cryptosoft.c revision 1.35 1 /* $NetBSD: cryptosoft.c,v 1.35 2011/05/24 18:59:22 drochner Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.2.2.1 2002/11/21 23:34:23 sam Exp $ */
3 /* $OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $ */
4
5 /*
6 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
7 *
8 * This code was written by Angelos D. Keromytis in Athens, Greece, in
9 * February 2000. Network Security Technologies Inc. (NSTI) kindly
10 * supported the development of this code.
11 *
12 * Copyright (c) 2000, 2001 Angelos D. Keromytis
13 *
14 * Permission to use, copy, and modify this software with or without fee
15 * is hereby granted, provided that this entire notice is included in
16 * all source code copies of any software which is or includes a copy or
17 * modification of this software.
18 *
19 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
20 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
21 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
22 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
23 * PURPOSE.
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: cryptosoft.c,v 1.35 2011/05/24 18:59:22 drochner Exp $");
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/malloc.h>
32 #include <sys/mbuf.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
35
36 #include "opt_ocf.h"
37 #include <opencrypto/cryptodev.h>
38 #include <opencrypto/cryptosoft.h>
39 #include <opencrypto/xform.h>
40
41 #include <opencrypto/cryptosoft_xform.c>
42
43 union authctx {
44 MD5_CTX md5ctx;
45 SHA1_CTX sha1ctx;
46 RMD160_CTX rmd160ctx;
47 SHA256_CTX sha256ctx;
48 SHA384_CTX sha384ctx;
49 SHA512_CTX sha512ctx;
50 };
51
52 struct swcr_data **swcr_sessions = NULL;
53 u_int32_t swcr_sesnum = 0;
54 int32_t swcr_id = -1;
55
56 #define COPYBACK(x, a, b, c, d) \
57 (x) == CRYPTO_BUF_MBUF ? m_copyback((struct mbuf *)a,b,c,d) \
58 : cuio_copyback((struct uio *)a,b,c,d)
59 #define COPYDATA(x, a, b, c, d) \
60 (x) == CRYPTO_BUF_MBUF ? m_copydata((struct mbuf *)a,b,c,d) \
61 : cuio_copydata((struct uio *)a,b,c,d)
62
63 static int swcr_encdec(struct cryptodesc *, const struct swcr_data *, void *, int);
64 static int swcr_compdec(struct cryptodesc *, const struct swcr_data *, void *, int, int *);
65 static int swcr_process(void *, struct cryptop *, int);
66 static int swcr_newsession(void *, u_int32_t *, struct cryptoini *);
67 static int swcr_freesession(void *, u_int64_t);
68
69 /*
70 * Apply a symmetric encryption/decryption algorithm.
71 */
72 static int
73 swcr_encdec(struct cryptodesc *crd, const struct swcr_data *sw, void *bufv,
74 int outtype)
75 {
76 char *buf = bufv;
77 unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
78 unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN];
79 const struct swcr_enc_xform *exf;
80 int i, k, j, blks, ivlen;
81 int count, ind;
82
83 exf = sw->sw_exf;
84 blks = exf->enc_xform->blocksize;
85 ivlen = exf->enc_xform->ivsize;
86 KASSERT(exf->reinit ? ivlen <= blks : ivlen == blks);
87
88 /* Check for non-padded data */
89 if (crd->crd_len % blks)
90 return EINVAL;
91
92 /* Initialize the IV */
93 if (crd->crd_flags & CRD_F_ENCRYPT) {
94 /* IV explicitly provided ? */
95 if (crd->crd_flags & CRD_F_IV_EXPLICIT) {
96 memcpy(iv, crd->crd_iv, ivlen);
97 if (exf->reinit)
98 exf->reinit(sw->sw_kschedule, iv, 0);
99 } else if (exf->reinit) {
100 exf->reinit(sw->sw_kschedule, 0, iv);
101 } else {
102 /* Get random IV */
103 for (i = 0;
104 i + sizeof (u_int32_t) <= EALG_MAX_BLOCK_LEN;
105 i += sizeof (u_int32_t)) {
106 u_int32_t temp = arc4random();
107
108 memcpy(iv + i, &temp, sizeof(u_int32_t));
109 }
110 /*
111 * What if the block size is not a multiple
112 * of sizeof (u_int32_t), which is the size of
113 * what arc4random() returns ?
