cryptosoft.c revision 1.21 1 /* $NetBSD: cryptosoft.c,v 1.21 2008/12/17 20:51:38 cegger Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.2.2.1 2002/11/21 23:34:23 sam Exp $ */
3 /* $OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $ */
4
5 /*
6 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
7 *
8 * This code was written by Angelos D. Keromytis in Athens, Greece, in
9 * February 2000. Network Security Technologies Inc. (NSTI) kindly
10 * supported the development of this code.
11 *
12 * Copyright (c) 2000, 2001 Angelos D. Keromytis
13 *
14 * Permission to use, copy, and modify this software with or without fee
15 * is hereby granted, provided that this entire notice is included in
16 * all source code copies of any software which is or includes a copy or
17 * modification of this software.
18 *
19 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
20 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
21 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
22 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
23 * PURPOSE.
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: cryptosoft.c,v 1.21 2008/12/17 20:51:38 cegger Exp $");
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/malloc.h>
32 #include <sys/mbuf.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
35
36 #include "opt_ocf.h"
37 #include <opencrypto/cryptodev.h>
38 #include <opencrypto/cryptosoft.h>
39 #include <opencrypto/xform.h>
40
41 #include <opencrypto/cryptosoft_xform.c>
42
43 union authctx {
44 MD5_CTX md5ctx;
45 SHA1_CTX sha1ctx;
46 RMD160_CTX rmd160ctx;
47 SHA256_CTX sha256ctx;
48 SHA384_CTX sha384ctx;
49 SHA512_CTX sha512ctx;
50 };
51
52 struct swcr_data **swcr_sessions = NULL;
53 u_int32_t swcr_sesnum = 0;
54 int32_t swcr_id = -1;
55
56 #define COPYBACK(x, a, b, c, d) \
57 (x) == CRYPTO_BUF_MBUF ? m_copyback((struct mbuf *)a,b,c,d) \
58 : cuio_copyback((struct uio *)a,b,c,d)
59 #define COPYDATA(x, a, b, c, d) \
60 (x) == CRYPTO_BUF_MBUF ? m_copydata((struct mbuf *)a,b,c,d) \
61 : cuio_copydata((struct uio *)a,b,c,d)
62
63 static int swcr_encdec(struct cryptodesc *, struct swcr_data *, void *, int);
64 static int swcr_compdec(struct cryptodesc *, struct swcr_data *, void *, int);
65 static int swcr_process(void *, struct cryptop *, int);
66 static int swcr_newsession(void *, u_int32_t *, struct cryptoini *);
67 static int swcr_freesession(void *, u_int64_t);
68
69 /*
70 * Apply a symmetric encryption/decryption algorithm.
71 */
72 static int
73 swcr_encdec(struct cryptodesc *crd, struct swcr_data *sw, void *bufv,
74 int outtype)
75 {
76 char *buf = bufv;
77 unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
78 unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN];
79 const struct swcr_enc_xform *exf;
80 int i, k, j, blks;
81 int count, ind;
82
83 exf = sw->sw_exf;
84 blks = exf->enc_xform->blocksize;
85
86 /* Check for non-padded data */
87 if (crd->crd_len % blks)
88 return EINVAL;
89
90 /* Initialize the IV */
91 if (crd->crd_flags & CRD_F_ENCRYPT) {
92 /* IV explicitly provided ? */
93 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
94 bcopy(crd->crd_iv, iv, blks);
95 else {
96 /* Get random IV */
97 for (i = 0;
98 i + sizeof (u_int32_t) < EALG_MAX_BLOCK_LEN;
99 i += sizeof (u_int32_t)) {
100 u_int32_t temp = arc4random();
101
102 bcopy(&temp, iv + i, sizeof(u_int32_t));
103 }
104 /*
105 * What if the block size is not a multiple
106 * of sizeof (u_int32_t), which is the size of
107 * what arc4random() returns ?
