cryptosoft.c revision 1.37.2.1 1 /* $NetBSD: cryptosoft.c,v 1.37.2.1 2011/06/23 14:20:28 cherry Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.2.2.1 2002/11/21 23:34:23 sam Exp $ */
3 /* $OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $ */
4
5 /*
6 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
7 *
8 * This code was written by Angelos D. Keromytis in Athens, Greece, in
9 * February 2000. Network Security Technologies Inc. (NSTI) kindly
10 * supported the development of this code.
11 *
12 * Copyright (c) 2000, 2001 Angelos D. Keromytis
13 *
14 * Permission to use, copy, and modify this software with or without fee
15 * is hereby granted, provided that this entire notice is included in
16 * all source code copies of any software which is or includes a copy or
17 * modification of this software.
18 *
19 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
20 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
21 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
22 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
23 * PURPOSE.
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: cryptosoft.c,v 1.37.2.1 2011/06/23 14:20:28 cherry Exp $");
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/malloc.h>
32 #include <sys/mbuf.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
35
36 #include "opt_ocf.h"
37 #include <opencrypto/cryptodev.h>
38 #include <opencrypto/cryptosoft.h>
39 #include <opencrypto/xform.h>
40
41 #include <opencrypto/cryptosoft_xform.c>
42
43 union authctx {
44 MD5_CTX md5ctx;
45 SHA1_CTX sha1ctx;
46 RMD160_CTX rmd160ctx;
47 SHA256_CTX sha256ctx;
48 SHA384_CTX sha384ctx;
49 SHA512_CTX sha512ctx;
50 aesxcbc_ctx aesxcbcctx;
51 AES_GMAC_CTX aesgmacctx;
52 };
53
54 struct swcr_data **swcr_sessions = NULL;
55 u_int32_t swcr_sesnum = 0;
56 int32_t swcr_id = -1;
57
58 #define COPYBACK(x, a, b, c, d) \
59 (x) == CRYPTO_BUF_MBUF ? m_copyback((struct mbuf *)a,b,c,d) \
60 : cuio_copyback((struct uio *)a,b,c,d)
61 #define COPYDATA(x, a, b, c, d) \
62 (x) == CRYPTO_BUF_MBUF ? m_copydata((struct mbuf *)a,b,c,d) \
63 : cuio_copydata((struct uio *)a,b,c,d)
64
65 static int swcr_encdec(struct cryptodesc *, const struct swcr_data *, void *, int);
66 static int swcr_compdec(struct cryptodesc *, const struct swcr_data *, void *, int, int *);
67 static int swcr_combined(struct cryptop *, int);
68 static int swcr_process(void *, struct cryptop *, int);
69 static int swcr_newsession(void *, u_int32_t *, struct cryptoini *);
70 static int swcr_freesession(void *, u_int64_t);
71
72 /*
73 * Apply a symmetric encryption/decryption algorithm.
74 */
75 static int
76 swcr_encdec(struct cryptodesc *crd, const struct swcr_data *sw, void *bufv,
77 int outtype)
78 {
79 char *buf = bufv;
80 unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
81 unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN];
82 const struct swcr_enc_xform *exf;
83 int i, k, j, blks, ivlen;
84 int count, ind;
85
86 exf = sw->sw_exf;
87 blks = exf->enc_xform->blocksize;
88 ivlen = exf->enc_xform->ivsize;
89 KASSERT(exf->reinit ? ivlen <= blks : ivlen == blks);
90
91 /* Check for non-padded data */
92 if (crd->crd_len % blks)
93 return EINVAL;
94
95 /* Initialize the IV */
96 if (crd->crd_flags & CRD_F_ENCRYPT) {
97 /* IV explicitly provided ? */
98 if (crd->crd_flags & CRD_F_IV_EXPLICIT) {
99 memcpy(iv, crd->crd_iv, ivlen);
100 if (exf->reinit)
101 exf->reinit(sw->sw_kschedule, iv, 0);
102 } else if (exf->reinit) {
103 exf->reinit(sw->sw_kschedule, 0, iv);
104 } else {
105 /* Get random IV */
106 for (i = 0;
107 i + sizeof (u_int32_t) <= EALG_MAX_BLOCK_LEN;
108 i += sizeof (u_int32_t)) {
109 u_int32_t temp = arc4random();
110
111 memcpy(iv + i, &temp, sizeof(u_int32_t));
112 }
113 /*
114 * What if the block size is not a multiple
115 * of sizeof (u_int32_t), which is the size of
116 * what arc4random() returns ?
117 */
118 if (EALG_MAX_BLOCK_LEN % sizeof (u_int32_t) != 0) {
119 u_int32_t temp = arc4random();
120
121 bcopy (&temp, iv + i,
122 EALG_MAX_BLOCK_LEN - i);
123 }
124 }
125
126 /* Do we need to write the IV */
127 if (!(crd->crd_flags & CRD_F_IV_PRESENT)) {
128 COPYBACK(outtype, buf, crd->crd_inject, ivlen, iv);
129 }
130
131 } else { /* Decryption */
132 /* IV explicitly provided ? */
133 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
134 memcpy(iv, crd->crd_iv, ivlen);
135 else {
136 /* Get IV off buf */
137 COPYDATA(outtype, buf, crd->crd_inject, ivlen, iv);
138 }
139 if (exf->reinit)
140 exf->reinit(sw->sw_kschedule, iv, 0);
141 }
142
143 ivp = iv;
144
145 if (outtype == CRYPTO_BUF_CONTIG) {
146 if (exf->reinit) {
147 for (i = crd->crd_skip;
148 i < crd->crd_skip + crd->crd_len; i += blks) {
149 if (crd->crd_flags & CRD_F_ENCRYPT) {
150 exf->encrypt(sw->sw_kschedule, buf + i);
151 } else {
152 exf->decrypt(sw->sw_kschedule, buf + i);
153 }
154 }
155 } else if (crd->crd_flags & CRD_F_ENCRYPT) {
156 for (i = crd->crd_skip;
157 i < crd->crd_skip + crd->crd_len; i += blks) {
158 /* XOR with the IV/previous block, as appropriate. */
159 if (i == crd->crd_skip)
160 for (k = 0; k < blks; k++)
161 buf[i + k] ^= ivp[k];
162 else
163 for (k = 0; k < blks; k++)
164 buf[i + k] ^= buf[i + k - blks];
165 exf->encrypt(sw->sw_kschedule, buf + i);
166 }
167 } else { /* Decrypt */
168 /*
169 * Start at the end, so we don't need to keep the encrypted
170 * block as the IV for the next block.
