Home | History | Annotate | Line # | Download | only in opencrypto
cryptosoft.c revision 1.31
      1 /*	$NetBSD: cryptosoft.c,v 1.31 2011/05/21 10:04:03 drochner Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.2.2.1 2002/11/21 23:34:23 sam Exp $	*/
      3 /*	$OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $	*/
      4 
      5 /*
      6  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
      7  *
      8  * This code was written by Angelos D. Keromytis in Athens, Greece, in
      9  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     10  * supported the development of this code.
     11  *
     12  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     13  *
     14  * Permission to use, copy, and modify this software with or without fee
     15  * is hereby granted, provided that this entire notice is included in
     16  * all source code copies of any software which is or includes a copy or
     17  * modification of this software.
     18  *
     19  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     20  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     21  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     22  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     23  * PURPOSE.
     24  */
     25 
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: cryptosoft.c,v 1.31 2011/05/21 10:04:03 drochner Exp $");
     28 
     29 #include <sys/param.h>
     30 #include <sys/systm.h>
     31 #include <sys/malloc.h>
     32 #include <sys/mbuf.h>
     33 #include <sys/sysctl.h>
     34 #include <sys/errno.h>
     35 
     36 #include "opt_ocf.h"
     37 #include <opencrypto/cryptodev.h>
     38 #include <opencrypto/cryptosoft.h>
     39 #include <opencrypto/xform.h>
     40 
     41 #include <opencrypto/cryptosoft_xform.c>
     42 
     43 union authctx {
     44 	MD5_CTX md5ctx;
     45 	SHA1_CTX sha1ctx;
     46 	RMD160_CTX rmd160ctx;
     47 	SHA256_CTX sha256ctx;
     48 	SHA384_CTX sha384ctx;
     49 	SHA512_CTX sha512ctx;
     50 };
     51 
     52 struct swcr_data **swcr_sessions = NULL;
     53 u_int32_t swcr_sesnum = 0;
     54 int32_t swcr_id = -1;
     55 
     56 #define COPYBACK(x, a, b, c, d) \
     57 	(x) == CRYPTO_BUF_MBUF ? m_copyback((struct mbuf *)a,b,c,d) \
     58 	: cuio_copyback((struct uio *)a,b,c,d)
     59 #define COPYDATA(x, a, b, c, d) \
     60 	(x) == CRYPTO_BUF_MBUF ? m_copydata((struct mbuf *)a,b,c,d) \
     61 	: cuio_copydata((struct uio *)a,b,c,d)
     62 
     63 static	int swcr_encdec(struct cryptodesc *, const struct swcr_data *, void *, int);
     64 static	int swcr_compdec(struct cryptodesc *, const struct swcr_data *, void *, int, int *);
     65 static	int swcr_process(void *, struct cryptop *, int);
     66 static	int swcr_newsession(void *, u_int32_t *, struct cryptoini *);
     67 static	int swcr_freesession(void *, u_int64_t);
     68 
     69 /*
     70  * Apply a symmetric encryption/decryption algorithm.
     71  */
     72 static int
     73 swcr_encdec(struct cryptodesc *crd, const struct swcr_data *sw, void *bufv,
     74     int outtype)
     75 {
     76 	char *buf = bufv;
     77 	unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
     78 	unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN];
     79 	const struct swcr_enc_xform *exf;
     80 	int i, k, j, blks;
     81 	int count, ind;
     82 
     83 	exf = sw->sw_exf;
     84 	blks = exf->enc_xform->blocksize;
     85 
     86 	/* Check for non-padded data */
     87 	if (crd->crd_len % blks)
     88 		return EINVAL;
     89 
     90 	/* Initialize the IV */
     91 	if (crd->crd_flags & CRD_F_ENCRYPT) {
     92 		/* IV explicitly provided ? */
     93 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
     94 			memcpy(iv, crd->crd_iv, blks);
     95 		else {
     96 			/* Get random IV */
     97 			for (i = 0;
     98 			    i + sizeof (u_int32_t) <= EALG_MAX_BLOCK_LEN;
     99 			    i += sizeof (u_int32_t)) {
    100 				u_int32_t temp = arc4random();
    101 
    102 				memcpy(iv + i, &temp, sizeof(u_int32_t));
    103 			}
    104 			/*
    105 			 * What if the block size is not a multiple
    106 			 * of sizeof (u_int32_t), which is the size of
    107 			 * what arc4random() returns ?
    108 			 */
    109 			if (EALG_MAX_BLOCK_LEN % sizeof (u_int32_t) != 0) {
    110 				u_int32_t temp = arc4random();
    111 
    112 				bcopy (&temp, iv + i,
    113 				    EALG_MAX_BLOCK_LEN - i);
    114 			}
    115 		}
    116 
    117 		/* Do we need to write the IV */
    118 		if (!(crd->crd_flags & CRD_F_IV_PRESENT)) {
    119 			COPYBACK(outtype, buf, crd->crd_inject, blks, iv);
    120 		}
    121 
    122 	} else {	/* Decryption */
    123 			/* IV explicitly provided ? */
    124 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    125 			memcpy(iv, crd->crd_iv, blks);
    126 		else {
    127 			/* Get IV off buf */
    128 			COPYDATA(outtype, buf, crd->crd_inject, blks, iv);
    129 		}
    130 	}
    131 
    132 	ivp = iv;
    133 
    134 	if (outtype == CRYPTO_BUF_CONTIG) {
    135 		if (crd->crd_flags & CRD_F_ENCRYPT) {
    136 			for (i = crd->crd_skip;
    137 			    i < crd->crd_skip + crd->crd_len; i += blks) {
    138 				/* XOR with the IV/previous block, as appropriate. */
    139 				if (i == crd->crd_skip)
    140 					for (k = 0; k < blks; k++)
    141 						buf[i + k] ^= ivp[k];
    142 				else
    143 					for (k = 0; k < blks; k++)
    144 						buf[i + k] ^= buf[i + k - blks];
    145 				exf->encrypt(sw->sw_kschedule, buf + i);
    146 			}
    147 		} else {		/* Decrypt */
    148 			/*
    149 			 * Start at the end, so we don't need to keep the encrypted
    150 			 * block as the IV for the next block.