108 */
109 if (EALG_MAX_BLOCK_LEN % sizeof (u_int32_t) != 0) {
110 u_int32_t temp = arc4random();
111
112 bcopy (&temp, iv + i,
113 EALG_MAX_BLOCK_LEN - i);
114 }
115 }
116
117 /* Do we need to write the IV */
118 if (!(crd->crd_flags & CRD_F_IV_PRESENT)) {
119 COPYBACK(outtype, buf, crd->crd_inject, blks, iv);
120 }
121
122 } else { /* Decryption */
123 /* IV explicitly provided ? */
124 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
125 bcopy(crd->crd_iv, iv, blks);
126 else {
127 /* Get IV off buf */
128 COPYDATA(outtype, buf, crd->crd_inject, blks, iv);
129 }
130 }
131
132 ivp = iv;
133
134 if (outtype == CRYPTO_BUF_CONTIG) {
135 if (crd->crd_flags & CRD_F_ENCRYPT) {
136 for (i = crd->crd_skip;
137 i < crd->crd_skip + crd->crd_len; i += blks) {
138 /* XOR with the IV/previous block, as appropriate. */
139 if (i == crd->crd_skip)
140 for (k = 0; k < blks; k++)
141 buf[i + k] ^= ivp[k];
142 else
143 for (k = 0; k < blks; k++)
144 buf[i + k] ^= buf[i + k - blks];
145 exf->encrypt(sw->sw_kschedule, buf + i);
146 }
147 } else { /* Decrypt */
148 /*
149 * Start at the end, so we don't need to keep the encrypted
150 * block as the IV for the next block.
151 */
152 for (i = crd->crd_skip + crd->crd_len - blks;
153 i >= crd->crd_skip; i -= blks) {
154 exf->decrypt(sw->sw_kschedule, buf + i);
155
156 /* XOR with the IV/previous block, as appropriate */
157 if (i == crd->crd_skip)
158 for (k = 0; k < blks; k++)
159 buf[i + k] ^= ivp[k];
160 else
161 for (k = 0; k < blks; k++)
162 buf[i + k] ^= buf[i + k - blks];
163 }
164 }
165
166 return 0;
167 } else if (outtype == CRYPTO_BUF_MBUF) {
168 struct mbuf *m = (struct mbuf *) buf;
169
170 /* Find beginning of data */
171 m = m_getptr(m, crd->crd_skip, &k);
172 if (m == NULL)
173 return EINVAL;
174
175 i = crd->crd_len;
176
177 while (i > 0) {
178 /*
179 * If there's insufficient data at the end of
180 * an mbuf, we have to do some copying.
181 */
182 if (m->m_len < k + blks && m->m_len != k) {
183 m_copydata(m, k, blks, blk);
184
185 /* Actual encryption/decryption */
186 if (crd->crd_flags & CRD_F_ENCRYPT) {
187 /* XOR with previous block */
188 for (j = 0; j < blks; j++)
189 blk[j] ^= ivp[j];
190
191 exf->encrypt(sw->sw_kschedule, blk);
192
193 /*
194 * Keep encrypted block for XOR'ing
195 * with next block
196 */
197 bcopy(blk, iv, blks);
198 ivp = iv;
199 } else { /* decrypt */
200 /*
201 * Keep encrypted block for XOR'ing
202 * with next block
203 */
204 if (ivp == iv)
205 bcopy(blk, piv, blks);
206 else
207 bcopy(blk, iv, blks);
208
209 exf->decrypt(sw->sw_kschedule, blk);
210
211 /* XOR with previous block */
212 for (j = 0; j < blks; j++)
213 blk[j] ^= ivp[j];
214
215 if (ivp == iv)
216 bcopy(piv, iv, blks);
217 else
218 ivp = iv;
219 }
220
221 /* Copy back decrypted block */
222 m_copyback(m, k, blks, blk);
223
224 /* Advance pointer */
225 m = m_getptr(m, k + blks, &k);
226 if (m == NULL)
227 return EINVAL;
228
229 i -= blks;
230
231 /* Could be done... */
232 if (i == 0)
233 break;
234 }
235
236 /* Skip possibly empty mbufs */
237 if (k == m->m_len) {
238 for (m = m->m_next; m && m->m_len == 0;
239 m = m->m_next)
240 ;
241 k = 0;
242 }
243
244 /* Sanity check */
245 if (m == NULL)
246 return EINVAL;
247
248 /*
249 * Warning: idat may point to garbage here, but
250 * we only use it in the while() loop, only if
251 * there are indeed enough data.
252 */
253 idat = mtod(m, unsigned char *) + k;
254
255 while (m->m_len >= k + blks && i > 0) {
256 if (crd->crd_flags & CRD_F_ENCRYPT) {
257 /* XOR with previous block/IV */
258 for (j = 0; j < blks; j++)
259 idat[j] ^= ivp[j];
260
261 exf->encrypt(sw->sw_kschedule, idat);
262 ivp = idat;
263 } else { /* decrypt */
264 /*
265 * Keep encrypted block to be used
266 * in next block's processing.
