cryptosoft.c revision 1.56 1 /* $NetBSD: cryptosoft.c,v 1.56 2020/06/29 23:34:48 riastradh Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.2.2.1 2002/11/21 23:34:23 sam Exp $ */
3 /* $OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $ */
4
5 /*
6 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
7 *
8 * This code was written by Angelos D. Keromytis in Athens, Greece, in
9 * February 2000. Network Security Technologies Inc. (NSTI) kindly
10 * supported the development of this code.
11 *
12 * Copyright (c) 2000, 2001 Angelos D. Keromytis
13 *
14 * Permission to use, copy, and modify this software with or without fee
15 * is hereby granted, provided that this entire notice is included in
16 * all source code copies of any software which is or includes a copy or
17 * modification of this software.
18 *
19 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
20 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
21 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
22 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
23 * PURPOSE.
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: cryptosoft.c,v 1.56 2020/06/29 23:34:48 riastradh Exp $");
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/malloc.h>
32 #include <sys/mbuf.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
35 #include <sys/cprng.h>
36 #include <sys/module.h>
37 #include <sys/device.h>
38
39 #ifdef _KERNEL_OPT
40 #include "opt_ocf.h"
41 #endif
42
43 #include <opencrypto/cryptodev.h>
44 #include <opencrypto/cryptosoft.h>
45 #include <opencrypto/xform.h>
46
47 #include <opencrypto/cryptosoft_xform.c>
48
49 #include "ioconf.h"
50
51 union authctx {
52 MD5_CTX md5ctx;
53 SHA1_CTX sha1ctx;
54 RMD160_CTX rmd160ctx;
55 SHA256_CTX sha256ctx;
56 SHA384_CTX sha384ctx;
57 SHA512_CTX sha512ctx;
58 aesxcbc_ctx aesxcbcctx;
59 AES_GMAC_CTX aesgmacctx;
60 };
61
62 struct swcr_data **swcr_sessions = NULL;
63 u_int32_t swcr_sesnum = 0;
64 int32_t swcr_id = -1;
65
66 #define COPYBACK(x, a, b, c, d) \
67 (x) == CRYPTO_BUF_MBUF ? m_copyback((struct mbuf *)a,b,c,d) \
68 : cuio_copyback((struct uio *)a,b,c,d)
69 #define COPYDATA(x, a, b, c, d) \
70 (x) == CRYPTO_BUF_MBUF ? m_copydata((struct mbuf *)a,b,c,d) \
71 : cuio_copydata((struct uio *)a,b,c,d)
72
73 static int swcr_encdec(struct cryptodesc *, const struct swcr_data *, void *, int);
74 static int swcr_compdec(struct cryptodesc *, const struct swcr_data *, void *, int, int *);
75 static int swcr_combined(struct cryptop *, int);
76 static int swcr_process(void *, struct cryptop *, int);
77 static int swcr_newsession(void *, u_int32_t *, struct cryptoini *);
78 static int swcr_freesession(void *, u_int64_t);
79
80 static int swcryptoattach_internal(void);
81
82 /*
83 * Apply a symmetric encryption/decryption algorithm.
84 */
85 static int
86 swcr_encdec(struct cryptodesc *crd, const struct swcr_data *sw, void *bufv,
87 int outtype)
88 {
89 char *buf = bufv;
90 unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
91 unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN];
92 const struct swcr_enc_xform *exf;
93 int i, k, j, blks, ivlen;
94 int count, ind;
95
96 exf = sw->sw_exf;
97 blks = exf->enc_xform->blocksize;
98 ivlen = exf->enc_xform->ivsize;
99 KASSERT(exf->reinit ? ivlen <= blks : ivlen == blks);
100
101 /* Check for non-padded data */
102 if (crd->crd_len % blks)
103 return EINVAL;
104
105 /* Initialize the IV */
106 if (crd->crd_flags & CRD_F_ENCRYPT) {
107 /* IV explicitly provided ? */
108 if (crd->crd_flags & CRD_F_IV_EXPLICIT) {
109 memcpy(iv, crd->crd_iv, ivlen);