    151 			 */
    152 			for (i = crd->crd_skip + crd->crd_len - blks;
    153 			    i >= crd->crd_skip; i -= blks) {
    154 				exf->decrypt(sw->sw_kschedule, buf + i);
    155 
    156 				/* XOR with the IV/previous block, as appropriate */
    157 				if (i == crd->crd_skip)
    158 					for (k = 0; k < blks; k++)
    159 						buf[i + k] ^= ivp[k];
    160 				else
    161 					for (k = 0; k < blks; k++)
    162 						buf[i + k] ^= buf[i + k - blks];
    163 			}
    164 		}
    165 
    166 		return 0;
    167 	} else if (outtype == CRYPTO_BUF_MBUF) {
    168 		struct mbuf *m = (struct mbuf *) buf;
    169 
    170 		/* Find beginning of data */
    171 		m = m_getptr(m, crd->crd_skip, &k);
    172 		if (m == NULL)
    173 			return EINVAL;
    174 
    175 		i = crd->crd_len;
    176 
    177 		while (i > 0) {
    178 			/*
    179 			 * If there's insufficient data at the end of
    180 			 * an mbuf, we have to do some copying.
    181 			 */
    182 			if (m->m_len < k + blks && m->m_len != k) {
    183 				m_copydata(m, k, blks, blk);
    184 
    185 				/* Actual encryption/decryption */
    186 				if (crd->crd_flags & CRD_F_ENCRYPT) {
    187 					/* XOR with previous block */
    188 					for (j = 0; j < blks; j++)
    189 						blk[j] ^= ivp[j];
    190 
    191 					exf->encrypt(sw->sw_kschedule, blk);
    192 
    193 					/*
    194 					 * Keep encrypted block for XOR'ing
    195 					 * with next block
    196 					 */
    197 					memcpy(iv, blk, blks);
    198 					ivp = iv;
    199 				} else {	/* decrypt */
    200 					/*
    201 					 * Keep encrypted block for XOR'ing
    202 					 * with next block
    203 					 */
    204 					if (ivp == iv)
    205 						memcpy(piv, blk, blks);
    206 					else
    207 						memcpy(iv, blk, blks);
    208 
    209 					exf->decrypt(sw->sw_kschedule, blk);
    210 
    211 					/* XOR with previous block */
    212 					for (j = 0; j < blks; j++)
    213 						blk[j] ^= ivp[j];
    214 
    215 					if (ivp == iv)
    216 						memcpy(iv, piv, blks);
    217 					else
    218 						ivp = iv;
    219 				}
    220 
    221 				/* Copy back decrypted block */
    222 				m_copyback(m, k, blks, blk);
    223 
    224 				/* Advance pointer */
    225 				m = m_getptr(m, k + blks, &k);
    226 				if (m == NULL)
    227 					return EINVAL;
    228 
    229 				i -= blks;
    230 
    231 				/* Could be done... */
    232 				if (i == 0)
    233 					break;
    234 			}
    235 
    236 			/* Skip possibly empty mbufs */
    237 			if (k == m->m_len) {
    238 				for (m = m->m_next; m && m->m_len == 0;
    239 				    m = m->m_next)
    240 					;
    241 				k = 0;
    242 			}
    243 
    244 			/* Sanity check */
    245 			if (m == NULL)
    246 				return EINVAL;
    247 
    248 			/*
    249 			 * Warning: idat may point to garbage here, but
    250 			 * we only use it in the while() loop, only if
    251 			 * there are indeed enough data.
    252 			 */
    253 			idat = mtod(m, unsigned char *) + k;
    254 
    255 			while (m->m_len >= k + blks && i > 0) {
    256 				if (crd->crd_flags & CRD_F_ENCRYPT) {
    257 					/* XOR with previous block/IV */
    258 					for (j = 0; j < blks; j++)
    259 						idat[j] ^= ivp[j];
    260 
    261 					exf->encrypt(sw->sw_kschedule, idat);
    262 					ivp = idat;
    263 				} else {	/* decrypt */
    264 					/*
    265 					 * Keep encrypted block to be used
    266 					 * in next block's processing.
