,
    515     void *buf, int outtype)
    516 {
    517 	u_int8_t *data, *out;
    518 	const struct swcr_comp_algo *cxf;
    519 	int adj;
    520 	u_int32_t result;
    521 
    522 	cxf = sw->sw_cxf;
    523 
    524 	/* We must handle the whole buffer of data in one time
    525 	 * then if there is not all the data in the mbuf, we must
    526 	 * copy in a buffer.
    527 	 */
    528 
    529 	data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
    530 	if (data == NULL)
    531 		return (EINVAL);
    532 	COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
    533 
    534 	if (crd->crd_flags & CRD_F_COMP)
    535 		result = cxf->compress(data, crd->crd_len, &out);
    536 	else
    537 		result = cxf->decompress(data, crd->crd_len, &out);
    538 
    539 	FREE(data, M_CRYPTO_DATA);
    540 	if (result == 0)
    541 		return EINVAL;
    542 
    543 	/* Copy back the (de)compressed data. m_copyback is
    544 	 * extending the mbuf as necessary.
    545 	 */
    546 	sw->sw_size = result;
    547 	/* Check the compressed size when doing compression */
    548 	if (crd->crd_flags & CRD_F_COMP) {
    549 		if (result > crd->crd_len) {
    550 			/* Compression was useless, we lost time */
    551 			FREE(out, M_CRYPTO_DATA);
    552 			return 0;
    553 		}
    554 	}
    555 
    556 	COPYBACK(outtype, buf, crd->crd_skip, result, out);
    557 	if (result < crd->crd_len) {
    558 		adj = result - crd->crd_len;
    559 		if (outtype == CRYPTO_BUF_MBUF) {
    560 			adj = result - crd->crd_len;
    561 			m_adj((struct mbuf *)buf, adj);
    562 		} else {
    563 			struct uio *uio = (struct uio *)buf;
    564 			int ind;
    565 
    566 			adj = crd->crd_len - result;
    567 			ind = uio->uio_iovcnt - 1;
    568 
    569 			while (adj > 0 && ind >= 0) {
    570 				if (adj < uio->uio_iov[ind].iov_len) {
    571 					uio->uio_iov[ind].iov_len -= adj;
    572 					break;
    573 				}
    574 
    575 				adj -= uio->uio_iov[ind].iov_len;
    576 				uio->uio_iov[ind].iov_len = 0;
    577 				ind--;
    578 				uio->uio_iovcnt--;
    579 			}
    580 		}
    581 	}
    582 	FREE(out, M_CRYPTO_DATA);
    583 	return 0;
    584 }
    585 
    586 /*
    587  * Generate a new software session.
    588  */
    589 static int
    590 swcr_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
    591 {
    592 	struct swcr_data **swd;
    593 	const struct swcr_auth_hash *axf;
    594 	const struct swcr_enc_xform *txf;
    595 	const struct swcr_comp_algo *cxf;
    596 	u_int32_t i;
    597 	int k, error;
    598 
    599 	if (sid == NULL || cri == NULL)
    600 		return EINVAL;
    601 
    602 	if (swcr_sessions) {
    603 		for (i = 1; i < swcr_sesnum; i++)
    604 			if (swcr_sessions[i] == NULL)
    605 				break;
    606 	} else
    607 		i = 1;		/* NB: to silence compiler warning */
    608 
    609 	if (swcr_sessions == NULL || i == swcr_sesnum) {
    610 		if (swcr_sessions == NULL) {
    611 			i = 1; /* We leave swcr_sessions[0] empty */
    612 			swcr_sesnum = CRYPTO_SW_SESSIONS;
    613 		} else
    614 			swcr_sesnum *= 2;
    615 
    616 		swd = malloc(swcr_sesnum * sizeof(struct swcr_data *),
    617 		    M_CRYPTO_DATA, M_NOWAIT);
    618 		if (swd == NULL) {
    619 			/* Reset session number */