114 */
115 if (EALG_MAX_BLOCK_LEN % sizeof (u_int32_t) != 0) {
116 u_int32_t temp = arc4random();
117
118 bcopy (&temp, iv + i,
119 EALG_MAX_BLOCK_LEN - i);
120 }
121 }
122
123 /* Do we need to write the IV */
124 if (!(crd->crd_flags & CRD_F_IV_PRESENT)) {
125 COPYBACK(outtype, buf, crd->crd_inject, ivlen, iv);
126 }
127
128 } else { /* Decryption */
129 /* IV explicitly provided ? */
130 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
131 memcpy(iv, crd->crd_iv, ivlen);
132 else {
133 /* Get IV off buf */
134 COPYDATA(outtype, buf, crd->crd_inject, ivlen, iv);
135 }
136 if (exf->reinit)
137 exf->reinit(sw->sw_kschedule, iv, 0);
138 }
139
140 ivp = iv;
141
142 if (outtype == CRYPTO_BUF_CONTIG) {
143 if (exf->reinit) {
144 for (i = crd->crd_skip;
145 i < crd->crd_skip + crd->crd_len; i += blks) {
146 if (crd->crd_flags & CRD_F_ENCRYPT) {
147 exf->encrypt(sw->sw_kschedule, buf + i);
148 } else {
149 exf->decrypt(sw->sw_kschedule, buf + i);
150 }
151 }
152 } else if (crd->crd_flags & CRD_F_ENCRYPT) {
153 for (i = crd->crd_skip;
154 i < crd->crd_skip + crd->crd_len; i += blks) {
155 /* XOR with the IV/previous block, as appropriate. */
156 if (i == crd->crd_skip)
157 for (k = 0; k < blks; k++)
158 buf[i + k] ^= ivp[k];
159 else
160 for (k = 0; k < blks; k++)
161 buf[i + k] ^= buf[i + k - blks];
162 exf->encrypt(sw->sw_kschedule, buf + i);
163 }
164 } else { /* Decrypt */
165 /*
166 * Start at the end, so we don't need to keep the encrypted
167 * block as the IV for the next block.
168 */
169 for (i = crd->crd_skip + crd->crd_len - blks;
170 i >= crd->crd_skip; i -= blks) {
171 exf->decrypt(sw->sw_kschedule, buf + i);
172
173 /* XOR with the IV/previous block, as appropriate */
174 if (i == crd->crd_skip)
175 for (k = 0; k < blks; k++)
176 buf[i + k] ^= ivp[k];
177 else
178 for (k = 0; k < blks; k++)
179 buf[i + k] ^= buf[i + k - blks];
180 }
181 }
182
183 return 0;
184 } else if (outtype == CRYPTO_BUF_MBUF) {
185 struct mbuf *m = (struct mbuf *) buf;
186
187 /* Find beginning of data */
188 m = m_getptr(m, crd->crd_skip, &k);
189 if (m == NULL)
190 return EINVAL;
191
192 i = crd->crd_len;
193
194 while (i > 0) {
195 /*
196 * If there's insufficient data at the end of
197 * an mbuf, we have to do some copying.
198 */
199 if (m->m_len < k + blks && m->m_len != k) {
200 m_copydata(m, k, blks, blk);
201
202 /* Actual encryption/decryption */
203 if (exf->reinit) {
204 if (crd->crd_flags & CRD_F_ENCRYPT) {
205 exf->encrypt(sw->sw_kschedule,
206 blk);
207 } else {
208 exf->decrypt(sw->sw_kschedule,
209 blk);
210 }
211 } else if (crd->crd_flags & CRD_F_ENCRYPT) {
212 /* XOR with previous block */
213 for (j = 0; j < blks; j++)
214 blk[j] ^= ivp[j];
215
216 exf->encrypt(sw->sw_kschedule, blk);
217
218 /*
219 * Keep encrypted block for XOR'ing
220 * with next block
221 */
222 memcpy(iv, blk, blks);
223 ivp = iv;
224 } else { /* decrypt */
225 /*
226 * Keep encrypted block for XOR'ing
227 * with next block
228 */
229 if (ivp == iv)
230 memcpy(piv, blk, blks);
231 else
232 memcpy(iv, blk, blks);
233
234 exf->decrypt(sw->sw_kschedule, blk);
235
236 /* XOR with previous block */
237 for (j = 0; j < blks; j++)
238 blk[j] ^= ivp[j];
239
240 if (ivp == iv)
241 memcpy(iv, piv, blks);
242 else
243 ivp = iv;
244 }
245
246 /* Copy back decrypted block */
247 m_copyback(m, k, blks, blk);
248
249 /* Advance pointer */
250 m = m_getptr(m, k + blks, &k);
251 if (m == NULL)
252 return EINVAL;
253
254 i -= blks;
255
256 /* Could be done... */
257 if (i == 0)
258 break;
259 }
260
261 /* Skip possibly empty mbufs */
262 if (k == m->m_len) {
263 for (m = m->m_next; m && m->m_len == 0;
264 m = m->m_next)
265 ;
266 k = 0;
267 }
268
269 /* Sanity check */
270 if (m == NULL)
271 return EINVAL;
272
273 /*
274 * Warning: idat may point to garbage here, but
275 * we only use it in the while() loop, only if
276 * there are indeed enough data.
277 */
278 idat = mtod(m, unsigned char *) + k;
279
280 while (m->m_len >= k + blks && i > 0) {
281 if (exf->reinit) {
282 if (crd->crd_flags & CRD_F_ENCRYPT) {
283 exf->encrypt(sw->sw_kschedule,
284 idat);
285 } else {
286 exf->decrypt(sw->sw_kschedule,
287 idat);
288 }
289 } else if (crd->crd_flags & CRD_F_ENCRYPT) {
290 /* XOR with previous block/IV */
291 for (j = 0; j < blks; j++)
292 idat[j] ^= ivp[j];
293
294 exf->encrypt(sw->sw_kschedule, idat);
295 ivp = idat;
296 } else { /* decrypt */
297 /*
298 * Keep encrypted block to be used
299 * in next block's processing.