171 */
172 for (i = crd->crd_skip + crd->crd_len - blks;
173 i >= crd->crd_skip; i -= blks) {
174 exf->decrypt(sw->sw_kschedule, buf + i);
175
176 /* XOR with the IV/previous block, as appropriate */
177 if (i == crd->crd_skip)
178 for (k = 0; k < blks; k++)
179 buf[i + k] ^= ivp[k];
180 else
181 for (k = 0; k < blks; k++)
182 buf[i + k] ^= buf[i + k - blks];
183 }
184 }
185
186 return 0;
187 } else if (outtype == CRYPTO_BUF_MBUF) {
188 struct mbuf *m = (struct mbuf *) buf;
189
190 /* Find beginning of data */
191 m = m_getptr(m, crd->crd_skip, &k);
192 if (m == NULL)
193 return EINVAL;
194
195 i = crd->crd_len;
196
197 while (i > 0) {
198 /*
199 * If there's insufficient data at the end of
200 * an mbuf, we have to do some copying.
201 */
202 if (m->m_len < k + blks && m->m_len != k) {
203 m_copydata(m, k, blks, blk);
204
205 /* Actual encryption/decryption */
206 if (exf->reinit) {
207 if (crd->crd_flags & CRD_F_ENCRYPT) {
208 exf->encrypt(sw->sw_kschedule,
209 blk);
210 } else {
211 exf->decrypt(sw->sw_kschedule,
212 blk);
213 }
214 } else if (crd->crd_flags & CRD_F_ENCRYPT) {
215 /* XOR with previous block */
216 for (j = 0; j < blks; j++)
217 blk[j] ^= ivp[j];
218
219 exf->encrypt(sw->sw_kschedule, blk);
220
221 /*
222 * Keep encrypted block for XOR'ing
223 * with next block
224 */
225 memcpy(iv, blk, blks);
226 ivp = iv;
227 } else { /* decrypt */
228 /*
229 * Keep encrypted block for XOR'ing
230 * with next block
231 */
232 if (ivp == iv)
233 memcpy(piv, blk, blks);
234 else
235 memcpy(iv, blk, blks);
236
237 exf->decrypt(sw->sw_kschedule, blk);
238
239 /* XOR with previous block */
240 for (j = 0; j < blks; j++)
241 blk[j] ^= ivp[j];
242
243 if (ivp == iv)
244 memcpy(iv, piv, blks);
245 else
246 ivp = iv;
247 }
248
249 /* Copy back decrypted block */
250 m_copyback(m, k, blks, blk);
251
252 /* Advance pointer */
253 m = m_getptr(m, k + blks, &k);
254 if (m == NULL)
255 return EINVAL;
256
257 i -= blks;
258
259 /* Could be done... */
260 if (i == 0)
261 break;
262 }
263
264 /* Skip possibly empty mbufs */
265 if (k == m->m_len) {
266 for (m = m->m_next; m && m->m_len == 0;
267 m = m->m_next)
268 ;
269 k = 0;
270 }
271
272 /* Sanity check */
273 if (m == NULL)
274 return EINVAL;
275
276 /*
277 * Warning: idat may point to garbage here, but
278 * we only use it in the while() loop, only if
279 * there are indeed enough data.
280 */
281 idat = mtod(m, unsigned char *) + k;
282
283 while (m->m_len >= k + blks && i > 0) {
284 if (exf->reinit) {
285 if (crd->crd_flags & CRD_F_ENCRYPT) {
286 exf->encrypt(sw->sw_kschedule,
287 idat);
288 } else {
289 exf->decrypt(sw->sw_kschedule,
290 idat);
291 }
292 } else if (crd->crd_flags & CRD_F_ENCRYPT) {
293 /* XOR with previous block/IV */
294 for (j = 0; j < blks; j++)
295 idat[j] ^= ivp[j];
296
297 exf->encrypt(sw->sw_kschedule, idat);
298 ivp = idat;
299 } else { /* decrypt */
300 /*
301 * Keep encrypted block to be used
302 * in next block's processing.
303 */
304 if (ivp == iv)
305 memcpy(piv, idat, blks);
306 else
307 memcpy(iv, idat, blks);
308
309 exf->decrypt(sw->sw_kschedule, idat);
310
311 /* XOR with previous block/IV */
312 for (j = 0; j < blks; j++)
313 idat[j] ^= ivp[j];
314
315 if (ivp == iv)
316 memcpy(iv, piv, blks);
317 else
318 ivp = iv;
319 }
320
321 idat += blks;
322 k += blks;
323 i -= blks;
324 }
325 }
326
327 return 0; /* Done with mbuf encryption/decryption */
328 } else if (outtype == CRYPTO_BUF_IOV) {
329 struct uio *uio = (struct uio *) buf;
330
331 /* Find beginning of data */
332 count = crd->crd_skip;
333 ind = cuio_getptr(uio, count, &k);
334 if (ind == -1)
335 return EINVAL;
336
337 i = crd->crd_len;
338
339 while (i > 0) {
340 /*
341 * If there's insufficient data at the end,
342 * we have to do some copying.