    620 			if (swcr_sesnum == CRYPTO_SW_SESSIONS)
    621 				swcr_sesnum = 0;
    622 			else
    623 				swcr_sesnum /= 2;
    624 			return ENOBUFS;
    625 		}
    626 
    627 		bzero(swd, swcr_sesnum * sizeof(struct swcr_data *));
    628 
    629 		/* Copy existing sessions */
    630 		if (swcr_sessions) {
    631 			bcopy(swcr_sessions, swd,
    632 			    (swcr_sesnum / 2) * sizeof(struct swcr_data *));
    633 			free(swcr_sessions, M_CRYPTO_DATA);
    634 		}
    635 
    636 		swcr_sessions = swd;
    637 	}
    638 
    639 	swd = &swcr_sessions[i];
    640 	*sid = i;
    641 
    642 	while (cri) {
    643 		*swd = malloc(sizeof **swd, M_CRYPTO_DATA, M_NOWAIT);
    644 		if (*swd == NULL) {
    645 			swcr_freesession(NULL, i);
    646 			return ENOBUFS;
    647 		}
    648 		bzero(*swd, sizeof(struct swcr_data));
    649 
    650 		switch (cri->cri_alg) {
    651 		case CRYPTO_DES_CBC:
    652 			txf = &swcr_enc_xform_des;
    653 			goto enccommon;
    654 		case CRYPTO_3DES_CBC:
    655 			txf = &swcr_enc_xform_3des;
    656 			goto enccommon;
    657 		case CRYPTO_BLF_CBC:
    658 			txf = &swcr_enc_xform_blf;
    659 			goto enccommon;
    660 		case CRYPTO_CAST_CBC:
    661 			txf = &swcr_enc_xform_cast5;
    662 			goto enccommon;
    663 		case CRYPTO_SKIPJACK_CBC:
    664 			txf = &swcr_enc_xform_skipjack;
    665 			goto enccommon;
    666 		case CRYPTO_RIJNDAEL128_CBC:
    667 			txf = &swcr_enc_xform_rijndael128;
    668 			goto enccommon;
    669 		case CRYPTO_NULL_CBC:
    670 			txf = &swcr_enc_xform_null;
    671 			goto enccommon;
    672 		enccommon:
    673 			error = txf->setkey(&((*swd)->sw_kschedule),
    674 					cri->cri_key, cri->cri_klen / 8);
    675 			if (error) {
    676 				swcr_freesession(NULL, i);
    677 				return error;
    678 			}
    679 			(*swd)->sw_exf = txf;
    680 			break;
    681 
    682 		case CRYPTO_MD5_HMAC:
    683 			axf = &swcr_auth_hash_hmac_md5;
    684 			goto authcommon;
    685 		case CRYPTO_MD5_HMAC_96:
    686 			axf = &swcr_auth_hash_hmac_md5_96;
    687 			goto authcommon;
    688 		case CRYPTO_SHA1_HMAC:
    689 			axf = &swcr_auth_hash_hmac_sha1;
    690 			goto authcommon;
    691 		case CRYPTO_SHA1_HMAC_96:
    692 			axf = &swcr_auth_hash_hmac_sha1_96;
    693 			goto authcommon;
    694 		case CRYPTO_SHA2_HMAC:
    695 			if (cri->cri_klen == 256)
    696 				axf = &swcr_auth_hash_hmac_sha2_256;
    697 			else if (cri->cri_klen == 384)
    698 				axf = &swcr_auth_hash_hmac_sha2_384;
    699 			else if (cri->cri_klen == 512)
    700 				axf = &swcr_auth_hash_hmac_sha2_512;
    701 			else {
    702 				swcr_freesession(NULL, i);
    703 				return EINVAL;
    704 			}
    705 			goto authcommon;
    706 		case CRYPTO_NULL_HMAC:
    707 			axf = &swcr_auth_hash_null;
    708 			goto authcommon;
    709 		case CRYPTO_RIPEMD160_HMAC:
    710 			axf = &swcr_auth_hash_hmac_ripemd_160;
    711 			goto authcommon;
    712 		case CRYPTO_RIPEMD160_HMAC_96:
    713 			axf = &swcr_auth_hash_hmac_ripemd_160_96;
    714 			goto authcommon;	/* leave this for safety */
    715 		authcommon:
    716 			(*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
    717 			    M_CRYPTO_DATA, M_NOWAIT);
    718 			if ((*swd)->sw_ictx == NULL) {