267 */
268 if (ivp == iv)
269 bcopy(idat, piv, blks);
270 else
271 bcopy(idat, iv, blks);
272
273 exf->decrypt(sw->sw_kschedule, idat);
274
275 /* XOR with previous block/IV */
276 for (j = 0; j < blks; j++)
277 idat[j] ^= ivp[j];
278
279 if (ivp == iv)
280 bcopy(piv, iv, blks);
281 else
282 ivp = iv;
283 }
284
285 idat += blks;
286 k += blks;
287 i -= blks;
288 }
289 }
290
291 return 0; /* Done with mbuf encryption/decryption */
292 } else if (outtype == CRYPTO_BUF_IOV) {
293 struct uio *uio = (struct uio *) buf;
294
295 /* Find beginning of data */
296 count = crd->crd_skip;
297 ind = cuio_getptr(uio, count, &k);
298 if (ind == -1)
299 return EINVAL;
300
301 i = crd->crd_len;
302
303 while (i > 0) {
304 /*
305 * If there's insufficient data at the end,
306 * we have to do some copying.
307 */
308 if (uio->uio_iov[ind].iov_len < k + blks &&
309 uio->uio_iov[ind].iov_len != k) {
310 cuio_copydata(uio, k, blks, blk);
311
312 /* Actual encryption/decryption */
313 if (crd->crd_flags & CRD_F_ENCRYPT) {
314 /* XOR with previous block */
315 for (j = 0; j < blks; j++)
316 blk[j] ^= ivp[j];
317
318 exf->encrypt(sw->sw_kschedule, blk);
319
320 /*
321 * Keep encrypted block for XOR'ing
322 * with next block
323 */
324 bcopy(blk, iv, blks);
325 ivp = iv;
326 } else { /* decrypt */
327 /*
328 * Keep encrypted block for XOR'ing
329 * with next block
330 */
331 if (ivp == iv)
332 bcopy(blk, piv, blks);
333 else
334 bcopy(blk, iv, blks);
335
336 exf->decrypt(sw->sw_kschedule, blk);
337
338 /* XOR with previous block */
339 for (j = 0; j < blks; j++)
340 blk[j] ^= ivp[j];
341
342 if (ivp == iv)
343 bcopy(piv, iv, blks);
344 else
345 ivp = iv;
346 }
347
348 /* Copy back decrypted block */
349 cuio_copyback(uio, k, blks, blk);
350
351 count += blks;
352
353 /* Advance pointer */
354 ind = cuio_getptr(uio, count, &k);
355 if (ind == -1)
356 return (EINVAL);
357
358 i -= blks;
359
360 /* Could be done... */
361 if (i == 0)
362 break;
363 }
364
365 /*
366 * Warning: idat may point to garbage here, but
367 * we only use it in the while() loop, only if
368 * there are indeed enough data.
369 */
370 idat = ((char *)uio->uio_iov[ind].iov_base) + k;
371
372 while (uio->uio_iov[ind].iov_len >= k + blks &&
373 i > 0) {
374 if (crd->crd_flags & CRD_F_ENCRYPT) {
375 /* XOR with previous block/IV */
376 for (j = 0; j < blks; j++)
377 idat[j] ^= ivp[j];
378
379 exf->encrypt(sw->sw_kschedule, idat);
380 ivp = idat;
381 } else { /* decrypt */
382 /*
383 * Keep encrypted block to be used
384 * in next block's processing.
385 */
386 if (ivp == iv)
387 bcopy(idat, piv, blks);
388 else
389 bcopy(idat, iv, blks);
390
391 exf->decrypt(sw->sw_kschedule, idat);
392
393 /* XOR with previous block/IV */
394 for (j = 0; j < blks; j++)
395 idat[j] ^= ivp[j];
396
397 if (ivp == iv)
398 bcopy(piv, iv, blks);
399 else
400 ivp = iv;
401 }
402
403 idat += blks;
404 count += blks;
405 k += blks;
406 i -= blks;
407 }
408 }
409 return 0; /* Done with mbuf encryption/decryption */
410 }
411
412 /* Unreachable */
413 return EINVAL;
414 }
415
416 /*
417 * Compute keyed-hash authenticator.