    267 					 */
    268 					if (ivp == iv)
    269 						memcpy(piv, idat, blks);
    270 					else
    271 						memcpy(iv, idat, blks);
    272 
    273 					exf->decrypt(sw->sw_kschedule, idat);
    274 
    275 					/* XOR with previous block/IV */
    276 					for (j = 0; j < blks; j++)
    277 						idat[j] ^= ivp[j];
    278 
    279 					if (ivp == iv)
    280 						memcpy(iv, piv, blks);
    281 					else
    282 						ivp = iv;
    283 				}
    284 
    285 				idat += blks;
    286 				k += blks;
    287 				i -= blks;
    288 			}
    289 		}
    290 
    291 		return 0; /* Done with mbuf encryption/decryption */
    292 	} else if (outtype == CRYPTO_BUF_IOV) {
    293 		struct uio *uio = (struct uio *) buf;
    294 
    295 		/* Find beginning of data */
    296 		count = crd->crd_skip;
    297 		ind = cuio_getptr(uio, count, &k);
    298 		if (ind == -1)
    299 			return EINVAL;
    300 
    301 		i = crd->crd_len;
    302 
    303 		while (i > 0) {
    304 			/*
    305 			 * If there's insufficient data at the end,
    306 			 * we have to do some copying.
    307 			 */
    308 			if (uio->uio_iov[ind].iov_len < k + blks &&
    309 			    uio->uio_iov[ind].iov_len != k) {
    310 				cuio_copydata(uio, k, blks, blk);
    311 
    312 				/* Actual encryption/decryption */
    313 				if (crd->crd_flags & CRD_F_ENCRYPT) {
    314 					/* XOR with previous block */
    315 					for (j = 0; j < blks; j++)
    316 						blk[j] ^= ivp[j];
    317 
    318 					exf->encrypt(sw->sw_kschedule, blk);
    319 
    320 					/*
    321 					 * Keep encrypted block for XOR'ing
    322 					 * with next block
    323 					 */
    324 					memcpy(iv, blk, blks);
    325 					ivp = iv;
    326 				} else {	/* decrypt */
    327 					/*
    328 					 * Keep encrypted block for XOR'ing
    329 					 * with next block
    330 					 */
    331 					if (ivp == iv)
    332 						memcpy(piv, blk, blks);
    333 					else
    334 						memcpy(iv, blk, blks);
    335 
    336 					exf->decrypt(sw->sw_kschedule, blk);
    337 
    338 					/* XOR with previous block */
    339 					for (j = 0; j < blks; j++)
    340 						blk[j] ^= ivp[j];
    341 
    342 					if (ivp == iv)
    343 						memcpy(iv, piv, blks);
    344 					else
    345 						ivp = iv;
    346 				}
    347 
    348 				/* Copy back decrypted block */
    349 				cuio_copyback(uio, k, blks, blk);
    350 
    351 				count += blks;
    352 
    353 				/* Advance pointer */
    354 				ind = cuio_getptr(uio, count, &k);
    355 				if (ind == -1)
    356 					return (EINVAL);
    357 
    358 				i -= blks;
    359 
    360 				/* Could be done... */
    361 				if (i == 0)
    362 					break;
    363 			}
    364 
    365 			/*
    366 			 * Warning: idat may point to garbage here, but
    367 			 * we only use it in the while() loop, only if
    368 			 * there are indeed enough data.
    369 			 */
    370 			idat = ((char *)uio->uio_iov[ind].iov_base) + k;
    371 
    372 			while (uio->uio_iov[ind].iov_len >= k + blks &&
    373 			    i > 0) {
    374 				if (crd->crd_flags & CRD_F_ENCRYPT) {
    375 					/* XOR with previous block/IV */
    376 					for (j = 0; j < blks; j++)
    377 						idat[j] ^= ivp[j];
    378 
    379 					exf->encrypt(sw->sw_kschedule, idat);
    380 					ivp = idat;
    381 				} else {	/* decrypt */
    382 					/*
    383 					 * Keep encrypted block to be used
    384 					 * in next block's processing.
    385 					 */
    386 					if (ivp == iv)
    387 						memcpy(piv, idat, blks);
    388 					else
    389 						memcpy(iv, idat, blks);
    390 
    391 					exf->decrypt(sw->sw_kschedule, idat);
    392 
    393 					/* XOR with previous block/IV */
    394 					for (j = 0; j < blks; j++)
    395 						idat[j] ^= ivp[j];
    396 
    397 					if (ivp == iv)
    398 						memcpy(iv, piv, blks);
    399 					else
    400 						ivp = iv;
    401 				}
    402 
    403 				idat += blks;
    404 				count += blks;
    405 				k += blks;
    406 				i -= blks;
    407 			}
    408 		}
    409 		return 0; /* Done with mbuf encryption/decryption */
    410 	}
    411 
    412 	/* Unreachable */
    413 	return EINVAL;
    414 }
    415 
    416 /*
    417  * Compute keyed-hash authenticator.