    719 				swcr_freesession(NULL, i);
    720 				return ENOBUFS;
    721 			}
    722 
    723 			(*swd)->sw_octx = malloc(axf->auth_hash->ctxsize,
    724 			    M_CRYPTO_DATA, M_NOWAIT);
    725 			if ((*swd)->sw_octx == NULL) {
    726 				swcr_freesession(NULL, i);
    727 				return ENOBUFS;
    728 			}
    729 
    730 			for (k = 0; k < cri->cri_klen / 8; k++)
    731 				cri->cri_key[k] ^= HMAC_IPAD_VAL;
    732 
    733 			axf->Init((*swd)->sw_ictx);
    734 			axf->Update((*swd)->sw_ictx, cri->cri_key,
    735 			    cri->cri_klen / 8);
    736 			axf->Update((*swd)->sw_ictx, hmac_ipad_buffer,
    737 			    HMAC_BLOCK_LEN - (cri->cri_klen / 8));
    738 
    739 			for (k = 0; k < cri->cri_klen / 8; k++)
    740 				cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
    741 
    742 			axf->Init((*swd)->sw_octx);
    743 			axf->Update((*swd)->sw_octx, cri->cri_key,
    744 			    cri->cri_klen / 8);
    745 			axf->Update((*swd)->sw_octx, hmac_opad_buffer,
    746 			    HMAC_BLOCK_LEN - (cri->cri_klen / 8));
    747 
    748 			for (k = 0; k < cri->cri_klen / 8; k++)
    749 				cri->cri_key[k] ^= HMAC_OPAD_VAL;
    750 			(*swd)->sw_axf = axf;
    751 			break;
    752 
    753 		case CRYPTO_MD5_KPDK:
    754 			axf = &swcr_auth_hash_key_md5;
    755 			goto auth2common;
    756 
    757 		case CRYPTO_SHA1_KPDK:
    758 			axf = &swcr_auth_hash_key_sha1;
    759 		auth2common:
    760 			(*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
    761 			    M_CRYPTO_DATA, M_NOWAIT);
    762 			if ((*swd)->sw_ictx == NULL) {
    763 				swcr_freesession(NULL, i);
    764 				return ENOBUFS;
    765 			}
    766 
    767 			/* Store the key so we can "append" it to the payload */
    768 			(*swd)->sw_octx = malloc(cri->cri_klen / 8, M_CRYPTO_DATA,
    769 			    M_NOWAIT);
    770 			if ((*swd)->sw_octx == NULL) {
    771 				swcr_freesession(NULL, i);
    772 				return ENOBUFS;
    773 			}
    774 
    775 			(*swd)->sw_klen = cri->cri_klen / 8;
    776 			bcopy(cri->cri_key, (*swd)->sw_octx, cri->cri_klen / 8);
    777 			axf->Init((*swd)->sw_ictx);
    778 			axf->Update((*swd)->sw_ictx, cri->cri_key,
    779 			    cri->cri_klen / 8);
    780 			axf->Final(NULL, (*swd)->sw_ictx);
    781 			(*swd)->sw_axf = axf;
    782 			break;
    783 
    784 		case CRYPTO_MD5:
    785 			axf = &swcr_auth_hash_md5;
    786 			goto auth3common;
    787 
    788 		case CRYPTO_SHA1:
    789 			axf = &swcr_auth_hash_sha1;
    790 		auth3common:
    791 			(*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
    792 			    M_CRYPTO_DATA, M_NOWAIT);
    793 			if ((*swd)->sw_ictx == NULL) {
    794 				swcr_freesession(NULL, i);
    795 				return ENOBUFS;
    796 			}
    797 
    798 			axf->Init((*swd)->sw_ictx);
    799 			(*swd)->sw_axf = axf;
    800 			break;
    801 
    802 		case CRYPTO_DEFLATE_COMP:
    803 			cxf = &swcr_comp_algo_deflate;
    804 			(*swd)->sw_cxf = cxf;
    805 			break;
    806 		default:
    807 			swcr_freesession(NULL, i);
    808 			return EINVAL;
    809 		}
    810 
    811 		(*swd)->sw_alg = cri->cri_alg;
    812 		cri = cri->cri_next;
    813 		swd = &((*swd)->sw_next);
    814 	}
    815 	return 0;
    816 }
    817 
    818 /*
    819  * Free a session.