343 */
344 if (uio->uio_iov[ind].iov_len < k + blks &&
345 uio->uio_iov[ind].iov_len != k) {
346 cuio_copydata(uio, k, blks, blk);
347
348 /* Actual encryption/decryption */
349 if (exf->reinit) {
350 if (crd->crd_flags & CRD_F_ENCRYPT) {
351 exf->encrypt(sw->sw_kschedule,
352 blk);
353 } else {
354 exf->decrypt(sw->sw_kschedule,
355 blk);
356 }
357 } else if (crd->crd_flags & CRD_F_ENCRYPT) {
358 /* XOR with previous block */
359 for (j = 0; j < blks; j++)
360 blk[j] ^= ivp[j];
361
362 exf->encrypt(sw->sw_kschedule, blk);
363
364 /*
365 * Keep encrypted block for XOR'ing
366 * with next block
367 */
368 memcpy(iv, blk, blks);
369 ivp = iv;
370 } else { /* decrypt */
371 /*
372 * Keep encrypted block for XOR'ing
373 * with next block
374 */
375 if (ivp == iv)
376 memcpy(piv, blk, blks);
377 else
378 memcpy(iv, blk, blks);
379
380 exf->decrypt(sw->sw_kschedule, blk);
381
382 /* XOR with previous block */
383 for (j = 0; j < blks; j++)
384 blk[j] ^= ivp[j];
385
386 if (ivp == iv)
387 memcpy(iv, piv, blks);
388 else
389 ivp = iv;
390 }
391
392 /* Copy back decrypted block */
393 cuio_copyback(uio, k, blks, blk);
394
395 count += blks;
396
397 /* Advance pointer */
398 ind = cuio_getptr(uio, count, &k);
399 if (ind == -1)
400 return (EINVAL);
401
402 i -= blks;
403
404 /* Could be done... */
405 if (i == 0)
406 break;
407 }
408
409 /*
410 * Warning: idat may point to garbage here, but
411 * we only use it in the while() loop, only if
412 * there are indeed enough data.
413 */
414 idat = ((char *)uio->uio_iov[ind].iov_base) + k;
415
416 while (uio->uio_iov[ind].iov_len >= k + blks &&
417 i > 0) {
418 if (exf->reinit) {
419 if (crd->crd_flags & CRD_F_ENCRYPT) {
420 exf->encrypt(sw->sw_kschedule,
421 idat);
422 } else {
423 exf->decrypt(sw->sw_kschedule,
424 idat);
425 }
426 } else if (crd->crd_flags & CRD_F_ENCRYPT) {
427 /* XOR with previous block/IV */
428 for (j = 0; j < blks; j++)
429 idat[j] ^= ivp[j];
430
431 exf->encrypt(sw->sw_kschedule, idat);
432 ivp = idat;
433 } else { /* decrypt */
434 /*
435 * Keep encrypted block to be used
436 * in next block's processing.
437 */
438 if (ivp == iv)
439 memcpy(piv, idat, blks);
440 else
441 memcpy(iv, idat, blks);
442
443 exf->decrypt(sw->sw_kschedule, idat);
444
445 /* XOR with previous block/IV */
446 for (j = 0; j < blks; j++)
447 idat[j] ^= ivp[j];
448
449 if (ivp == iv)
450 memcpy(iv, piv, blks);
451 else
452 ivp = iv;
453 }
454
455 idat += blks;
456 count += blks;
457 k += blks;
458 i -= blks;
459 }
460 }
461 return 0; /* Done with mbuf encryption/decryption */
462 }
463
464 /* Unreachable */
465 return EINVAL;
466 }
467
468 /*
469 * Compute keyed-hash authenticator.
470 */
471 int
472 swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
473 const struct swcr_data *sw, void *buf, int outtype)
474 {
475 unsigned char aalg[AALG_MAX_RESULT_LEN];
476 const struct swcr_auth_hash *axf;
477 union authctx ctx;
478 int err;
479
480 if (sw->sw_ictx == 0)
481 return EINVAL;
482
483 axf = sw->sw_axf;
484
485 memcpy(&ctx, sw->sw_ictx, axf->ctxsize);
486
487 switch (outtype) {
488 case CRYPTO_BUF_CONTIG:
489 axf->Update(&ctx, (char *)buf + crd->crd_skip, crd->crd_len);
490 break;
491 case CRYPTO_BUF_MBUF:
492 err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
493 (int (*)(void*, void *, unsigned int)) axf->Update,
494 (void *) &ctx);
495 if (err)
496 return err;
497 break;
498 case CRYPTO_BUF_IOV:
499 err = cuio_apply((struct uio *) buf, crd->crd_skip,
500 crd->crd_len,
501 (int (*)(void *, void *, unsigned int)) axf->Update,
502 (void *) &ctx);
503 if (err) {
504 return err;
505 }
506 break;
507 default:
508 return EINVAL;
509 }
510
511 switch (sw->sw_alg) {
512 case CRYPTO_MD5_HMAC:
513 case CRYPTO_MD5_HMAC_96:
514 case CRYPTO_SHA1_HMAC:
515 case CRYPTO_SHA1_HMAC_96:
516 case CRYPTO_SHA2_256_HMAC:
517 case CRYPTO_SHA2_384_HMAC:
518 case CRYPTO_SHA2_512_HMAC:
519 case CRYPTO_RIPEMD160_HMAC:
520 case CRYPTO_RIPEMD160_HMAC_96:
521 if (sw->sw_octx == NULL)
522 return EINVAL;
523
524 axf->Final(aalg, &ctx);
525 memcpy(&ctx, sw->sw_octx, axf->ctxsize);
526 axf->Update(&ctx, aalg, axf->auth_hash->hashsize);
527 axf->Final(aalg, &ctx);
528 break;
529
530 case CRYPTO_MD5_KPDK:
531 case CRYPTO_SHA1_KPDK:
532 if (sw->sw_octx == NULL)
533 return EINVAL;
534
535 axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
536 axf->Final(aalg, &ctx);
537 break;
538
539 case CRYPTO_NULL_HMAC:
540 case CRYPTO_MD5:
541 case CRYPTO_SHA1:
542 case CRYPTO_AES_XCBC_MAC_96:
543 axf->Final(aalg, &ctx);
544 break;
545 }
546
547 /* Inject the authentication data */
548 switch (outtype) {
549 case CRYPTO_BUF_CONTIG:
550 (void)memcpy((char *)buf + crd->crd_inject, aalg,