300 */
301 if (ivp == iv)
302 memcpy(piv, idat, blks);
303 else
304 memcpy(iv, idat, blks);
305
306 exf->decrypt(sw->sw_kschedule, idat);
307
308 /* XOR with previous block/IV */
309 for (j = 0; j < blks; j++)
310 idat[j] ^= ivp[j];
311
312 if (ivp == iv)
313 memcpy(iv, piv, blks);
314 else
315 ivp = iv;
316 }
317
318 idat += blks;
319 k += blks;
320 i -= blks;
321 }
322 }
323
324 return 0; /* Done with mbuf encryption/decryption */
325 } else if (outtype == CRYPTO_BUF_IOV) {
326 struct uio *uio = (struct uio *) buf;
327
328 /* Find beginning of data */
329 count = crd->crd_skip;
330 ind = cuio_getptr(uio, count, &k);
331 if (ind == -1)
332 return EINVAL;
333
334 i = crd->crd_len;
335
336 while (i > 0) {
337 /*
338 * If there's insufficient data at the end,
339 * we have to do some copying.
340 */
341 if (uio->uio_iov[ind].iov_len < k + blks &&
342 uio->uio_iov[ind].iov_len != k) {
343 cuio_copydata(uio, k, blks, blk);
344
345 /* Actual encryption/decryption */
346 if (exf->reinit) {
347 if (crd->crd_flags & CRD_F_ENCRYPT) {
348 exf->encrypt(sw->sw_kschedule,
349 blk);
350 } else {
351 exf->decrypt(sw->sw_kschedule,
352 blk);
353 }
354 } else if (crd->crd_flags & CRD_F_ENCRYPT) {
355 /* XOR with previous block */
356 for (j = 0; j < blks; j++)
357 blk[j] ^= ivp[j];
358
359 exf->encrypt(sw->sw_kschedule, blk);
360
361 /*
362 * Keep encrypted block for XOR'ing
363 * with next block
364 */
365 memcpy(iv, blk, blks);
366 ivp = iv;
367 } else { /* decrypt */
368 /*
369 * Keep encrypted block for XOR'ing
370 * with next block
371 */
372 if (ivp == iv)
373 memcpy(piv, blk, blks);
374 else
375 memcpy(iv, blk, blks);
376
377 exf->decrypt(sw->sw_kschedule, blk);
378
379 /* XOR with previous block */
380 for (j = 0; j < blks; j++)
381 blk[j] ^= ivp[j];
382
383 if (ivp == iv)
384 memcpy(iv, piv, blks);
385 else
386 ivp = iv;
387 }
388
389 /* Copy back decrypted block */
390 cuio_copyback(uio, k, blks, blk);
391
392 count += blks;
393
394 /* Advance pointer */
395 ind = cuio_getptr(uio, count, &k);
396 if (ind == -1)
397 return (EINVAL);
398
399 i -= blks;
400
401 /* Could be done... */
402 if (i == 0)
403 break;
404 }
405
406 /*
407 * Warning: idat may point to garbage here, but
408 * we only use it in the while() loop, only if
409 * there are indeed enough data.
410 */
411 idat = ((char *)uio->uio_iov[ind].iov_base) + k;
412
413 while (uio->uio_iov[ind].iov_len >= k + blks &&
414 i > 0) {
415 if (exf->reinit) {
416 if (crd->crd_flags & CRD_F_ENCRYPT) {
417 exf->encrypt(sw->sw_kschedule,
418 idat);
419 } else {
420 exf->decrypt(sw->sw_kschedule,
421 idat);
422 }
423 } else if (crd->crd_flags & CRD_F_ENCRYPT) {
424 /* XOR with previous block/IV */
425 for (j = 0; j < blks; j++)
426 idat[j] ^= ivp[j];
427
428 exf->encrypt(sw->sw_kschedule, idat);
429 ivp = idat;
430 } else { /* decrypt */
431 /*
432 * Keep encrypted block to be used
433 * in next block's processing.
434 */
435 if (ivp == iv)
436 memcpy(piv, idat, blks);
437 else
438 memcpy(iv, idat, blks);
439
440 exf->decrypt(sw->sw_kschedule, idat);
441
442 /* XOR with previous block/IV */
443 for (j = 0; j < blks; j++)
444 idat[j] ^= ivp[j];
445
446 if (ivp == iv)
447 memcpy(iv, piv, blks);
448 else
449 ivp = iv;
450 }
451
452 idat += blks;
453 count += blks;
454 k += blks;
455 i -= blks;
456 }
457 }
458 return 0; /* Done with mbuf encryption/decryption */
459 }
460
461 /* Unreachable */
462 return EINVAL;
463 }
464
465 /*
466 * Compute keyed-hash authenticator.