    820  */
    821 static int
    822 swcr_freesession(void *arg, u_int64_t tid)
    823 {
    824 	struct swcr_data *swd;
    825 	const struct swcr_enc_xform *txf;
    826 	const struct swcr_auth_hash *axf;
    827 	const struct swcr_comp_algo *cxf;
    828 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
    829 
    830 	if (sid > swcr_sesnum || swcr_sessions == NULL ||
    831 	    swcr_sessions[sid] == NULL)
    832 		return EINVAL;
    833 
    834 	/* Silently accept and return */
    835 	if (sid == 0)
    836 		return 0;
    837 
    838 	while ((swd = swcr_sessions[sid]) != NULL) {
    839 		swcr_sessions[sid] = swd->sw_next;
    840 
    841 		switch (swd->sw_alg) {
    842 		case CRYPTO_DES_CBC:
    843 		case CRYPTO_3DES_CBC:
    844 		case CRYPTO_BLF_CBC:
    845 		case CRYPTO_CAST_CBC:
    846 		case CRYPTO_SKIPJACK_CBC:
    847 		case CRYPTO_RIJNDAEL128_CBC:
    848 		case CRYPTO_NULL_CBC:
    849 			txf = swd->sw_exf;
    850 
    851 			if (swd->sw_kschedule)
    852 				txf->zerokey(&(swd->sw_kschedule));
    853 			break;
    854 
    855 		case CRYPTO_MD5_HMAC:
    856 		case CRYPTO_MD5_HMAC_96:
    857 		case CRYPTO_SHA1_HMAC:
    858 		case CRYPTO_SHA1_HMAC_96:
    859 		case CRYPTO_SHA2_HMAC:
    860 		case CRYPTO_RIPEMD160_HMAC:
    861 		case CRYPTO_RIPEMD160_HMAC_96:
    862 		case CRYPTO_NULL_HMAC:
    863 			axf = swd->sw_axf;
    864 
    865 			if (swd->sw_ictx) {
    866 				bzero(swd->sw_ictx, axf->auth_hash->ctxsize);
    867 				free(swd->sw_ictx, M_CRYPTO_DATA);
    868 			}
    869 			if (swd->sw_octx) {
    870 				bzero(swd->sw_octx, axf->auth_hash->ctxsize);
    871 				free(swd->sw_octx, M_CRYPTO_DATA);
    872 			}
    873 			break;
    874 
    875 		case CRYPTO_MD5_KPDK:
    876 		case CRYPTO_SHA1_KPDK:
    877 			axf = swd->sw_axf;
    878 
    879 			if (swd->sw_ictx) {
    880 				bzero(swd->sw_ictx, axf->auth_hash->ctxsize);
    881 				free(swd->sw_ictx, M_CRYPTO_DATA);
    882 			}
    883 			if (swd->sw_octx) {
    884 				bzero(swd->sw_octx, swd->sw_klen);
    885 				free(swd->sw_octx, M_CRYPTO_DATA);
    886 			}
    887 			break;
    888 
    889 		case CRYPTO_MD5:
    890 		case CRYPTO_SHA1:
    891 			axf = swd->sw_axf;
    892 
    893 			if (swd->sw_ictx)
    894 				free(swd->sw_ictx, M_CRYPTO_DATA);
    895 			break;
    896 
    897 		case CRYPTO_DEFLATE_COMP:
    898 			cxf = swd->sw_cxf;
    899 			break;
    900 		}
    901 
    902 		FREE(swd, M_CRYPTO_DATA);
    903 	}
    904 	return 0;
    905 }
    906 
    907 /*
    908  * Process a software request.
    909  */
    910 static int
    911 swcr_process(void *arg, struct cryptop *crp, int hint)
    912 {
    913 	struct cryptodesc *crd;
    914 	struct swcr_data *sw;
    915 	u_int32_t lid;
    916 	int type;
    917 
    918 	/* Sanity check */
    919 	if (crp == NULL)
    920 		return EINVAL;
    921 
    922 	if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
    923 		crp->crp_etype = EINVAL;
    924 		goto done;
    925 	}
    926 
    927 	lid = crp->crp_sid & 0xffffffff;
    928 	if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
    929 		crp->crp_etype = ENOENT;
    930 		goto done;
    931 	}
    932 
    933 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
    934 		type = CRYPTO_BUF_MBUF;
    935 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
    936 		type = CRYPTO_BUF_IOV;
    937 	} else {
    938 		type = CRYPTO_BUF_CONTIG;
    939 	}
    940 
    941 	/* Go through crypto descriptors, processing as we go */
    942 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
    943 		/*
    944 		 * Find the crypto context.
    945 		 *
    946 		 * XXX Note that the logic here prevents us from having
    947 		 * XXX the same algorithm multiple times in a session
    948 		 * XXX (or rather, we can but it won't give us the right
    949 		 * XXX results). To do that, we'd need some way of differentiating
    950 		 * XXX between the various instances of an algorithm (so we can
    951 		 * XXX locate the correct crypto context).