551 axf->auth_hash->authsize);
552 break;
553 case CRYPTO_BUF_MBUF:
554 m_copyback((struct mbuf *) buf, crd->crd_inject,
555 axf->auth_hash->authsize, aalg);
556 break;
557 case CRYPTO_BUF_IOV:
558 memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
559 break;
560 default:
561 return EINVAL;
562 }
563 return 0;
564 }
565
566 /*
567 * Apply a combined encryption-authentication transformation
568 */
569 static int
570 swcr_combined(struct cryptop *crp, int outtype)
571 {
572 uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))];
573 u_char *blk = (u_char *)blkbuf;
574 u_char aalg[AALG_MAX_RESULT_LEN];
575 u_char iv[EALG_MAX_BLOCK_LEN];
576 union authctx ctx;
577 struct cryptodesc *crd, *crda = NULL, *crde = NULL;
578 struct swcr_data *sw, *swa, *swe = NULL;
579 const struct swcr_auth_hash *axf = NULL;
580 const struct swcr_enc_xform *exf = NULL;
581 void *buf = (void *)crp->crp_buf;
582 uint32_t *blkp;
583 int i, blksz = 0, ivlen = 0, len;
584
585 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
586 for (sw = swcr_sessions[crp->crp_sid & 0xffffffff];
587 sw && sw->sw_alg != crd->crd_alg;
588 sw = sw->sw_next)
589 ;
590 if (sw == NULL)
591 return (EINVAL);
592
593 switch (sw->sw_alg) {
594 case CRYPTO_AES_GCM_16:
595 case CRYPTO_AES_GMAC:
596 swe = sw;
597 crde = crd;
598 exf = swe->sw_exf;
599 ivlen = exf->enc_xform->ivsize;
600 break;
601 case CRYPTO_AES_128_GMAC:
602 case CRYPTO_AES_192_GMAC:
603 case CRYPTO_AES_256_GMAC:
604 swa = sw;
605 crda = crd;
606 axf = swa->sw_axf;
607 if (swa->sw_ictx == 0)
608 return (EINVAL);
609 memcpy(&ctx, swa->sw_ictx, axf->ctxsize);
610 blksz = axf->auth_hash->blocksize;
611 break;
612 default:
613 return (EINVAL);
614 }
615 }
616 if (crde == NULL || crda == NULL)
617 return (EINVAL);
618 if (outtype == CRYPTO_BUF_CONTIG)
619 return (EINVAL);
620
621 /* Initialize the IV */
622 if (crde->crd_flags & CRD_F_ENCRYPT) {
623 /* IV explicitly provided ? */
624 if (crde->crd_flags & CRD_F_IV_EXPLICIT) {
625 memcpy(iv, crde->crd_iv, ivlen);
626 if (exf->reinit)
627 exf->reinit(swe->sw_kschedule, iv, 0);
628 } else if (exf->reinit)
629 exf->reinit(swe->sw_kschedule, 0, iv);
630 else
631 arc4randbytes(iv, ivlen);
632
633 /* Do we need to write the IV */
634 if (!(crde->crd_flags & CRD_F_IV_PRESENT))
635 COPYBACK(outtype, buf, crde->crd_inject, ivlen, iv);
636
637 } else { /* Decryption */
638 /* IV explicitly provided ? */
639 if (crde->crd_flags & CRD_F_IV_EXPLICIT)
640 memcpy(iv, crde->crd_iv, ivlen);
641 else {
642 /* Get IV off buf */
643 COPYDATA(outtype, buf, crde->crd_inject, ivlen, iv);
644 }
645 if (exf->reinit)
646 exf->reinit(swe->sw_kschedule, iv, 0);
647 }
648
649 /* Supply MAC with IV */
650 if (axf->Reinit)
651 axf->Reinit(&ctx, iv, ivlen);
652
653 /* Supply MAC with AAD */
654 for (i = 0; i < crda->crd_len; i += blksz) {
655 len = MIN(crda->crd_len - i, blksz);
656 COPYDATA(outtype, buf, crda->crd_skip + i, len, blk);
657 axf->Update(&ctx, blk, len);
658 }
659
660 /* Do encryption/decryption with MAC */
661 for (i = 0; i < crde->crd_len; i += blksz) {
662 len = MIN(crde->crd_len - i, blksz);
663 if (len < blksz)
664 memset(blk, 0, blksz);
665 COPYDATA(outtype, buf, crde->crd_skip + i, len, blk);
666 if (crde->crd_flags & CRD_F_ENCRYPT) {
667 exf->encrypt(swe->sw_kschedule, blk);
668 axf->Update(&ctx, blk, len);
669 } else {
670 axf->Update(&ctx, blk, len);
671 exf->decrypt(swe->sw_kschedule, blk);
672 }
673 COPYBACK(outtype, buf, crde->crd_skip + i, len, blk);
674 }
675
676 /* Do any required special finalization */
677 switch (crda->crd_alg) {
678 case CRYPTO_AES_128_GMAC:
679 case CRYPTO_AES_192_GMAC:
680 case CRYPTO_AES_256_GMAC:
681 /* length block */
682 memset(blk, 0, blksz);
683 blkp = (uint32_t *)blk + 1;
684 *blkp = htobe32(crda->crd_len * 8);
685 blkp = (uint32_t *)blk + 3;
686 *blkp = htobe32(crde->crd_len * 8);
687 axf->Update(&ctx, blk, blksz);
688 break;
689 }
690
691 /* Finalize MAC */
692 axf->Final(aalg, &ctx);
693
694 /* Inject the authentication data */
695 if (outtype == CRYPTO_BUF_MBUF)
696 COPYBACK(outtype, buf, crda->crd_inject, axf->auth_hash->authsize, aalg);
697 else
698 memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
699
700 return (0);
701 }
702
703 /*
704 * Apply a compression/decompression algorithm
705 */
706 static int
707 swcr_compdec(struct cryptodesc *crd, const struct swcr_data *sw,
708 void *buf, int outtype, int *res_size)
709 {
710 u_int8_t *data, *out;
711 const struct swcr_comp_algo *cxf;
712 int adj;
713 u_int32_t result;
714
715 cxf = sw->sw_cxf;
716
717 /* We must handle the whole buffer of data in one time
718 * then if there is not all the data in the mbuf, we must
719 * copy in a buffer.