467 */
468 int
469 swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
470 const struct swcr_data *sw, void *buf, int outtype)
471 {
472 unsigned char aalg[AALG_MAX_RESULT_LEN];
473 const struct swcr_auth_hash *axf;
474 union authctx ctx;
475 int err;
476
477 if (sw->sw_ictx == 0)
478 return EINVAL;
479
480 axf = sw->sw_axf;
481
482 memcpy(&ctx, sw->sw_ictx, axf->ctxsize);
483
484 switch (outtype) {
485 case CRYPTO_BUF_CONTIG:
486 axf->Update(&ctx, (char *)buf + crd->crd_skip, crd->crd_len);
487 break;
488 case CRYPTO_BUF_MBUF:
489 err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
490 (int (*)(void*, void *, unsigned int)) axf->Update,
491 (void *) &ctx);
492 if (err)
493 return err;
494 break;
495 case CRYPTO_BUF_IOV:
496 err = cuio_apply((struct uio *) buf, crd->crd_skip,
497 crd->crd_len,
498 (int (*)(void *, void *, unsigned int)) axf->Update,
499 (void *) &ctx);
500 if (err) {
501 return err;
502 }
503 break;
504 default:
505 return EINVAL;
506 }
507
508 switch (sw->sw_alg) {
509 case CRYPTO_MD5_HMAC:
510 case CRYPTO_MD5_HMAC_96:
511 case CRYPTO_SHA1_HMAC:
512 case CRYPTO_SHA1_HMAC_96:
513 case CRYPTO_SHA2_256_HMAC:
514 case CRYPTO_SHA2_384_HMAC:
515 case CRYPTO_SHA2_512_HMAC:
516 case CRYPTO_RIPEMD160_HMAC:
517 case CRYPTO_RIPEMD160_HMAC_96:
518 if (sw->sw_octx == NULL)
519 return EINVAL;
520
521 axf->Final(aalg, &ctx);
522 memcpy(&ctx, sw->sw_octx, axf->ctxsize);
523 axf->Update(&ctx, aalg, axf->auth_hash->hashsize);
524 axf->Final(aalg, &ctx);
525 break;
526
527 case CRYPTO_MD5_KPDK:
528 case CRYPTO_SHA1_KPDK:
529 if (sw->sw_octx == NULL)
530 return EINVAL;
531
532 axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
533 axf->Final(aalg, &ctx);
534 break;
535
536 case CRYPTO_NULL_HMAC:
537 case CRYPTO_MD5:
538 case CRYPTO_SHA1:
539 axf->Final(aalg, &ctx);
540 break;
541 }
542
543 /* Inject the authentication data */
544 switch (outtype) {
545 case CRYPTO_BUF_CONTIG:
546 (void)memcpy((char *)buf + crd->crd_inject, aalg,
547 axf->auth_hash->authsize);
548 break;
549 case CRYPTO_BUF_MBUF:
550 m_copyback((struct mbuf *) buf, crd->crd_inject,
551 axf->auth_hash->authsize, aalg);
552 break;
553 case CRYPTO_BUF_IOV:
554 memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
555 break;
556 default:
557 return EINVAL;
558 }
559 return 0;
560 }
561
562 /*
563 * Apply a compression/decompression algorithm
564 */
565 static int
566 swcr_compdec(struct cryptodesc *crd, const struct swcr_data *sw,
567 void *buf, int outtype, int *res_size)
568 {
569 u_int8_t *data, *out;
570 const struct swcr_comp_algo *cxf;
571 int adj;
572 u_int32_t result;
573
574 cxf = sw->sw_cxf;
575
576 /* We must handle the whole buffer of data in one time
577 * then if there is not all the data in the mbuf, we must
578 * copy in a buffer.
579 */
580
581 data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
582 if (data == NULL)
583 return (EINVAL);
584 COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
585
586 if (crd->crd_flags & CRD_F_COMP)
587 result = cxf->compress(data, crd->crd_len, &out);
588 else
589 result = cxf->decompress(data, crd->crd_len, &out,
590 *res_size);
591
592 free(data, M_CRYPTO_DATA);
593 if (result == 0)
594 return EINVAL;
595
596 /* Copy back the (de)compressed data. m_copyback is
597 * extending the mbuf as necessary.
598 */
599 *res_size = (int)result;
600 /* Check the compressed size when doing compression */
601 if (crd->crd_flags & CRD_F_COMP &&
602 sw->sw_alg == CRYPTO_DEFLATE_COMP_NOGROW &&
603 result >= crd->crd_len) {
604 /* Compression was useless, we lost time */
605 free(out, M_CRYPTO_DATA);
606 return 0;
607 }
608
609 COPYBACK(outtype, buf, crd->crd_skip, result, out);
610 if (result < crd->crd_len) {
611 adj = result - crd->crd_len;
612 if (outtype == CRYPTO_BUF_MBUF) {
613 adj = result - crd->crd_len;
614 m_adj((struct mbuf *)buf, adj);
615 }
616 /* Don't adjust the iov_len, it breaks the kmem_free */
617 }
618 free(out, M_CRYPTO_DATA);
619 return 0;
620 }
621
622 /*
623 * Generate a new software session.