418 */
419 int
420 swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
421 struct swcr_data *sw, void *buf, int outtype)
422 {
423 unsigned char aalg[AALG_MAX_RESULT_LEN];
424 const struct swcr_auth_hash *axf;
425 union authctx ctx;
426 int err;
427
428 if (sw->sw_ictx == 0)
429 return EINVAL;
430
431 axf = sw->sw_axf;
432
433 bcopy(sw->sw_ictx, &ctx, axf->auth_hash->ctxsize);
434
435 switch (outtype) {
436 case CRYPTO_BUF_CONTIG:
437 axf->Update(&ctx, (char *)buf + crd->crd_skip, crd->crd_len);
438 break;
439 case CRYPTO_BUF_MBUF:
440 err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
441 (int (*)(void*, void *, unsigned int)) axf->Update,
442 (void *) &ctx);
443 if (err)
444 return err;
445 break;
446 case CRYPTO_BUF_IOV:
447 err = cuio_apply((struct uio *) buf, crd->crd_skip,
448 crd->crd_len,
449 (int (*)(void *, void *, unsigned int)) axf->Update,
450 (void *) &ctx);
451 if (err) {
452 return err;
453 }
454 break;
455 default:
456 return EINVAL;
457 }
458
459 switch (sw->sw_alg) {
460 case CRYPTO_MD5_HMAC:
461 case CRYPTO_MD5_HMAC_96:
462 case CRYPTO_SHA1_HMAC:
463 case CRYPTO_SHA1_HMAC_96:
464 case CRYPTO_SHA2_HMAC:
465 case CRYPTO_RIPEMD160_HMAC:
466 case CRYPTO_RIPEMD160_HMAC_96:
467 if (sw->sw_octx == NULL)
468 return EINVAL;
469
470 axf->Final(aalg, &ctx);
471 bcopy(sw->sw_octx, &ctx, axf->auth_hash->ctxsize);
472 axf->Update(&ctx, aalg, axf->auth_hash->hashsize);
473 axf->Final(aalg, &ctx);
474 break;
475
476 case CRYPTO_MD5_KPDK:
477 case CRYPTO_SHA1_KPDK:
478 if (sw->sw_octx == NULL)
479 return EINVAL;
480
481 axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
482 axf->Final(aalg, &ctx);
483 break;
484
485 case CRYPTO_NULL_HMAC:
486 case CRYPTO_MD5:
487 case CRYPTO_SHA1:
488 axf->Final(aalg, &ctx);
489 break;
490 }
491
492 /* Inject the authentication data */
493 switch (outtype) {
494 case CRYPTO_BUF_CONTIG:
495 (void)memcpy((char *)buf + crd->crd_inject, aalg,
496 axf->auth_hash->authsize);
497 break;
498 case CRYPTO_BUF_MBUF:
499 m_copyback((struct mbuf *) buf, crd->crd_inject,
500 axf->auth_hash->authsize, aalg);
501 break;
502 case CRYPTO_BUF_IOV:
503 bcopy(aalg, crp->crp_mac, axf->auth_hash->authsize);
504 break;
505 default:
506 return EINVAL;
507 }
508 return 0;
509 }
510
511 /*
512 * Apply a compression/decompression algorithm
513 */
514 static int
515 swcr_compdec(struct cryptodesc *crd, struct swcr_data *sw,
516 void *buf, int outtype)
517 {
518 u_int8_t *data, *out;
519 const struct swcr_comp_algo *cxf;
520 int adj;
521 u_int32_t result;
522
523 cxf = sw->sw_cxf;
524
525 /* We must handle the whole buffer of data in one time
526 * then if there is not all the data in the mbuf, we must
527 * copy in a buffer.
528 */
529
530 data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
531 if (data == NULL)
532 return (EINVAL);
533 COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
534
535 if (crd->crd_flags & CRD_F_COMP)
536 result = cxf->compress(data, crd->crd_len, &out);
537 else
538 result = cxf->decompress(data, crd->crd_len, &out);
539
540 free(data, M_CRYPTO_DATA);
541 if (result == 0)
542 return EINVAL;
543
544 /* Copy back the (de)compressed data. m_copyback is
545 * extending the mbuf as necessary.
546 */
547 sw->sw_size = result;
548 /* Check the compressed size when doing compression */
549 if (crd->crd_flags & CRD_F_COMP) {
550 if (result > crd->crd_len) {
551 /* Compression was useless, we lost time */
552 free(out, M_CRYPTO_DATA);
553 return 0;
554 }
555 }
556
557 COPYBACK(outtype, buf, crd->crd_skip, result, out);
558 if (result < crd->crd_len) {
559 adj = result - crd->crd_len;
560 if (outtype == CRYPTO_BUF_MBUF) {
561 adj = result - crd->crd_len;
562 m_adj((struct mbuf *)buf, adj);
563 } else {
564 struct uio *uio = (struct uio *)buf;
565 int ind;
566
567 adj = crd->crd_len - result;
568 ind = uio->uio_iovcnt - 1;
569
570 while (adj > 0 && ind >= 0) {
571 if (adj < uio->uio_iov[ind].iov_len) {
572 uio->uio_iov[ind].iov_len -= adj;
573 break;
574 }
575
576 adj -= uio->uio_iov[ind].iov_len;
577 uio->uio_iov[ind].iov_len = 0;
578 ind--;
579 uio->uio_iovcnt--;
580 }
581 }
582 }
583 free(out, M_CRYPTO_DATA);
584 return 0;
585 }
586
587 /*
588 * Generate a new software session.