720 */
721
722 data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
723 if (data == NULL)
724 return (EINVAL);
725 COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
726
727 if (crd->crd_flags & CRD_F_COMP)
728 result = cxf->compress(data, crd->crd_len, &out);
729 else
730 result = cxf->decompress(data, crd->crd_len, &out,
731 *res_size);
732
733 free(data, M_CRYPTO_DATA);
734 if (result == 0)
735 return EINVAL;
736
737 /* Copy back the (de)compressed data. m_copyback is
738 * extending the mbuf as necessary.
739 */
740 *res_size = (int)result;
741 /* Check the compressed size when doing compression */
742 if (crd->crd_flags & CRD_F_COMP &&
743 sw->sw_alg == CRYPTO_DEFLATE_COMP_NOGROW &&
744 result >= crd->crd_len) {
745 /* Compression was useless, we lost time */
746 free(out, M_CRYPTO_DATA);
747 return 0;
748 }
749
750 COPYBACK(outtype, buf, crd->crd_skip, result, out);
751 if (result < crd->crd_len) {
752 adj = result - crd->crd_len;
753 if (outtype == CRYPTO_BUF_MBUF) {
754 adj = result - crd->crd_len;
755 m_adj((struct mbuf *)buf, adj);
756 }
757 /* Don't adjust the iov_len, it breaks the kmem_free */
758 }
759 free(out, M_CRYPTO_DATA);
760 return 0;
761 }
762
763 /*
764 * Generate a new software session.
765 */
766 static int
767 swcr_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
768 {
769 struct swcr_data **swd;
770 const struct swcr_auth_hash *axf;
771 const struct swcr_enc_xform *txf;
772 const struct swcr_comp_algo *cxf;
773 u_int32_t i;
774 int k, error;
775
776 if (sid == NULL || cri == NULL)
777 return EINVAL;
778
779 if (swcr_sessions) {
780 for (i = 1; i < swcr_sesnum; i++)
781 if (swcr_sessions[i] == NULL)
782 break;
783 } else
784 i = 1; /* NB: to silence compiler warning */
785
786 if (swcr_sessions == NULL || i == swcr_sesnum) {
787 if (swcr_sessions == NULL) {
788 i = 1; /* We leave swcr_sessions[0] empty */
789 swcr_sesnum = CRYPTO_SW_SESSIONS;
790 } else
791 swcr_sesnum *= 2;
792
793 swd = malloc(swcr_sesnum * sizeof(struct swcr_data *),
794 M_CRYPTO_DATA, M_NOWAIT);
795 if (swd == NULL) {
796 /* Reset session number */
797 if (swcr_sesnum == CRYPTO_SW_SESSIONS)
798 swcr_sesnum = 0;
799 else
800 swcr_sesnum /= 2;
801 return ENOBUFS;
802 }
803
804 memset(swd, 0, swcr_sesnum * sizeof(struct swcr_data *));
805
806 /* Copy existing sessions */
807 if (swcr_sessions) {
808 memcpy(swd, swcr_sessions,
809 (swcr_sesnum / 2) * sizeof(struct swcr_data *));
810 free(swcr_sessions, M_CRYPTO_DATA);
811 }
812
813 swcr_sessions = swd;
814 }
815
816 swd = &swcr_sessions[i];
817 *sid = i;
818
819 while (cri) {
820 *swd = malloc(sizeof **swd, M_CRYPTO_DATA, M_NOWAIT);
821 if (*swd == NULL) {
822 swcr_freesession(NULL, i);
823 return ENOBUFS;
824 }
825 memset(*swd, 0, sizeof(struct swcr_data));
826
827 switch (cri->cri_alg) {
828 case CRYPTO_DES_CBC:
829 txf = &swcr_enc_xform_des;
830 goto enccommon;
831 case CRYPTO_3DES_CBC:
832 txf = &swcr_enc_xform_3des;
833 goto enccommon;
834 case CRYPTO_BLF_CBC:
835 txf = &swcr_enc_xform_blf;
836 goto enccommon;
837 case CRYPTO_CAST_CBC:
838 txf = &swcr_enc_xform_cast5;
839 goto enccommon;
840 case CRYPTO_SKIPJACK_CBC:
841 txf = &swcr_enc_xform_skipjack;
842 goto enccommon;
843 case CRYPTO_RIJNDAEL128_CBC:
844 txf = &swcr_enc_xform_rijndael128;
845 goto enccommon;
846 case CRYPTO_CAMELLIA_CBC:
847 txf = &swcr_enc_xform_camellia;
848 goto enccommon;
849 case CRYPTO_AES_CTR:
850 txf = &swcr_enc_xform_aes_ctr;
851 goto enccommon;
852 case CRYPTO_AES_GCM_16:
853 txf = &swcr_enc_xform_aes_gcm;
854 goto enccommon;
855 case CRYPTO_AES_GMAC:
856 txf = &swcr_enc_xform_aes_gmac;
857 goto enccommon;
858 case CRYPTO_NULL_CBC:
859 txf = &swcr_enc_xform_null;
860 goto enccommon;
861 enccommon:
862 error = txf->setkey(&((*swd)->sw_kschedule),
863 cri->cri_key, cri->cri_klen / 8);
864 if (error) {
865 swcr_freesession(NULL, i);
866 return error;
867 }
868 (*swd)->sw_exf = txf;
869 break;
870
871 case CRYPTO_MD5_HMAC:
872 axf = &swcr_auth_hash_hmac_md5;
873 goto authcommon;
874 case CRYPTO_MD5_HMAC_96:
875 axf = &swcr_auth_hash_hmac_md5_96;
876 goto authcommon;
877 case CRYPTO_SHA1_HMAC:
878 axf = &swcr_auth_hash_hmac_sha1;
879 goto authcommon;
880 case CRYPTO_SHA1_HMAC_96:
881 axf = &swcr_auth_hash_hmac_sha1_96;