624 */
625 static int
626 swcr_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
627 {
628 struct swcr_data **swd;
629 const struct swcr_auth_hash *axf;
630 const struct swcr_enc_xform *txf;
631 const struct swcr_comp_algo *cxf;
632 u_int32_t i;
633 int k, error;
634
635 if (sid == NULL || cri == NULL)
636 return EINVAL;
637
638 if (swcr_sessions) {
639 for (i = 1; i < swcr_sesnum; i++)
640 if (swcr_sessions[i] == NULL)
641 break;
642 } else
643 i = 1; /* NB: to silence compiler warning */
644
645 if (swcr_sessions == NULL || i == swcr_sesnum) {
646 if (swcr_sessions == NULL) {
647 i = 1; /* We leave swcr_sessions[0] empty */
648 swcr_sesnum = CRYPTO_SW_SESSIONS;
649 } else
650 swcr_sesnum *= 2;
651
652 swd = malloc(swcr_sesnum * sizeof(struct swcr_data *),
653 M_CRYPTO_DATA, M_NOWAIT);
654 if (swd == NULL) {
655 /* Reset session number */
656 if (swcr_sesnum == CRYPTO_SW_SESSIONS)
657 swcr_sesnum = 0;
658 else
659 swcr_sesnum /= 2;
660 return ENOBUFS;
661 }
662
663 memset(swd, 0, swcr_sesnum * sizeof(struct swcr_data *));
664
665 /* Copy existing sessions */
666 if (swcr_sessions) {
667 memcpy(swd, swcr_sessions,
668 (swcr_sesnum / 2) * sizeof(struct swcr_data *));
669 free(swcr_sessions, M_CRYPTO_DATA);
670 }
671
672 swcr_sessions = swd;
673 }
674
675 swd = &swcr_sessions[i];
676 *sid = i;
677
678 while (cri) {
679 *swd = malloc(sizeof **swd, M_CRYPTO_DATA, M_NOWAIT);
680 if (*swd == NULL) {
681 swcr_freesession(NULL, i);
682 return ENOBUFS;
683 }
684 memset(*swd, 0, sizeof(struct swcr_data));
685
686 switch (cri->cri_alg) {
687 case CRYPTO_DES_CBC:
688 txf = &swcr_enc_xform_des;
689 goto enccommon;
690 case CRYPTO_3DES_CBC:
691 txf = &swcr_enc_xform_3des;
692 goto enccommon;
693 case CRYPTO_BLF_CBC:
694 txf = &swcr_enc_xform_blf;
695 goto enccommon;
696 case CRYPTO_CAST_CBC:
697 txf = &swcr_enc_xform_cast5;
698 goto enccommon;
699 case CRYPTO_SKIPJACK_CBC:
700 txf = &swcr_enc_xform_skipjack;
701 goto enccommon;
702 case CRYPTO_RIJNDAEL128_CBC:
703 txf = &swcr_enc_xform_rijndael128;
704 goto enccommon;
705 case CRYPTO_CAMELLIA_CBC:
706 txf = &swcr_enc_xform_camellia;
707 goto enccommon;
708 case CRYPTO_AES_CTR:
709 txf = &swcr_enc_xform_aes_ctr;
710 goto enccommon;
711 case CRYPTO_NULL_CBC:
712 txf = &swcr_enc_xform_null;
713 goto enccommon;
714 enccommon:
715 error = txf->setkey(&((*swd)->sw_kschedule),
716 cri->cri_key, cri->cri_klen / 8);
717 if (error) {
718 swcr_freesession(NULL, i);
719 return error;
720 }
721 (*swd)->sw_exf = txf;
722 break;
723
724 case CRYPTO_MD5_HMAC:
725 axf = &swcr_auth_hash_hmac_md5;
726 goto authcommon;
727 case CRYPTO_MD5_HMAC_96:
728 axf = &swcr_auth_hash_hmac_md5_96;
729 goto authcommon;
730 case CRYPTO_SHA1_HMAC:
731 axf = &swcr_auth_hash_hmac_sha1;
732 goto authcommon;
733 case CRYPTO_SHA1_HMAC_96:
734 axf = &swcr_auth_hash_hmac_sha1_96;
735 goto authcommon;
736 case CRYPTO_SHA2_256_HMAC:
737 axf = &swcr_auth_hash_hmac_sha2_256;
738 goto authcommon;
739 case CRYPTO_SHA2_384_HMAC:
740 axf = &swcr_auth_hash_hmac_sha2_384;
741 goto authcommon;
742 case CRYPTO_SHA2_512_HMAC:
743 axf = &swcr_auth_hash_hmac_sha2_512;
744 goto authcommon;
745 case CRYPTO_NULL_HMAC:
746 axf = &swcr_auth_hash_null;
747 goto authcommon;
748 case CRYPTO_RIPEMD160_HMAC:
749 axf = &swcr_auth_hash_hmac_ripemd_160;
750 goto authcommon;
751 case CRYPTO_RIPEMD160_HMAC_96:
752 axf = &swcr_auth_hash_hmac_ripemd_160_96;
753 goto authcommon; /* leave this for safety */
754 authcommon:
755 (*swd)->sw_ictx = malloc(axf->ctxsize,
756 M_CRYPTO_DATA, M_NOWAIT);
757 if ((*swd)->sw_ictx == NULL) {
758 swcr_freesession(NULL, i);
759 return ENOBUFS;
760 }
761
762 (*swd)->sw_octx = malloc(axf->ctxsize,
763 M_CRYPTO_DATA, M_NOWAIT);
764 if ((*swd)->sw_octx == NULL) {
765 swcr_freesession(NULL, i);
766 return ENOBUFS;
767 }
768
769 for (k = 0; k < cri->cri_klen / 8; k++)
770 cri->cri_key[k] ^= HMAC_IPAD_VAL;
771
772 axf->Init((*swd)->sw_ictx);
773 axf->Update((*swd)->sw_ictx, cri->cri_key,
774 cri->cri_klen / 8);
775 axf->Update((*swd)->sw_ictx, hmac_ipad_buffer,
776 axf->auth_hash->blocksize - (cri->cri_klen / 8));
777
778 for (k = 0; k < cri->cri_klen / 8; k++)
779 cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
780
781 axf->Init((*swd)->sw_octx);
782 axf->Update((*swd)->sw_octx, cri->cri_key,
783 cri->cri_klen / 8);
784 axf->Update((*swd)->sw_octx, hmac_opad_buffer,
785 axf->auth_hash->blocksize - (cri->cri_klen / 8));
786
787 for (k = 0; k < cri->cri_klen / 8; k++)
788 cri->cri_key[k] ^= HMAC_OPAD_VAL;
789 (*swd)->sw_axf = axf;
790 break;
791
792 case CRYPTO_MD5_KPDK:
793 axf = &swcr_auth_hash_key_md5;
794 goto auth2common;
795
796 case CRYPTO_SHA1_KPDK:
797 axf = &swcr_auth_hash_key_sha1;
798 auth2common:
799 (*swd)->sw_ictx = malloc(axf->ctxsize,
800 M_CRYPTO_DATA, M_NOWAIT);
801 if ((*swd)->sw_ictx == NULL) {
802 swcr_freesession(NULL, i);
803 return ENOBUFS;
804 }
805
806 /* Store the key so we can "append" it to the payload */
807 (*swd)->sw_octx = malloc(cri->cri_klen / 8, M_CRYPTO_DATA,
808 M_NOWAIT);
809 if ((*swd)->sw_octx == NULL) {
810 swcr_freesession(NULL, i);
811 return ENOBUFS;
812 }
813
814 (*swd)->sw_klen = cri->cri_klen / 8;
815 memcpy((*swd)->sw_octx, cri->cri_key, cri->cri_klen / 8);
816 axf->Init((*swd)->sw_ictx);
817 axf->Update((*swd)->sw_ictx, cri->cri_key,
818 cri->cri_klen / 8);
819 axf->Final(NULL, (*swd)->sw_ictx);
820 (*swd)->sw_axf = axf;
821 break;
822
823 case CRYPTO_MD5:
824 axf = &swcr_auth_hash_md5;
825 goto auth3common;
826
827 case CRYPTO_SHA1:
828 axf = &swcr_auth_hash_sha1;
829 auth3common:
830 (*swd)->sw_ictx = malloc(axf->ctxsize,
831 M_CRYPTO_DATA, M_NOWAIT);
832 if ((*swd)->sw_ictx == NULL) {
833 swcr_freesession(NULL, i);
834 return ENOBUFS;
835 }
836
837 axf->Init((*swd)->sw_ictx);
838 (*swd)->sw_axf = axf;
839 break;
840
841 case CRYPTO_DEFLATE_COMP:
842 cxf = &swcr_comp_algo_deflate;
843 (*swd)->sw_cxf = cxf;
844 break;
845
846 case CRYPTO_DEFLATE_COMP_NOGROW:
847 cxf = &swcr_comp_algo_deflate_nogrow;
848 (*swd)->sw_cxf = cxf;
849 break;
850
851 case CRYPTO_GZIP_COMP:
852 cxf = &swcr_comp_algo_gzip;
853 (*swd)->sw_cxf = cxf;
854 break;
855 default:
856 swcr_freesession(NULL, i);
857 return EINVAL;
858 }
859
860 (*swd)->sw_alg = cri->cri_alg;
861 cri = cri->cri_next;
862 swd = &((*swd)->sw_next);
863 }
864 return 0;
865 }
866
867 /*
868 * Free a session.