    418  */
    419 int
    420 swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
    421     const struct swcr_data *sw, void *buf, int outtype)
    422 {
    423 	unsigned char aalg[AALG_MAX_RESULT_LEN];
    424 	const struct swcr_auth_hash *axf;
    425 	union authctx ctx;
    426 	int err;
    427 
    428 	if (sw->sw_ictx == 0)
    429 		return EINVAL;
    430 
    431 	axf = sw->sw_axf;
    432 
    433 	memcpy(&ctx, sw->sw_ictx, axf->auth_hash->ctxsize);
    434 
    435 	switch (outtype) {
    436 	case CRYPTO_BUF_CONTIG:
    437 		axf->Update(&ctx, (char *)buf + crd->crd_skip, crd->crd_len);
    438 		break;
    439 	case CRYPTO_BUF_MBUF:
    440 		err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
    441 		    (int (*)(void*, void *, unsigned int)) axf->Update,
    442 		    (void *) &ctx);
    443 		if (err)
    444 			return err;
    445 		break;
    446 	case CRYPTO_BUF_IOV:
    447 		err = cuio_apply((struct uio *) buf, crd->crd_skip,
    448 		    crd->crd_len,
    449 		    (int (*)(void *, void *, unsigned int)) axf->Update,
    450 		    (void *) &ctx);
    451 		if (err) {
    452 			return err;
    453 		}
    454 		break;
    455 	default:
    456 		return EINVAL;
    457 	}
    458 
    459 	switch (sw->sw_alg) {
    460 	case CRYPTO_MD5_HMAC:
    461 	case CRYPTO_MD5_HMAC_96:
    462 	case CRYPTO_SHA1_HMAC:
    463 	case CRYPTO_SHA1_HMAC_96:
    464 	case CRYPTO_SHA2_256_HMAC:
    465 	case CRYPTO_SHA2_384_HMAC:
    466 	case CRYPTO_SHA2_512_HMAC:
    467 	case CRYPTO_RIPEMD160_HMAC:
    468 	case CRYPTO_RIPEMD160_HMAC_96:
    469 		if (sw->sw_octx == NULL)
    470 			return EINVAL;
    471 
    472 		axf->Final(aalg, &ctx);
    473 		memcpy(&ctx, sw->sw_octx, axf->auth_hash->ctxsize);
    474 		axf->Update(&ctx, aalg, axf->auth_hash->hashsize);
    475 		axf->Final(aalg, &ctx);
    476 		break;
    477 
    478 	case CRYPTO_MD5_KPDK:
    479 	case CRYPTO_SHA1_KPDK:
    480 		if (sw->sw_octx == NULL)
    481 			return EINVAL;
    482 
    483 		axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
    484 		axf->Final(aalg, &ctx);
    485 		break;
    486 
    487 	case CRYPTO_NULL_HMAC:
    488 	case CRYPTO_MD5:
    489 	case CRYPTO_SHA1:
    490 		axf->Final(aalg, &ctx);
    491 		break;
    492 	}
    493 
    494 	/* Inject the authentication data */
    495 	switch (outtype) {
    496 	case CRYPTO_BUF_CONTIG:
    497 		(void)memcpy((char *)buf + crd->crd_inject, aalg,
    498 		    axf->auth_hash->authsize);
    499 		break;
    500 	case CRYPTO_BUF_MBUF:
    501 		m_copyback((struct mbuf *) buf, crd->crd_inject,
    502 		    axf->auth_hash->authsize, aalg);
    503 		break;
    504 	case CRYPTO_BUF_IOV:
    505 		memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
    506 		break;
    507 	default:
    508 		return EINVAL;
    509 	}
    510 	return 0;
    511 }
    512 
    513 /*
    514  * Apply a compression/decompression algorithm
    515  */
    516 static int
    517 swcr_compdec(struct cryptodesc *crd, const struct swcr_data *sw,
    518     void *buf, int outtype, int *res_size)
    519 {
    520 	u_int8_t *data, *out;
    521 	const struct swcr_comp_algo *cxf;
    522 	int adj;
    523 	u_int32_t result;
    524 
    525 	cxf = sw->sw_cxf;
    526 
    527 	/* We must handle the whole buffer of data in one time
    528 	 * then if there is not all the data in the mbuf, we must
    529 	 * copy in a buffer.
    530 	 */
    531 
    532 	data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
    533 	if (data == NULL)
    534 		return (EINVAL);
    535 	COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
    536 
    537 	if (crd->crd_flags & CRD_F_COMP)
    538 		result = cxf->compress(data, crd->crd_len, &out);
    539 	else
    540 		result = cxf->decompress(data, crd->crd_len, &out,
    541 					 *res_size);
    542 
    543 	free(data, M_CRYPTO_DATA);
    544 	if (result == 0)
    545 		return EINVAL;
    546 
    547 	/* Copy back the (de)compressed data. m_copyback is
    548 	 * extending the mbuf as necessary.
    549 	 */
    550 	*res_size = (int)result;
    551 	/* Check the compressed size when doing compression */
    552 	if (crd->crd_flags & CRD_F_COMP &&
    553 	    sw->sw_alg == CRYPTO_DEFLATE_COMP_NOGROW &&
    554 	    result >= crd->crd_len) {
    555 			/* Compression was useless, we lost time */
    556 			free(out, M_CRYPTO_DATA);
    557 			return 0;
    558 	}
    559 
    560 	COPYBACK(outtype, buf, crd->crd_skip, result, out);
    561 	if (result < crd->crd_len) {
    562 		adj = result - crd->crd_len;
    563 		if (outtype == CRYPTO_BUF_MBUF) {
    564 			adj = result - crd->crd_len;
    565 			m_adj((struct mbuf *)buf, adj);
    566 		}
    567 		/* Don't adjust the iov_len, it breaks the kmem_free */
    568 	}
    569 	free(out, M_CRYPTO_DATA);
    570 	return 0;
    571 }
    572 
    573 /*
    574  * Generate a new software session.