589 */
590 static int
591 swcr_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
592 {
593 struct swcr_data **swd;
594 const struct swcr_auth_hash *axf;
595 const struct swcr_enc_xform *txf;
596 const struct swcr_comp_algo *cxf;
597 u_int32_t i;
598 int k, error;
599
600 if (sid == NULL || cri == NULL)
601 return EINVAL;
602
603 if (swcr_sessions) {
604 for (i = 1; i < swcr_sesnum; i++)
605 if (swcr_sessions[i] == NULL)
606 break;
607 } else
608 i = 1; /* NB: to silence compiler warning */
609
610 if (swcr_sessions == NULL || i == swcr_sesnum) {
611 if (swcr_sessions == NULL) {
612 i = 1; /* We leave swcr_sessions[0] empty */
613 swcr_sesnum = CRYPTO_SW_SESSIONS;
614 } else
615 swcr_sesnum *= 2;
616
617 swd = malloc(swcr_sesnum * sizeof(struct swcr_data *),
618 M_CRYPTO_DATA, M_NOWAIT);
619 if (swd == NULL) {
620 /* Reset session number */
621 if (swcr_sesnum == CRYPTO_SW_SESSIONS)
622 swcr_sesnum = 0;
623 else
624 swcr_sesnum /= 2;
625 return ENOBUFS;
626 }
627
628 bzero(swd, swcr_sesnum * sizeof(struct swcr_data *));
629
630 /* Copy existing sessions */
631 if (swcr_sessions) {
632 bcopy(swcr_sessions, swd,
633 (swcr_sesnum / 2) * sizeof(struct swcr_data *));
634 free(swcr_sessions, M_CRYPTO_DATA);
635 }
636
637 swcr_sessions = swd;
638 }
639
640 swd = &swcr_sessions[i];
641 *sid = i;
642
643 while (cri) {
644 *swd = malloc(sizeof **swd, M_CRYPTO_DATA, M_NOWAIT);
645 if (*swd == NULL) {
646 swcr_freesession(NULL, i);
647 return ENOBUFS;
648 }
649 bzero(*swd, sizeof(struct swcr_data));
650
651 switch (cri->cri_alg) {
652 case CRYPTO_DES_CBC:
653 txf = &swcr_enc_xform_des;
654 goto enccommon;
655 case CRYPTO_3DES_CBC:
656 txf = &swcr_enc_xform_3des;
657 goto enccommon;
658 case CRYPTO_BLF_CBC:
659 txf = &swcr_enc_xform_blf;
660 goto enccommon;
661 case CRYPTO_CAST_CBC:
662 txf = &swcr_enc_xform_cast5;
663 goto enccommon;
664 case CRYPTO_SKIPJACK_CBC:
665 txf = &swcr_enc_xform_skipjack;
666 goto enccommon;
667 case CRYPTO_RIJNDAEL128_CBC:
668 txf = &swcr_enc_xform_rijndael128;
669 goto enccommon;
670 case CRYPTO_NULL_CBC:
671 txf = &swcr_enc_xform_null;
672 goto enccommon;
673 enccommon:
674 error = txf->setkey(&((*swd)->sw_kschedule),
675 cri->cri_key, cri->cri_klen / 8);
676 if (error) {
677 swcr_freesession(NULL, i);
678 return error;
679 }
680 (*swd)->sw_exf = txf;
681 break;
682
683 case CRYPTO_MD5_HMAC:
684 axf = &swcr_auth_hash_hmac_md5;
685 goto authcommon;
686 case CRYPTO_MD5_HMAC_96:
687 axf = &swcr_auth_hash_hmac_md5_96;
688 goto authcommon;
689 case CRYPTO_SHA1_HMAC:
690 axf = &swcr_auth_hash_hmac_sha1;
691 goto authcommon;
692 case CRYPTO_SHA1_HMAC_96:
693 axf = &swcr_auth_hash_hmac_sha1_96;
694 goto authcommon;
695 case CRYPTO_SHA2_HMAC:
696 if (cri->cri_klen == 256)
697 axf = &swcr_auth_hash_hmac_sha2_256;
698 else if (cri->cri_klen == 384)
699 axf = &swcr_auth_hash_hmac_sha2_384;
700 else if (cri->cri_klen == 512)
701 axf = &swcr_auth_hash_hmac_sha2_512;
702 else {
703 swcr_freesession(NULL, i);
704 return EINVAL;
705 }
706 goto authcommon;