882 goto authcommon;
883 case CRYPTO_SHA2_256_HMAC:
884 axf = &swcr_auth_hash_hmac_sha2_256;
885 goto authcommon;
886 case CRYPTO_SHA2_384_HMAC:
887 axf = &swcr_auth_hash_hmac_sha2_384;
888 goto authcommon;
889 case CRYPTO_SHA2_512_HMAC:
890 axf = &swcr_auth_hash_hmac_sha2_512;
891 goto authcommon;
892 case CRYPTO_NULL_HMAC:
893 axf = &swcr_auth_hash_null;
894 goto authcommon;
895 case CRYPTO_RIPEMD160_HMAC:
896 axf = &swcr_auth_hash_hmac_ripemd_160;
897 goto authcommon;
898 case CRYPTO_RIPEMD160_HMAC_96:
899 axf = &swcr_auth_hash_hmac_ripemd_160_96;
900 goto authcommon; /* leave this for safety */
901 authcommon:
902 (*swd)->sw_ictx = malloc(axf->ctxsize,
903 M_CRYPTO_DATA, M_NOWAIT);
904 if ((*swd)->sw_ictx == NULL) {
905 swcr_freesession(NULL, i);
906 return ENOBUFS;
907 }
908
909 (*swd)->sw_octx = malloc(axf->ctxsize,
910 M_CRYPTO_DATA, M_NOWAIT);
911 if ((*swd)->sw_octx == NULL) {
912 swcr_freesession(NULL, i);
913 return ENOBUFS;
914 }
915
916 for (k = 0; k < cri->cri_klen / 8; k++)
917 cri->cri_key[k] ^= HMAC_IPAD_VAL;
918
919 axf->Init((*swd)->sw_ictx);
920 axf->Update((*swd)->sw_ictx, cri->cri_key,
921 cri->cri_klen / 8);
922 axf->Update((*swd)->sw_ictx, hmac_ipad_buffer,
923 axf->auth_hash->blocksize - (cri->cri_klen / 8));
924
925 for (k = 0; k < cri->cri_klen / 8; k++)
926 cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
927
928 axf->Init((*swd)->sw_octx);
929 axf->Update((*swd)->sw_octx, cri->cri_key,
930 cri->cri_klen / 8);
931 axf->Update((*swd)->sw_octx, hmac_opad_buffer,
932 axf->auth_hash->blocksize - (cri->cri_klen / 8));
933
934 for (k = 0; k < cri->cri_klen / 8; k++)
935 cri->cri_key[k] ^= HMAC_OPAD_VAL;
936 (*swd)->sw_axf = axf;
937 break;
938
939 case CRYPTO_MD5_KPDK:
940 axf = &swcr_auth_hash_key_md5;
941 goto auth2common;
942
943 case CRYPTO_SHA1_KPDK:
944 axf = &swcr_auth_hash_key_sha1;
945 auth2common:
946 (*swd)->sw_ictx = malloc(axf->ctxsize,
947 M_CRYPTO_DATA, M_NOWAIT);
948 if ((*swd)->sw_ictx == NULL) {
949 swcr_freesession(NULL, i);
950 return ENOBUFS;
951 }
952
953 /* Store the key so we can "append" it to the payload */
954 (*swd)->sw_octx = malloc(cri->cri_klen / 8, M_CRYPTO_DATA,
955 M_NOWAIT);
956 if ((*swd)->sw_octx == NULL) {
957 swcr_freesession(NULL, i);
958 return ENOBUFS;
959 }
960
961 (*swd)->sw_klen = cri->cri_klen / 8;
962 memcpy((*swd)->sw_octx, cri->cri_key, cri->cri_klen / 8);
963 axf->Init((*swd)->sw_ictx);
964 axf->Update((*swd)->sw_ictx, cri->cri_key,
965 cri->cri_klen / 8);
966 axf->Final(NULL, (*swd)->sw_ictx);
967 (*swd)->sw_axf = axf;
968 break;
969
970 case CRYPTO_MD5:
971 axf = &swcr_auth_hash_md5;
972 goto auth3common;
973
974 case CRYPTO_SHA1:
975 axf = &swcr_auth_hash_sha1;
976 auth3common:
977 (*swd)->sw_ictx = malloc(axf->ctxsize,
978 M_CRYPTO_DATA, M_NOWAIT);
979 if ((*swd)->sw_ictx == NULL) {
980 swcr_freesession(NULL, i);
981 return ENOBUFS;
982 }
983
984 axf->Init((*swd)->sw_ictx);
985 (*swd)->sw_axf = axf;
986 break;
987
988 case CRYPTO_AES_XCBC_MAC_96:
989 axf = &swcr_auth_hash_aes_xcbc_mac;
990 goto auth4common;
991 case CRYPTO_AES_128_GMAC:
992 axf = &swcr_auth_hash_gmac_aes_128;
993 goto auth4common;
994 case CRYPTO_AES_192_GMAC:
995 axf = &swcr_auth_hash_gmac_aes_192;
996 goto auth4common;
997 case CRYPTO_AES_256_GMAC:
998 axf = &swcr_auth_hash_gmac_aes_256;
999 auth4common:
1000 (*swd)->sw_ictx = malloc(axf->ctxsize,
1001 M_CRYPTO_DATA, M_NOWAIT);
1002 if ((*swd)->sw_ictx == NULL) {
1003 swcr_freesession(NULL, i);
1004 return ENOBUFS;
1005 }
1006 axf->Init((*swd)->sw_ictx);
1007 axf->Setkey((*swd)->sw_ictx,
1008 cri->cri_key, cri->cri_klen / 8);
1009 (*swd)->sw_axf = axf;
1010 break;
1011
1012 case CRYPTO_DEFLATE_COMP:
1013 cxf = &swcr_comp_algo_deflate;
1014 (*swd)->sw_cxf = cxf;
1015 break;
1016
1017 case CRYPTO_DEFLATE_COMP_NOGROW:
1018 cxf = &swcr_comp_algo_deflate_nogrow;
1019 (*swd)->sw_cxf = cxf;
1020 break;
1021
1022 case CRYPTO_GZIP_COMP:
1023 cxf = &swcr_comp_algo_gzip;
1024 (*swd)->sw_cxf = cxf;
1025 break;
1026 default:
1027 swcr_freesession(NULL, i);
1028 return EINVAL;
1029 }
1030
1031 (*swd)->sw_alg = cri->cri_alg;
1032 cri = cri->cri_next;
1033 swd = &((*swd)->sw_next);
1034 }
1035 return 0;
1036 }
1037
1038 /*
1039 * Free a session.