    575  */
    576 static int
    577 swcr_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
    578 {
    579 	struct swcr_data **swd;
    580 	const struct swcr_auth_hash *axf;
    581 	const struct swcr_enc_xform *txf;
    582 	const struct swcr_comp_algo *cxf;
    583 	u_int32_t i;
    584 	int k, error;
    585 
    586 	if (sid == NULL || cri == NULL)
    587 		return EINVAL;
    588 
    589 	if (swcr_sessions) {
    590 		for (i = 1; i < swcr_sesnum; i++)
    591 			if (swcr_sessions[i] == NULL)
    592 				break;
    593 	} else
    594 		i = 1;		/* NB: to silence compiler warning */
    595 
    596 	if (swcr_sessions == NULL || i == swcr_sesnum) {
    597 		if (swcr_sessions == NULL) {
    598 			i = 1; /* We leave swcr_sessions[0] empty */
    599 			swcr_sesnum = CRYPTO_SW_SESSIONS;
    600 		} else
    601 			swcr_sesnum *= 2;
    602 
    603 		swd = malloc(swcr_sesnum * sizeof(struct swcr_data *),
    604 		    M_CRYPTO_DATA, M_NOWAIT);
    605 		if (swd == NULL) {
    606 			/* Reset session number */
    607 			if (swcr_sesnum == CRYPTO_SW_SESSIONS)
    608 				swcr_sesnum = 0;
    609 			else
    610 				swcr_sesnum /= 2;
    611 			return ENOBUFS;
    612 		}
    613 
    614 		memset(swd, 0, swcr_sesnum * sizeof(struct swcr_data *));
    615 
    616 		/* Copy existing sessions */
    617 		if (swcr_sessions) {
    618 			memcpy(swd, swcr_sessions,
    619 			    (swcr_sesnum / 2) * sizeof(struct swcr_data *));
    620 			free(swcr_sessions, M_CRYPTO_DATA);
    621 		}
    622 
    623 		swcr_sessions = swd;
    624 	}
    625 
    626 	swd = &swcr_sessions[i];
    627 	*sid = i;
    628 
    629 	while (cri) {
    630 		*swd = malloc(sizeof **swd, M_CRYPTO_DATA, M_NOWAIT);
    631 		if (*swd == NULL) {
    632 			swcr_freesession(NULL, i);
    633 			return ENOBUFS;
    634 		}
    635 		memset(*swd, 0, sizeof(struct swcr_data));
    636 
    637 		switch (cri->cri_alg) {
    638 		case CRYPTO_DES_CBC:
    639 			txf = &swcr_enc_xform_des;
    640 			goto enccommon;
    641 		case CRYPTO_3DES_CBC:
    642 			txf = &swcr_enc_xform_3des;
    643 			goto enccommon;
    644 		case CRYPTO_BLF_CBC:
    645 			txf = &swcr_enc_xform_blf;
    646 			goto enccommon;
    647 		case CRYPTO_CAST_CBC:
    648 			txf = &swcr_enc_xform_cast5;
    649 			goto enccommon;
    650 		case CRYPTO_SKIPJACK_CBC:
    651 			txf = &swcr_enc_xform_skipjack;
    652 			goto enccommon;
    653 		case CRYPTO_RIJNDAEL128_CBC:
    654 			txf = &swcr_enc_xform_rijndael128;
    655 			goto enccommon;
    656 		case CRYPTO_CAMELLIA_CBC:
    657 			txf = &swcr_enc_xform_camellia;
    658 			goto enccommon;
    659 		case CRYPTO_NULL_CBC:
    660 			txf = &swcr_enc_xform_null;
    661 			goto enccommon;
    662 		enccommon:
    663 			error = txf->setkey(&((*swd)->sw_kschedule),
    664 					cri->cri_key, cri->cri_klen / 8);
    665 			if (error) {
    666 				swcr_freesession(NULL, i);
    667 				return error;
    668 			}
    669 			(*swd)->sw_exf = txf;
    670 			break;
    671 
    672 		case CRYPTO_MD5_HMAC:
    673 			axf = &swcr_auth_hash_hmac_md5;
    674 			goto authcommon;
    675 		case CRYPTO_MD5_HMAC_96:
    676 			axf = &swcr_auth_hash_hmac_md5_96;
    677 			goto authcommon;
    678 		case CRYPTO_SHA1_HMAC:
    679 			axf = &swcr_auth_hash_hmac_sha1;
    680 			goto authcommon;
    681 		case CRYPTO_SHA1_HMAC_96:
    682 			axf = &swcr_auth_hash_hmac_sha1_96;
    683 			goto authcommon;
    684 		case CRYPTO_SHA2_256_HMAC:
    685 			axf = &swcr_auth_hash_hmac_sha2_256;
    686 			goto authcommon;
    687 		case CRYPTO_SHA2_384_HMAC:
    688 			axf = &swcr_auth_hash_hmac_sha2_384;
    689 			goto authcommon;
    690 		case CRYPTO_SHA2_512_HMAC:
    691 			axf = &swcr_auth_hash_hmac_sha2_512;
    692 			goto authcommon;
    693 		case CRYPTO_NULL_HMAC:
    694 			axf = &swcr_auth_hash_null;
    695 			goto authcommon;
    696 		case CRYPTO_RIPEMD160_HMAC:
    697 			axf = &swcr_auth_hash_hmac_ripemd_160;
    698 			goto authcommon;
    699 		case CRYPTO_RIPEMD160_HMAC_96:
    700 			axf = &swcr_auth_hash_hmac_ripemd_160_96;
    701 			goto authcommon;	/* leave this for safety */
    702 		authcommon:
    703 			(*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
    704 			    M_CRYPTO_DATA, M_NOWAIT);
    705 			if ((*swd)->sw_ictx == NULL) {
    706 				swcr_freesession(NULL, i);
    707 				return ENOBUFS;
    708 			}
    709 
    710 			(*swd)->sw_octx = malloc(axf->auth_hash->ctxsize,
    711 			    M_CRYPTO_DATA, M_NOWAIT);
    712 			if ((*swd)->sw_octx == NULL) {
    713 				swcr_freesession(NULL, i);
    714 				return ENOBUFS;
    715 			}
    716 
    717 			for (k = 0; k < cri->cri_klen / 8; k++)
    718 				cri->cri_key[k] ^= HMAC_IPAD_VAL;
    719 
    720 			axf->Init((*swd)->sw_ictx);
    721 			axf->Update((*swd)->sw_ictx, cri->cri_key,
    722 			    cri->cri_klen / 8);
    723 			axf->Update((*swd)->sw_ictx, hmac_ipad_buffer,
    724 			    axf->auth_hash->blocksize - (cri->cri_klen / 8));
    725 
    726 			for (k = 0; k < cri->cri_klen / 8; k++)
    727 				cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
    728 
    729 			axf->Init((*swd)->sw_octx);
    730 			axf->Update((*swd)->sw_octx, cri->cri_key,
    731 			    cri->cri_klen / 8);
    732 			axf->Update((*swd)->sw_octx, hmac_opad_buffer,
    733 			    axf->auth_hash->blocksize - (cri->cri_klen / 8));
    734 
    735 			for (k = 0; k < cri->cri_klen / 8; k++)
    736 				cri->cri_key[k] ^= HMAC_OPAD_VAL;
    737 			(*swd)->sw_axf = axf;
    738 			break;
    739 
    740 		case CRYPTO_MD5_KPDK:
    741 			axf = &swcr_auth_hash_key_md5;
    742 			goto auth2common;
    743 
    744 		case CRYPTO_SHA1_KPDK:
    745 			axf = &swcr_auth_hash_key_sha1;
    746 		auth2common:
    747 			(*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
    748 			    M_CRYPTO_DATA, M_NOWAIT);
    749 			if ((*swd)->sw_ictx == NULL) {
    750 				swcr_freesession(NULL, i);
    751 				return ENOBUFS;
    752 			}
    753 
    754 			/* Store the key so we can "append" it to the payload */
    755 			(*swd)->sw_octx = malloc(cri->cri_klen / 8, M_CRYPTO_DATA,
    756 			    M_NOWAIT);
    757 			if ((*swd)->sw_octx == NULL) {
    758 				swcr_freesession(NULL, i);
    759 				return ENOBUFS;
    760 			}
    761 
    762 			(*swd)->sw_klen = cri->cri_klen / 8;
    763 			memcpy((*swd)->sw_octx, cri->cri_key, cri->cri_klen / 8);
    764 			axf->Init((*swd)->sw_ictx);
    765 			axf->Update((*swd)->sw_ictx, cri->cri_key,
    766 			    cri->cri_klen / 8);
    767 			axf->Final(NULL, (*swd)->sw_ictx);
    768 			(*swd)->sw_axf = axf;
    769 			break;
    770 
    771 		case CRYPTO_MD5:
    772 			axf = &swcr_auth_hash_md5;
    773 			goto auth3common;
    774 
    775 		case CRYPTO_SHA1:
    776 			axf = &swcr_auth_hash_sha1;
    777 		auth3common:
    778 			(*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
    779 			    M_CRYPTO_DATA, M_NOWAIT);
    780 			if ((*swd)->sw_ictx == NULL) {
    781 				swcr_freesession(NULL, i);
    782 				return ENOBUFS;
    783 			}
    784 
    785 			axf->Init((*swd)->sw_ictx);
    786 			(*swd)->sw_axf = axf;
    787 			break;
    788 
    789 		case CRYPTO_DEFLATE_COMP:
    790 			cxf = &swcr_comp_algo_deflate;
    791 			(*swd)->sw_cxf = cxf;
    792 			break;
    793 
    794 		case CRYPTO_DEFLATE_COMP_NOGROW:
    795 			cxf = &swcr_comp_algo_deflate_nogrow;
    796 			(*swd)->sw_cxf = cxf;
    797 			break;
    798 
    799 		case CRYPTO_GZIP_COMP:
    800 			cxf = &swcr_comp_algo_gzip;
    801 			(*swd)->sw_cxf = cxf;
    802 			break;
    803 		default:
    804 			swcr_freesession(NULL, i);
    805 			return EINVAL;
    806 		}
    807 
    808 		(*swd)->sw_alg = cri->cri_alg;
    809 		cri = cri->cri_next;
    810 		swd = &((*swd)->sw_next);
    811 	}
    812 	return 0;
    813 }
    814 
    815 /*
    816  * Free a session.