707 case CRYPTO_NULL_HMAC:
708 axf = &swcr_auth_hash_null;
709 goto authcommon;
710 case CRYPTO_RIPEMD160_HMAC:
711 axf = &swcr_auth_hash_hmac_ripemd_160;
712 goto authcommon;
713 case CRYPTO_RIPEMD160_HMAC_96:
714 axf = &swcr_auth_hash_hmac_ripemd_160_96;
715 goto authcommon; /* leave this for safety */
716 authcommon:
717 (*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
718 M_CRYPTO_DATA, M_NOWAIT);
719 if ((*swd)->sw_ictx == NULL) {
720 swcr_freesession(NULL, i);
721 return ENOBUFS;
722 }
723
724 (*swd)->sw_octx = malloc(axf->auth_hash->ctxsize,
725 M_CRYPTO_DATA, M_NOWAIT);
726 if ((*swd)->sw_octx == NULL) {
727 swcr_freesession(NULL, i);
728 return ENOBUFS;
729 }
730
731 for (k = 0; k < cri->cri_klen / 8; k++)
732 cri->cri_key[k] ^= HMAC_IPAD_VAL;
733
734 axf->Init((*swd)->sw_ictx);
735 axf->Update((*swd)->sw_ictx, cri->cri_key,
736 cri->cri_klen / 8);
737 axf->Update((*swd)->sw_ictx, hmac_ipad_buffer,
738 HMAC_BLOCK_LEN - (cri->cri_klen / 8));
739
740 for (k = 0; k < cri->cri_klen / 8; k++)
741 cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
742
743 axf->Init((*swd)->sw_octx);
744 axf->Update((*swd)->sw_octx, cri->cri_key,
745 cri->cri_klen / 8);
746 axf->Update((*swd)->sw_octx, hmac_opad_buffer,
747 HMAC_BLOCK_LEN - (cri->cri_klen / 8));
748
749 for (k = 0; k < cri->cri_klen / 8; k++)
750 cri->cri_key[k] ^= HMAC_OPAD_VAL;
751 (*swd)->sw_axf = axf;
752 break;
753
754 case CRYPTO_MD5_KPDK:
755 axf = &swcr_auth_hash_key_md5;
756 goto auth2common;
757
758 case CRYPTO_SHA1_KPDK:
759 axf = &swcr_auth_hash_key_sha1;
760 auth2common:
761 (*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
762 M_CRYPTO_DATA, M_NOWAIT);
763 if ((*swd)->sw_ictx == NULL) {
764 swcr_freesession(NULL, i);
765 return ENOBUFS;
766 }
767
768 /* Store the key so we can "append" it to the payload */
769 (*swd)->sw_octx = malloc(cri->cri_klen / 8, M_CRYPTO_DATA,
770 M_NOWAIT);
771 if ((*swd)->sw_octx == NULL) {
772 swcr_freesession(NULL, i);
773 return ENOBUFS;
774 }
775
776 (*swd)->sw_klen = cri->cri_klen / 8;
777 bcopy(cri->cri_key, (*swd)->sw_octx, cri->cri_klen / 8);
778 axf->Init((*swd)->sw_ictx);
779 axf->Update((*swd)->sw_ictx, cri->cri_key,
780 cri->cri_klen / 8);
781 axf->Final(NULL, (*swd)->sw_ictx);
782 (*swd)->sw_axf = axf;
783 break;
784
785 case CRYPTO_MD5:
786 axf = &swcr_auth_hash_md5;
787 goto auth3common;
788
789 case CRYPTO_SHA1:
790 axf = &swcr_auth_hash_sha1;
791 auth3common:
792 (*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
793 M_CRYPTO_DATA, M_NOWAIT);
794 if ((*swd)->sw_ictx == NULL) {
795 swcr_freesession(NULL, i);
796 return ENOBUFS;
797 }
798
799 axf->Init((*swd)->sw_ictx);
800 (*swd)->sw_axf = axf;
801 break;
802
803 case CRYPTO_DEFLATE_COMP:
804 cxf = &swcr_comp_algo_deflate;
805 (*swd)->sw_cxf = cxf;
806 break;
807 default:
808 swcr_freesession(NULL, i);
809 return EINVAL;
810 }
811
812 (*swd)->sw_alg = cri->cri_alg;
813 cri = cri->cri_next;
814 swd = &((*swd)->sw_next);
815 }
816 return 0;
817 }
818
819 /*
820 * Free a session.