1040 */
1041 static int
1042 swcr_freesession(void *arg, u_int64_t tid)
1043 {
1044 struct swcr_data *swd;
1045 const struct swcr_enc_xform *txf;
1046 const struct swcr_auth_hash *axf;
1047 const struct swcr_comp_algo *cxf;
1048 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1049
1050 if (sid > swcr_sesnum || swcr_sessions == NULL ||
1051 swcr_sessions[sid] == NULL)
1052 return EINVAL;
1053
1054 /* Silently accept and return */
1055 if (sid == 0)
1056 return 0;
1057
1058 while ((swd = swcr_sessions[sid]) != NULL) {
1059 swcr_sessions[sid] = swd->sw_next;
1060
1061 switch (swd->sw_alg) {
1062 case CRYPTO_DES_CBC:
1063 case CRYPTO_3DES_CBC:
1064 case CRYPTO_BLF_CBC:
1065 case CRYPTO_CAST_CBC:
1066 case CRYPTO_SKIPJACK_CBC:
1067 case CRYPTO_RIJNDAEL128_CBC:
1068 case CRYPTO_CAMELLIA_CBC:
1069 case CRYPTO_AES_CTR:
1070 case CRYPTO_AES_GCM_16:
1071 case CRYPTO_AES_GMAC:
1072 case CRYPTO_NULL_CBC:
1073 txf = swd->sw_exf;
1074
1075 if (swd->sw_kschedule)
1076 txf->zerokey(&(swd->sw_kschedule));
1077 break;
1078
1079 case CRYPTO_MD5_HMAC:
1080 case CRYPTO_MD5_HMAC_96:
1081 case CRYPTO_SHA1_HMAC:
1082 case CRYPTO_SHA1_HMAC_96:
1083 case CRYPTO_SHA2_256_HMAC:
1084 case CRYPTO_SHA2_384_HMAC:
1085 case CRYPTO_SHA2_512_HMAC:
1086 case CRYPTO_RIPEMD160_HMAC:
1087 case CRYPTO_RIPEMD160_HMAC_96:
1088 case CRYPTO_NULL_HMAC:
1089 axf = swd->sw_axf;
1090
1091 if (swd->sw_ictx) {
1092 memset(swd->sw_ictx, 0, axf->ctxsize);
1093 free(swd->sw_ictx, M_CRYPTO_DATA);
1094 }
1095 if (swd->sw_octx) {
1096 memset(swd->sw_octx, 0, axf->ctxsize);
1097 free(swd->sw_octx, M_CRYPTO_DATA);
1098 }
1099 break;
1100
1101 case CRYPTO_MD5_KPDK:
1102 case CRYPTO_SHA1_KPDK:
1103 axf = swd->sw_axf;
1104
1105 if (swd->sw_ictx) {
1106 memset(swd->sw_ictx, 0, axf->ctxsize);
1107 free(swd->sw_ictx, M_CRYPTO_DATA);
1108 }
1109 if (swd->sw_octx) {
1110 memset(swd->sw_octx, 0, swd->sw_klen);
1111 free(swd->sw_octx, M_CRYPTO_DATA);
1112 }
1113 break;
1114
1115 case CRYPTO_MD5:
1116 case CRYPTO_SHA1:
1117 case CRYPTO_AES_XCBC_MAC_96:
1118 case CRYPTO_AES_128_GMAC:
1119 case CRYPTO_AES_192_GMAC:
1120 case CRYPTO_AES_256_GMAC:
1121 axf = swd->sw_axf;
1122
1123 if (swd->sw_ictx)
1124 free(swd->sw_ictx, M_CRYPTO_DATA);
1125 break;
1126
1127 case CRYPTO_DEFLATE_COMP:
1128 case CRYPTO_DEFLATE_COMP_NOGROW:
1129 case CRYPTO_GZIP_COMP:
1130 cxf = swd->sw_cxf;
1131 break;
1132 }
1133
1134 free(swd, M_CRYPTO_DATA);
1135 }
1136 return 0;
1137 }
1138
1139 /*
1140 * Process a software request.
1141 */
1142 static int
1143 swcr_process(void *arg, struct cryptop *crp, int hint)
1144 {
1145 struct cryptodesc *crd;
1146 struct swcr_data *sw;
1147 u_int32_t lid;
1148 int type;
1149
1150 /* Sanity check */
1151 if (crp == NULL)
1152 return EINVAL;
1153
1154 if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
1155 crp->crp_etype = EINVAL;
1156 goto done;
1157 }
1158
1159 lid = crp->crp_sid & 0xffffffff;
1160 if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
1161 crp->crp_etype = ENOENT;
1162 goto done;
1163 }
1164
1165 if (crp->crp_flags & CRYPTO_F_IMBUF) {
1166 type = CRYPTO_BUF_MBUF;
1167 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1168 type = CRYPTO_BUF_IOV;
1169 } else {
1170 type = CRYPTO_BUF_CONTIG;
1171 }
1172
1173 /* Go through crypto descriptors, processing as we go */
1174 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1175 /*
1176 * Find the crypto context.
1177 *
1178 * XXX Note that the logic here prevents us from having
1179 * XXX the same algorithm multiple times in a session
1180 * XXX (or rather, we can but it won't give us the right
1181 * XXX results). To do that, we'd need some way of differentiating
1182 * XXX between the various instances of an algorithm (so we can
1183 * XXX locate the correct crypto context).