    817  */
    818 static int
    819 swcr_freesession(void *arg, u_int64_t tid)
    820 {
    821 	struct swcr_data *swd;
    822 	const struct swcr_enc_xform *txf;
    823 	const struct swcr_auth_hash *axf;
    824 	const struct swcr_comp_algo *cxf;
    825 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
    826 
    827 	if (sid > swcr_sesnum || swcr_sessions == NULL ||
    828 	    swcr_sessions[sid] == NULL)
    829 		return EINVAL;
    830 
    831 	/* Silently accept and return */
    832 	if (sid == 0)
    833 		return 0;
    834 
    835 	while ((swd = swcr_sessions[sid]) != NULL) {
    836 		swcr_sessions[sid] = swd->sw_next;
    837 
    838 		switch (swd->sw_alg) {
    839 		case CRYPTO_DES_CBC:
    840 		case CRYPTO_3DES_CBC:
    841 		case CRYPTO_BLF_CBC:
    842 		case CRYPTO_CAST_CBC:
    843 		case CRYPTO_SKIPJACK_CBC:
    844 		case CRYPTO_RIJNDAEL128_CBC:
    845 		case CRYPTO_CAMELLIA_CBC:
    846 		case CRYPTO_NULL_CBC:
    847 			txf = swd->sw_exf;
    848 
    849 			if (swd->sw_kschedule)
    850 				txf->zerokey(&(swd->sw_kschedule));
    851 			break;
    852 
    853 		case CRYPTO_MD5_HMAC:
    854 		case CRYPTO_MD5_HMAC_96:
    855 		case CRYPTO_SHA1_HMAC:
    856 		case CRYPTO_SHA1_HMAC_96:
    857 		case CRYPTO_SHA2_256_HMAC:
    858 		case CRYPTO_SHA2_384_HMAC:
    859 		case CRYPTO_SHA2_512_HMAC:
    860 		case CRYPTO_RIPEMD160_HMAC:
    861 		case CRYPTO_RIPEMD160_HMAC_96:
    862 		case CRYPTO_NULL_HMAC:
    863 			axf = swd->sw_axf;
    864 
    865 			if (swd->sw_ictx) {
    866 				memset(swd->sw_ictx, 0, axf->auth_hash->ctxsize);
    867 				free(swd->sw_ictx, M_CRYPTO_DATA);
    868 			}
    869 			if (swd->sw_octx) {
    870 				memset(swd->sw_octx, 0, axf->auth_hash->ctxsize);
    871 				free(swd->sw_octx, M_CRYPTO_DATA);
    872 			}
    873 			break;
    874 
    875 		case CRYPTO_MD5_KPDK:
    876 		case CRYPTO_SHA1_KPDK:
    877 			axf = swd->sw_axf;
    878 
    879 			if (swd->sw_ictx) {
    880 				memset(swd->sw_ictx, 0, axf->auth_hash->ctxsize);
    881 				free(swd->sw_ictx, M_CRYPTO_DATA);
    882 			}
    883 			if (swd->sw_octx) {
    884 				memset(swd->sw_octx, 0, swd->sw_klen);
    885 				free(swd->sw_octx, M_CRYPTO_DATA);
    886 			}
    887 			break;
    888 
    889 		case CRYPTO_MD5:
    890 		case CRYPTO_SHA1:
    891 			axf = swd->sw_axf;
    892 
    893 			if (swd->sw_ictx)
    894 				free(swd->sw_ictx, M_CRYPTO_DATA);
    895 			break;
    896 
    897 		case CRYPTO_DEFLATE_COMP:
    898 		case CRYPTO_DEFLATE_COMP_NOGROW:
    899 		case CRYPTO_GZIP_COMP:
    900 			cxf = swd->sw_cxf;
    901 			break;
    902 		}
    903 
    904 		free(swd, M_CRYPTO_DATA);
    905 	}
    906 	return 0;
    907 }
    908 
    909 /*
    910  * Process a software request.
    911  */
    912 static int
    913 swcr_process(void *arg, struct cryptop *crp, int hint)
    914 {
    915 	struct cryptodesc *crd;
    916 	struct swcr_data *sw;
    917 	u_int32_t lid;
    918 	int type;
    919 
    920 	/* Sanity check */
    921 	if (crp == NULL)
    922 		return EINVAL;
    923 
    924 	if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
    925 		crp->crp_etype = EINVAL;
    926 		goto done;
    927 	}
    928 
    929 	lid = crp->crp_sid & 0xffffffff;
    930 	if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
    931 		crp->crp_etype = ENOENT;
    932 		goto done;
    933 	}
    934 
    935 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
    936 		type = CRYPTO_BUF_MBUF;
    937 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
    938 		type = CRYPTO_BUF_IOV;
    939 	} else {
    940 		type = CRYPTO_BUF_CONTIG;
    941 	}
    942 
    943 	/* Go through crypto descriptors, processing as we go */
    944 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
    945 		/*
    946 		 * Find the crypto context.
    947 		 *
    948 		 * XXX Note that the logic here prevents us from having
    949 		 * XXX the same algorithm multiple times in a session
    950 		 * XXX (or rather, we can but it won't give us the right
    951 		 * XXX results). To do that, we'd need some way of differentiating
    952 		 * XXX between the various instances of an algorithm (so we can
    953 		 * XXX locate the correct crypto context).