821 */
822 static int
823 swcr_freesession(void *arg, u_int64_t tid)
824 {
825 struct swcr_data *swd;
826 const struct swcr_enc_xform *txf;
827 const struct swcr_auth_hash *axf;
828 const struct swcr_comp_algo *cxf;
829 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
830
831 if (sid > swcr_sesnum || swcr_sessions == NULL ||
832 swcr_sessions[sid] == NULL)
833 return EINVAL;
834
835 /* Silently accept and return */
836 if (sid == 0)
837 return 0;
838
839 while ((swd = swcr_sessions[sid]) != NULL) {
840 swcr_sessions[sid] = swd->sw_next;
841
842 switch (swd->sw_alg) {
843 case CRYPTO_DES_CBC:
844 case CRYPTO_3DES_CBC:
845 case CRYPTO_BLF_CBC:
846 case CRYPTO_CAST_CBC:
847 case CRYPTO_SKIPJACK_CBC:
848 case CRYPTO_RIJNDAEL128_CBC:
849 case CRYPTO_NULL_CBC:
850 txf = swd->sw_exf;
851
852 if (swd->sw_kschedule)
853 txf->zerokey(&(swd->sw_kschedule));
854 break;
855
856 case CRYPTO_MD5_HMAC:
857 case CRYPTO_MD5_HMAC_96:
858 case CRYPTO_SHA1_HMAC:
859 case CRYPTO_SHA1_HMAC_96:
860 case CRYPTO_SHA2_HMAC:
861 case CRYPTO_RIPEMD160_HMAC:
862 case CRYPTO_RIPEMD160_HMAC_96:
863 case CRYPTO_NULL_HMAC:
864 axf = swd->sw_axf;
865
866 if (swd->sw_ictx) {
867 bzero(swd->sw_ictx, axf->auth_hash->ctxsize);
868 free(swd->sw_ictx, M_CRYPTO_DATA);
869 }
870 if (swd->sw_octx) {
871 bzero(swd->sw_octx, axf->auth_hash->ctxsize);
872 free(swd->sw_octx, M_CRYPTO_DATA);
873 }
874 break;
875
876 case CRYPTO_MD5_KPDK:
877 case CRYPTO_SHA1_KPDK:
878 axf = swd->sw_axf;
879
880 if (swd->sw_ictx) {
881 bzero(swd->sw_ictx, axf->auth_hash->ctxsize);
882 free(swd->sw_ictx, M_CRYPTO_DATA);
883 }
884 if (swd->sw_octx) {
885 bzero(swd->sw_octx, swd->sw_klen);
886 free(swd->sw_octx, M_CRYPTO_DATA);
887 }
888 break;
889
890 case CRYPTO_MD5:
891 case CRYPTO_SHA1:
892 axf = swd->sw_axf;
893
894 if (swd->sw_ictx)
895 free(swd->sw_ictx, M_CRYPTO_DATA);
896 break;
897
898 case CRYPTO_DEFLATE_COMP:
899 cxf = swd->sw_cxf;
900 break;
901 }
902
903 free(swd, M_CRYPTO_DATA);
904 }
905 return 0;
906 }
907
908 /*
909 * Process a software request.
910 */
911 static int
912 swcr_process(void *arg, struct cryptop *crp, int hint)
913 {
914 struct cryptodesc *crd;
915 struct swcr_data *sw;
916 u_int32_t lid;
917 int type;
918
919 /* Sanity check */
920 if (crp == NULL)
921 return EINVAL;
922
923 if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
924 crp->crp_etype = EINVAL;
925 goto done;
926 }
927
928 lid = crp->crp_sid & 0xffffffff;
929 if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
930 crp->crp_etype = ENOENT;
931 goto done;
932 }
933
934 if (crp->crp_flags & CRYPTO_F_IMBUF) {
935 type = CRYPTO_BUF_MBUF;
936 } else if (crp->crp_flags & CRYPTO_F_IOV) {
937 type = CRYPTO_BUF_IOV;
938 } else {
939 type = CRYPTO_BUF_CONTIG;
940 }
941
942 /* Go through crypto descriptors, processing as we go */
943 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
944 /*
945 * Find the crypto context.
946 *
947 * XXX Note that the logic here prevents us from having
948 * XXX the same algorithm multiple times in a session
949 * XXX (or rather, we can but it won't give us the right
950 * XXX results). To do that, we'd need some way of differentiating
951 * XXX between the various instances of an algorithm (so we can
952 * XXX locate the correct crypto context).