1184 */
1185 for (sw = swcr_sessions[lid];
1186 sw && sw->sw_alg != crd->crd_alg;
1187 sw = sw->sw_next)
1188 ;
1189
1190 /* No such context ? */
1191 if (sw == NULL) {
1192 crp->crp_etype = EINVAL;
1193 goto done;
1194 }
1195
1196 switch (sw->sw_alg) {
1197 case CRYPTO_DES_CBC:
1198 case CRYPTO_3DES_CBC:
1199 case CRYPTO_BLF_CBC:
1200 case CRYPTO_CAST_CBC:
1201 case CRYPTO_SKIPJACK_CBC:
1202 case CRYPTO_RIJNDAEL128_CBC:
1203 case CRYPTO_CAMELLIA_CBC:
1204 case CRYPTO_AES_CTR:
1205 if ((crp->crp_etype = swcr_encdec(crd, sw,
1206 crp->crp_buf, type)) != 0)
1207 goto done;
1208 break;
1209 case CRYPTO_NULL_CBC:
1210 crp->crp_etype = 0;
1211 break;
1212 case CRYPTO_MD5_HMAC:
1213 case CRYPTO_MD5_HMAC_96:
1214 case CRYPTO_SHA1_HMAC:
1215 case CRYPTO_SHA1_HMAC_96:
1216 case CRYPTO_SHA2_256_HMAC:
1217 case CRYPTO_SHA2_384_HMAC:
1218 case CRYPTO_SHA2_512_HMAC:
1219 case CRYPTO_RIPEMD160_HMAC:
1220 case CRYPTO_RIPEMD160_HMAC_96:
1221 case CRYPTO_NULL_HMAC:
1222 case CRYPTO_MD5_KPDK:
1223 case CRYPTO_SHA1_KPDK:
1224 case CRYPTO_MD5:
1225 case CRYPTO_SHA1:
1226 case CRYPTO_AES_XCBC_MAC_96:
1227 if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
1228 crp->crp_buf, type)) != 0)
1229 goto done;
1230 break;
1231
1232 case CRYPTO_AES_GCM_16:
1233 case CRYPTO_AES_GMAC:
1234 case CRYPTO_AES_128_GMAC:
1235 case CRYPTO_AES_192_GMAC:
1236 case CRYPTO_AES_256_GMAC:
1237 crp->crp_etype = swcr_combined(crp, type);
1238 goto done;
1239
1240 case CRYPTO_DEFLATE_COMP:
1241 case CRYPTO_DEFLATE_COMP_NOGROW:
1242 case CRYPTO_GZIP_COMP:
1243 DPRINTF(("swcr_process: compdec for %d\n", sw->sw_alg));
1244 if ((crp->crp_etype = swcr_compdec(crd, sw,
1245 crp->crp_buf, type, &crp->crp_olen)) != 0)
1246 goto done;
1247 break;
1248
1249 default:
1250 /* Unknown/unsupported algorithm */
1251 crp->crp_etype = EINVAL;
1252 goto done;
1253 }
1254 }
1255
1256 done:
1257 DPRINTF(("request %p done\n", crp));
1258 crypto_done(crp);
1259 return 0;
1260 }
1261
1262 static void
1263 swcr_init(void)
1264 {
1265 swcr_id = crypto_get_driverid(CRYPTOCAP_F_SOFTWARE);
1266 if (swcr_id < 0) {
1267 /* This should never happen */
1268 panic("Software crypto device cannot initialize!");
1269 }
1270
1271 crypto_register(swcr_id, CRYPTO_DES_CBC,
1272 0, 0, swcr_newsession, swcr_freesession, swcr_process, NULL);
1273 #define REGISTER(alg) \
1274 crypto_register(swcr_id, alg, 0, 0, NULL, NULL, NULL, NULL)
1275
1276 REGISTER(CRYPTO_3DES_CBC);
1277 REGISTER(CRYPTO_BLF_CBC);
1278 REGISTER(CRYPTO_CAST_CBC);
1279 REGISTER(CRYPTO_SKIPJACK_CBC);
1280 REGISTER(CRYPTO_CAMELLIA_CBC);
1281 REGISTER(CRYPTO_AES_CTR);
1282 REGISTER(CRYPTO_AES_GCM_16);
1283 REGISTER(CRYPTO_AES_GMAC);
1284 REGISTER(CRYPTO_NULL_CBC);
1285 REGISTER(CRYPTO_MD5_HMAC);
1286 REGISTER(CRYPTO_MD5_HMAC_96);
1287 REGISTER(CRYPTO_SHA1_HMAC);
1288 REGISTER(CRYPTO_SHA1_HMAC_96);
1289 REGISTER(CRYPTO_SHA2_256_HMAC);
1290 REGISTER(CRYPTO_SHA2_384_HMAC);
1291 REGISTER(CRYPTO_SHA2_512_HMAC);
1292 REGISTER(CRYPTO_RIPEMD160_HMAC);
1293 REGISTER(CRYPTO_RIPEMD160_HMAC_96);
1294 REGISTER(CRYPTO_NULL_HMAC);
1295 REGISTER(CRYPTO_MD5_KPDK);
1296 REGISTER(CRYPTO_SHA1_KPDK);
1297 REGISTER(CRYPTO_MD5);
1298 REGISTER(CRYPTO_SHA1);
1299 REGISTER(CRYPTO_AES_XCBC_MAC_96);
1300 REGISTER(CRYPTO_AES_128_GMAC);
1301 REGISTER(CRYPTO_AES_192_GMAC);
1302 REGISTER(CRYPTO_AES_256_GMAC);
1303 REGISTER(CRYPTO_RIJNDAEL128_CBC);
1304 REGISTER(CRYPTO_DEFLATE_COMP);
1305 REGISTER(CRYPTO_DEFLATE_COMP_NOGROW);
1306 REGISTER(CRYPTO_GZIP_COMP);
1307 #undef REGISTER
1308 }
1309
1310
1311 /*
1312 * Pseudo-device init routine for software crypto.
1313 */
1314 void swcryptoattach(int);
1315
1316 void
1317 swcryptoattach(int num)
1318 {
1319
1320 swcr_init();
1321 }
1322