    954 		 */
    955 		for (sw = swcr_sessions[lid];
    956 		    sw && sw->sw_alg != crd->crd_alg;
    957 		    sw = sw->sw_next)
    958 			;
    959 
    960 		/* No such context ? */
    961 		if (sw == NULL) {
    962 			crp->crp_etype = EINVAL;
    963 			goto done;
    964 		}
    965 
    966 		switch (sw->sw_alg) {
    967 		case CRYPTO_DES_CBC:
    968 		case CRYPTO_3DES_CBC:
    969 		case CRYPTO_BLF_CBC:
    970 		case CRYPTO_CAST_CBC:
    971 		case CRYPTO_SKIPJACK_CBC:
    972 		case CRYPTO_RIJNDAEL128_CBC:
    973 		case CRYPTO_CAMELLIA_CBC:
    974 			if ((crp->crp_etype = swcr_encdec(crd, sw,
    975 			    crp->crp_buf, type)) != 0)
    976 				goto done;
    977 			break;
    978 		case CRYPTO_NULL_CBC:
    979 			crp->crp_etype = 0;
    980 			break;
    981 		case CRYPTO_MD5_HMAC:
    982 		case CRYPTO_MD5_HMAC_96:
    983 		case CRYPTO_SHA1_HMAC:
    984 		case CRYPTO_SHA1_HMAC_96:
    985 		case CRYPTO_SHA2_256_HMAC:
    986 		case CRYPTO_SHA2_384_HMAC:
    987 		case CRYPTO_SHA2_512_HMAC:
    988 		case CRYPTO_RIPEMD160_HMAC:
    989 		case CRYPTO_RIPEMD160_HMAC_96:
    990 		case CRYPTO_NULL_HMAC:
    991 		case CRYPTO_MD5_KPDK:
    992 		case CRYPTO_SHA1_KPDK:
    993 		case CRYPTO_MD5:
    994 		case CRYPTO_SHA1:
    995 			if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
    996 			    crp->crp_buf, type)) != 0)
    997 				goto done;
    998 			break;
    999 
   1000 		case CRYPTO_DEFLATE_COMP:
   1001 		case CRYPTO_DEFLATE_COMP_NOGROW:
   1002 		case CRYPTO_GZIP_COMP:
   1003 			DPRINTF(("swcr_process: compdec for %d\n", sw->sw_alg));
   1004 			if ((crp->crp_etype = swcr_compdec(crd, sw,
   1005 			    crp->crp_buf, type, &crp->crp_olen)) != 0)
   1006 				goto done;
   1007 			break;
   1008 
   1009 		default:
   1010 			/* Unknown/unsupported algorithm */
   1011 			crp->crp_etype = EINVAL;
   1012 			goto done;
   1013 		}
   1014 	}
   1015 
   1016 done:
   1017 	DPRINTF(("request %p done\n", crp));
   1018 	crypto_done(crp);
   1019 	return 0;
   1020 }
   1021 
   1022 static void
   1023 swcr_init(void)
   1024 {
   1025 	swcr_id = crypto_get_driverid(CRYPTOCAP_F_SOFTWARE);
   1026 	if (swcr_id < 0) {
   1027 		/* This should never happen */
   1028 		panic("Software crypto device cannot initialize!");
   1029 	}
   1030 
   1031 	crypto_register(swcr_id, CRYPTO_DES_CBC,
   1032 	    0, 0, swcr_newsession, swcr_freesession, swcr_process, NULL);
   1033 #define	REGISTER(alg) \
   1034 	crypto_register(swcr_id, alg, 0, 0, NULL, NULL, NULL, NULL)
   1035 
   1036 	REGISTER(CRYPTO_3DES_CBC);
   1037 	REGISTER(CRYPTO_BLF_CBC);
   1038 	REGISTER(CRYPTO_CAST_CBC);
   1039 	REGISTER(CRYPTO_SKIPJACK_CBC);
   1040 	REGISTER(CRYPTO_CAMELLIA_CBC);
   1041 	REGISTER(CRYPTO_NULL_CBC);
   1042 	REGISTER(CRYPTO_MD5_HMAC);
   1043 	REGISTER(CRYPTO_MD5_HMAC_96);
   1044 	REGISTER(CRYPTO_SHA1_HMAC);
   1045 	REGISTER(CRYPTO_SHA1_HMAC_96);
   1046 	REGISTER(CRYPTO_SHA2_256_HMAC);
   1047 	REGISTER(CRYPTO_SHA2_384_HMAC);
   1048 	REGISTER(CRYPTO_SHA2_512_HMAC);
   1049 	REGISTER(CRYPTO_RIPEMD160_HMAC);
   1050 	REGISTER(CRYPTO_RIPEMD160_HMAC_96);
   1051 	REGISTER(CRYPTO_NULL_HMAC);
   1052 	REGISTER(CRYPTO_MD5_KPDK);
   1053 	REGISTER(CRYPTO_SHA1_KPDK);
   1054 	REGISTER(CRYPTO_MD5);
   1055 	REGISTER(CRYPTO_SHA1);
   1056 	REGISTER(CRYPTO_RIJNDAEL128_CBC);
   1057 	REGISTER(CRYPTO_DEFLATE_COMP);
   1058 	REGISTER(CRYPTO_DEFLATE_COMP_NOGROW);
   1059 	REGISTER(CRYPTO_GZIP_COMP);
   1060 #undef REGISTER
   1061 }
   1062 
   1063 
   1064 /*
   1065  * Pseudo-device init routine for software crypto.
   1066  */
   1067 void	swcryptoattach(int);
   1068 
   1069 void
   1070 swcryptoattach(int num)
   1071 {
   1072 
   1073 	swcr_init();
   1074 }
   1075