    952 		 */
    953 		for (sw = swcr_sessions[lid];
    954 		    sw && sw->sw_alg != crd->crd_alg;
    955 		    sw = sw->sw_next)
    956 			;
    957 
    958 		/* No such context ? */
    959 		if (sw == NULL) {
    960 			crp->crp_etype = EINVAL;
    961 			goto done;
    962 		}
    963 
    964 		switch (sw->sw_alg) {
    965 		case CRYPTO_DES_CBC:
    966 		case CRYPTO_3DES_CBC:
    967 		case CRYPTO_BLF_CBC:
    968 		case CRYPTO_CAST_CBC:
    969 		case CRYPTO_SKIPJACK_CBC:
    970 		case CRYPTO_RIJNDAEL128_CBC:
    971 			if ((crp->crp_etype = swcr_encdec(crd, sw,
    972 			    crp->crp_buf, type)) != 0)
    973 				goto done;
    974 			break;
    975 		case CRYPTO_NULL_CBC:
    976 			crp->crp_etype = 0;
    977 			break;
    978 		case CRYPTO_MD5_HMAC:
    979 		case CRYPTO_MD5_HMAC_96:
    980 		case CRYPTO_SHA1_HMAC:
    981 		case CRYPTO_SHA1_HMAC_96:
    982 		case CRYPTO_SHA2_HMAC:
    983 		case CRYPTO_RIPEMD160_HMAC:
    984 		case CRYPTO_RIPEMD160_HMAC_96:
    985 		case CRYPTO_NULL_HMAC:
    986 		case CRYPTO_MD5_KPDK:
    987 		case CRYPTO_SHA1_KPDK:
    988 		case CRYPTO_MD5:
    989 		case CRYPTO_SHA1:
    990 			if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
    991 			    crp->crp_buf, type)) != 0)
    992 				goto done;
    993 			break;
    994 
    995 		case CRYPTO_DEFLATE_COMP:
    996 			if ((crp->crp_etype = swcr_compdec(crd, sw,
    997 			    crp->crp_buf, type)) != 0)
    998 				goto done;
    999 			else
   1000 				crp->crp_olen = (int)sw->sw_size;
   1001 			break;
   1002 
   1003 		default:
   1004 			/* Unknown/unsupported algorithm */
   1005 			crp->crp_etype = EINVAL;
   1006 			goto done;
   1007 		}
   1008 	}
   1009 
   1010 done:
   1011 	crypto_done(crp);
   1012 	return 0;
   1013 }
   1014 
   1015 static void
   1016 swcr_init(void)
   1017 {
   1018 	swcr_id = crypto_get_driverid(CRYPTOCAP_F_SOFTWARE);
   1019 	if (swcr_id < 0) {
   1020 		/* This should never happen */
   1021 		panic("Software crypto device cannot initialize!");
   1022 	}
   1023 
   1024 	crypto_register(swcr_id, CRYPTO_DES_CBC,
   1025 	    0, 0, swcr_newsession, swcr_freesession, swcr_process, NULL);
   1026 #define	REGISTER(alg) \
   1027 	crypto_register(swcr_id, alg, 0, 0, NULL, NULL, NULL, NULL)
   1028 
   1029 	REGISTER(CRYPTO_3DES_CBC);
   1030 	REGISTER(CRYPTO_BLF_CBC);
   1031 	REGISTER(CRYPTO_CAST_CBC);
   1032 	REGISTER(CRYPTO_SKIPJACK_CBC);
   1033 	REGISTER(CRYPTO_NULL_CBC);
   1034 	REGISTER(CRYPTO_MD5_HMAC);
   1035 	REGISTER(CRYPTO_MD5_HMAC_96);
   1036 	REGISTER(CRYPTO_SHA1_HMAC);
   1037 	REGISTER(CRYPTO_SHA1_HMAC_96);
   1038 	REGISTER(CRYPTO_SHA2_HMAC);
   1039 	REGISTER(CRYPTO_RIPEMD160_HMAC);
   1040 	REGISTER(CRYPTO_RIPEMD160_HMAC_96);
   1041 	REGISTER(CRYPTO_NULL_HMAC);
   1042 	REGISTER(CRYPTO_MD5_KPDK);
   1043 	REGISTER(CRYPTO_SHA1_KPDK);
   1044 	REGISTER(CRYPTO_MD5);
   1045 	REGISTER(CRYPTO_SHA1);
   1046 	REGISTER(CRYPTO_RIJNDAEL128_CBC);
   1047 	REGISTER(CRYPTO_DEFLATE_COMP);
   1048 #undef REGISTER
   1049 }
   1050 
   1051 
   1052 /*
   1053  * Pseudo-device init routine for software crypto.
   1054  */
   1055 void	swcryptoattach(int);
   1056 
   1057 void
   1058 swcryptoattach(int num)
   1059 {
   1060 
   1061 	swcr_init();
   1062 }
   1063