953 */
954 for (sw = swcr_sessions[lid];
955 sw && sw->sw_alg != crd->crd_alg;
956 sw = sw->sw_next)
957 ;
958
959 /* No such context ? */
960 if (sw == NULL) {
961 crp->crp_etype = EINVAL;
962 goto done;
963 }
964
965 switch (sw->sw_alg) {
966 case CRYPTO_DES_CBC:
967 case CRYPTO_3DES_CBC:
968 case CRYPTO_BLF_CBC:
969 case CRYPTO_CAST_CBC:
970 case CRYPTO_SKIPJACK_CBC:
971 case CRYPTO_RIJNDAEL128_CBC:
972 if ((crp->crp_etype = swcr_encdec(crd, sw,
973 crp->crp_buf, type)) != 0)
974 goto done;
975 break;
976 case CRYPTO_NULL_CBC:
977 crp->crp_etype = 0;
978 break;
979 case CRYPTO_MD5_HMAC:
980 case CRYPTO_MD5_HMAC_96:
981 case CRYPTO_SHA1_HMAC:
982 case CRYPTO_SHA1_HMAC_96:
983 case CRYPTO_SHA2_HMAC:
984 case CRYPTO_RIPEMD160_HMAC:
985 case CRYPTO_RIPEMD160_HMAC_96:
986 case CRYPTO_NULL_HMAC:
987 case CRYPTO_MD5_KPDK:
988 case CRYPTO_SHA1_KPDK:
989 case CRYPTO_MD5:
990 case CRYPTO_SHA1:
991 if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
992 crp->crp_buf, type)) != 0)
993 goto done;
994 break;
995
996 case CRYPTO_DEFLATE_COMP:
997 if ((crp->crp_etype = swcr_compdec(crd, sw,
998 crp->crp_buf, type)) != 0)
999 goto done;
1000 else
1001 crp->crp_olen = (int)sw->sw_size;
1002 break;
1003
1004 default:
1005 /* Unknown/unsupported algorithm */
1006 crp->crp_etype = EINVAL;
1007 goto done;
1008 }
1009 }
1010
1011 done:
1012 DPRINTF(("request %08x done\n", (uint32_t)crp));
1013 crypto_done(crp);
1014 return 0;
1015 }
1016
1017 static void
1018 swcr_init(void)
1019 {
1020 swcr_id = crypto_get_driverid(CRYPTOCAP_F_SOFTWARE);
1021 if (swcr_id < 0) {
1022 /* This should never happen */
1023 panic("Software crypto device cannot initialize!");
1024 }
1025
1026 crypto_register(swcr_id, CRYPTO_DES_CBC,
1027 0, 0, swcr_newsession, swcr_freesession, swcr_process, NULL);
1028 #define REGISTER(alg) \
1029 crypto_register(swcr_id, alg, 0, 0, NULL, NULL, NULL, NULL)
1030
1031 REGISTER(CRYPTO_3DES_CBC);
1032 REGISTER(CRYPTO_BLF_CBC);
1033 REGISTER(CRYPTO_CAST_CBC);
1034 REGISTER(CRYPTO_SKIPJACK_CBC);
1035 REGISTER(CRYPTO_NULL_CBC);
1036 REGISTER(CRYPTO_MD5_HMAC);
1037 REGISTER(CRYPTO_MD5_HMAC_96);
1038 REGISTER(CRYPTO_SHA1_HMAC);
1039 REGISTER(CRYPTO_SHA1_HMAC_96);
1040 REGISTER(CRYPTO_SHA2_HMAC);
1041 REGISTER(CRYPTO_RIPEMD160_HMAC);
1042 REGISTER(CRYPTO_RIPEMD160_HMAC_96);
1043 REGISTER(CRYPTO_NULL_HMAC);
1044 REGISTER(CRYPTO_MD5_KPDK);
1045 REGISTER(CRYPTO_SHA1_KPDK);
1046 REGISTER(CRYPTO_MD5);
1047 REGISTER(CRYPTO_SHA1);
1048 REGISTER(CRYPTO_RIJNDAEL128_CBC);
1049 REGISTER(CRYPTO_DEFLATE_COMP);
1050 #undef REGISTER
1051 }
1052
1053
1054 /*
1055 * Pseudo-device init routine for software crypto.
1056 */
1057 void swcryptoattach(int);
1058
1059 void
1060 swcryptoattach(int num)
1061 {
1062
1063 swcr_init();
1064 }
1065