869 */
870 static int
871 swcr_freesession(void *arg, u_int64_t tid)
872 {
873 struct swcr_data *swd;
874 const struct swcr_enc_xform *txf;
875 const struct swcr_auth_hash *axf;
876 const struct swcr_comp_algo *cxf;
877 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
878
879 if (sid > swcr_sesnum || swcr_sessions == NULL ||
880 swcr_sessions[sid] == NULL)
881 return EINVAL;
882
883 /* Silently accept and return */
884 if (sid == 0)
885 return 0;
886
887 while ((swd = swcr_sessions[sid]) != NULL) {
888 swcr_sessions[sid] = swd->sw_next;
889
890 switch (swd->sw_alg) {
891 case CRYPTO_DES_CBC:
892 case CRYPTO_3DES_CBC:
893 case CRYPTO_BLF_CBC:
894 case CRYPTO_CAST_CBC:
895 case CRYPTO_SKIPJACK_CBC:
896 case CRYPTO_RIJNDAEL128_CBC:
897 case CRYPTO_CAMELLIA_CBC:
898 case CRYPTO_AES_CTR:
899 case CRYPTO_NULL_CBC:
900 txf = swd->sw_exf;
901
902 if (swd->sw_kschedule)
903 txf->zerokey(&(swd->sw_kschedule));
904 break;
905
906 case CRYPTO_MD5_HMAC:
907 case CRYPTO_MD5_HMAC_96:
908 case CRYPTO_SHA1_HMAC:
909 case CRYPTO_SHA1_HMAC_96:
910 case CRYPTO_SHA2_256_HMAC:
911 case CRYPTO_SHA2_384_HMAC:
912 case CRYPTO_SHA2_512_HMAC:
913 case CRYPTO_RIPEMD160_HMAC:
914 case CRYPTO_RIPEMD160_HMAC_96:
915 case CRYPTO_NULL_HMAC:
916 axf = swd->sw_axf;
917
918 if (swd->sw_ictx) {
919 memset(swd->sw_ictx, 0, axf->ctxsize);
920 free(swd->sw_ictx, M_CRYPTO_DATA);
921 }
922 if (swd->sw_octx) {
923 memset(swd->sw_octx, 0, axf->ctxsize);
924 free(swd->sw_octx, M_CRYPTO_DATA);
925 }
926 break;
927
928 case CRYPTO_MD5_KPDK:
929 case CRYPTO_SHA1_KPDK:
930 axf = swd->sw_axf;
931
932 if (swd->sw_ictx) {
933 memset(swd->sw_ictx, 0, axf->ctxsize);
934 free(swd->sw_ictx, M_CRYPTO_DATA);
935 }
936 if (swd->sw_octx) {
937 memset(swd->sw_octx, 0, swd->sw_klen);
938 free(swd->sw_octx, M_CRYPTO_DATA);
939 }
940 break;
941
942 case CRYPTO_MD5:
943 case CRYPTO_SHA1:
944 axf = swd->sw_axf;
945
946 if (swd->sw_ictx)
947 free(swd->sw_ictx, M_CRYPTO_DATA);
948 break;
949
950 case CRYPTO_DEFLATE_COMP:
951 case CRYPTO_DEFLATE_COMP_NOGROW:
952 case CRYPTO_GZIP_COMP:
953 cxf = swd->sw_cxf;
954 break;
955 }
956
957 free(swd, M_CRYPTO_DATA);
958 }
959 return 0;
960 }
961
962 /*
963 * Process a software request.
964 */
965 static int
966 swcr_process(void *arg, struct cryptop *crp, int hint)
967 {
968 struct cryptodesc *crd;
969 struct swcr_data *sw;
970 u_int32_t lid;
971 int type;
972
973 /* Sanity check */
974 if (crp == NULL)
975 return EINVAL;
976
977 if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
978 crp->crp_etype = EINVAL;
979 goto done;
980 }
981
982 lid = crp->crp_sid & 0xffffffff;
983 if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
984 crp->crp_etype = ENOENT;
985 goto done;
986 }
987
988 if (crp->crp_flags & CRYPTO_F_IMBUF) {
989 type = CRYPTO_BUF_MBUF;
990 } else if (crp->crp_flags & CRYPTO_F_IOV) {
991 type = CRYPTO_BUF_IOV;
992 } else {
993 type = CRYPTO_BUF_CONTIG;
994 }
995
996 /* Go through crypto descriptors, processing as we go */
997 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
998 /*
999 * Find the crypto context.
1000 *
1001 * XXX Note that the logic here prevents us from having
1002 * XXX the same algorithm multiple times in a session
1003 * XXX (or rather, we can but it won't give us the right
1004 * XXX results). To do that, we'd need some way of differentiating
1005 * XXX between the various instances of an algorithm (so we can
1006 * XXX locate the correct crypto context).
1007 */
1008 for (sw = swcr_sessions[lid];
1009 sw && sw->sw_alg != crd->crd_alg;
1010 sw = sw->sw_next)
1011 ;
1012
1013 /* No such context ? */
1014 if (sw == NULL) {
1015 crp->crp_etype = EINVAL;
1016 goto done;
1017 }
1018
1019 switch (sw->sw_alg) {
1020 case CRYPTO_DES_CBC:
1021 case CRYPTO_3DES_CBC:
1022 case CRYPTO_BLF_CBC:
1023 case CRYPTO_CAST_CBC:
1024 case CRYPTO_SKIPJACK_CBC:
1025 case CRYPTO_RIJNDAEL128_CBC:
1026 case CRYPTO_CAMELLIA_CBC:
1027 case CRYPTO_AES_CTR:
1028 if ((crp->crp_etype = swcr_encdec(crd, sw,
1029 crp->crp_buf, type)) != 0)
1030 goto done;
1031 break;
1032 case CRYPTO_NULL_CBC:
1033 crp->crp_etype = 0;
1034 break;
1035 case CRYPTO_MD5_HMAC:
1036 case CRYPTO_MD5_HMAC_96:
1037 case CRYPTO_SHA1_HMAC:
1038 case CRYPTO_SHA1_HMAC_96:
1039 case CRYPTO_SHA2_256_HMAC:
1040 case CRYPTO_SHA2_384_HMAC:
1041 case CRYPTO_SHA2_512_HMAC:
1042 case CRYPTO_RIPEMD160_HMAC:
1043 case CRYPTO_RIPEMD160_HMAC_96:
1044 case CRYPTO_NULL_HMAC:
1045 case CRYPTO_MD5_KPDK:
1046 case CRYPTO_SHA1_KPDK:
1047 case CRYPTO_MD5:
1048 case CRYPTO_SHA1:
1049 if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
1050 crp->crp_buf, type)) != 0)
1051 goto done;
1052 break;
1053
1054 case CRYPTO_DEFLATE_COMP:
1055 case CRYPTO_DEFLATE_COMP_NOGROW:
1056 case CRYPTO_GZIP_COMP:
1057 DPRINTF(("swcr_process: compdec for %d\n", sw->sw_alg));
1058 if ((crp->crp_etype = swcr_compdec(crd, sw,
1059 crp->crp_buf, type, &crp->crp_olen)) != 0)
1060 goto done;
1061 break;
1062
1063 default:
1064 /* Unknown/unsupported algorithm */
1065 crp->crp_etype = EINVAL;
1066 goto done;
1067 }
1068 }
1069
1070 done:
1071 DPRINTF(("request %p done\n", crp));
1072 crypto_done(crp);
1073 return 0;
1074 }
1075
1076 static void
1077 swcr_init(void)
1078 {
1079 swcr_id = crypto_get_driverid(CRYPTOCAP_F_SOFTWARE);
1080 if (swcr_id < 0) {
1081 /* This should never happen */
1082 panic("Software crypto device cannot initialize!");
1083 }
1084
1085 crypto_register(swcr_id, CRYPTO_DES_CBC,
1086 0, 0, swcr_newsession, swcr_freesession, swcr_process, NULL);
1087 #define REGISTER(alg) \
1088 crypto_register(swcr_id, alg, 0, 0, NULL, NULL, NULL, NULL)
1089
1090 REGISTER(CRYPTO_3DES_CBC);
1091 REGISTER(CRYPTO_BLF_CBC);
1092 REGISTER(CRYPTO_CAST_CBC);
1093 REGISTER(CRYPTO_SKIPJACK_CBC);
1094 REGISTER(CRYPTO_CAMELLIA_CBC);
1095 REGISTER(CRYPTO_AES_CTR);
1096 REGISTER(CRYPTO_NULL_CBC);
1097 REGISTER(CRYPTO_MD5_HMAC);
1098 REGISTER(CRYPTO_MD5_HMAC_96);
1099 REGISTER(CRYPTO_SHA1_HMAC);
1100 REGISTER(CRYPTO_SHA1_HMAC_96);
1101 REGISTER(CRYPTO_SHA2_256_HMAC);
1102 REGISTER(CRYPTO_SHA2_384_HMAC);
1103 REGISTER(CRYPTO_SHA2_512_HMAC);
1104 REGISTER(CRYPTO_RIPEMD160_HMAC);
1105 REGISTER(CRYPTO_RIPEMD160_HMAC_96);
1106 REGISTER(CRYPTO_NULL_HMAC);
1107 REGISTER(CRYPTO_MD5_KPDK);
1108 REGISTER(CRYPTO_SHA1_KPDK);
1109 REGISTER(CRYPTO_MD5);
1110 REGISTER(CRYPTO_SHA1);
1111 REGISTER(CRYPTO_RIJNDAEL128_CBC);
1112 REGISTER(CRYPTO_DEFLATE_COMP);
1113 REGISTER(CRYPTO_DEFLATE_COMP_NOGROW);
1114 REGISTER(CRYPTO_GZIP_COMP);
1115 #undef REGISTER
1116 }
1117
1118
1119 /*
1120 * Pseudo-device init routine for software crypto.
1121 */
1122 void swcryptoattach(int);
1123
1124 void
1125 swcryptoattach(int num)
1126 {
1127
1128 swcr_init();
1129 }
1130