110 if (exf->reinit)
111 exf->reinit(sw->sw_kschedule, iv, 0);
112 } else if (exf->reinit) {
113 exf->reinit(sw->sw_kschedule, 0, iv);
114 } else {
115 cprng_fast(iv, EALG_MAX_BLOCK_LEN);
116 }
117
118 /* Do we need to write the IV */
119 if (!(crd->crd_flags & CRD_F_IV_PRESENT)) {
120 COPYBACK(outtype, buf, crd->crd_inject, ivlen, iv);
121 }
122
123 } else { /* Decryption */
124 /* IV explicitly provided ? */
125 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
126 memcpy(iv, crd->crd_iv, ivlen);
127 else {
128 /* Get IV off buf */
129 COPYDATA(outtype, buf, crd->crd_inject, ivlen, iv);
130 }
131 if (exf->reinit)
132 exf->reinit(sw->sw_kschedule, iv, 0);
133 }
134
135 ivp = iv;
136
137 if (outtype == CRYPTO_BUF_CONTIG) {
138 if (exf->reinit) {
139 for (i = crd->crd_skip;
140 i < crd->crd_skip + crd->crd_len; i += blks) {
141 if (crd->crd_flags & CRD_F_ENCRYPT) {
142 exf->encrypt(sw->sw_kschedule, buf + i);
143 } else {
144 exf->decrypt(sw->sw_kschedule, buf + i);
145 }
146 }
147 } else if (crd->crd_flags & CRD_F_ENCRYPT) {
148 for (i = crd->crd_skip;
149 i < crd->crd_skip + crd->crd_len; i += blks) {
150 /* XOR with the IV/previous block, as appropriate. */
151 if (i == crd->crd_skip)
152 for (k = 0; k < blks; k++)
153 buf[i + k] ^= ivp[k];
154 else
155 for (k = 0; k < blks; k++)
156 buf[i + k] ^= buf[i + k - blks];
157 exf->encrypt(sw->sw_kschedule, buf + i);
158 }
159 } else { /* Decrypt */
160 /*
161 * Start at the end, so we don't need to keep the encrypted
162 * block as the IV for the next block.
163 */
164 for (i = crd->crd_skip + crd->crd_len - blks;
165 i >= crd->crd_skip; i -= blks) {
166 exf->decrypt(sw->sw_kschedule, buf + i);
167
168 /* XOR with the IV/previous block, as appropriate */
169 if (i == crd->crd_skip)
170 for (k = 0; k < blks; k++)
171 buf[i + k] ^= ivp[k];
172 else
173 for (k = 0; k < blks; k++)
174 buf[i + k] ^= buf[i + k - blks];
175 }
176 }
177
178 return 0;
179 } else if (outtype == CRYPTO_BUF_MBUF) {
180 struct mbuf *m = (struct mbuf *) buf;
181
182 /* Find beginning of data */
183 m = m_getptr(m, crd->crd_skip, &k);
184 if (m == NULL)
185 return EINVAL;
186
187 i = crd->crd_len;
188
189 while (i > 0) {
190 /*
191 * If there's insufficient data at the end of
192 * an mbuf, we have to do some copying.
193 */
194 if (m->m_len < k + blks && m->m_len != k) {
195 m_copydata(m, k, blks, blk);
196
197 /* Actual encryption/decryption */
198 if (exf->reinit) {
199 if (crd->crd_flags & CRD_F_ENCRYPT) {
200 exf->encrypt(sw->sw_kschedule,
201 blk);
202 } else {
203 exf->decrypt(sw->sw_kschedule,
204 blk);
205 }
206 } else if (crd->crd_flags & CRD_F_ENCRYPT) {
207 /* XOR with previous block */
208 for (j = 0; j < blks; j++)
209 blk[j] ^= ivp[j];
210
211 exf->encrypt(sw->sw_kschedule, blk);
212
213 /*
214 * Keep encrypted block for XOR'ing
215 * with next block
216 */
217 memcpy(iv, blk, blks);
218 ivp = iv;
219 } else { /* decrypt */
220 /*
221 * Keep encrypted block for XOR'ing
222 * with next block
223 */
224 if (ivp == iv)
225 memcpy(piv, blk, blks);
226 else
227 memcpy(iv, blk, blks);
228
229 exf->decrypt(sw->sw_kschedule, blk);
230
231 /* XOR with previous block */
232 for (j = 0; j < blks; j++)
233 blk[j] ^= ivp[j];
234
235 if (ivp == iv)
236 memcpy(iv, piv, blks);
237 else
238 ivp = iv;
239 }
240
241 /* Copy back decrypted block */
242 m_copyback(m, k, blks, blk);
243
244 /* Advance pointer */
245 m = m_getptr(m, k + blks, &k);
246 if (m == NULL)
247 return EINVAL;
248
249 i -= blks;
250
251 /* Could be done... */
252 if (i == 0)
253 break;
254 }
255
256 /* Skip possibly empty mbufs */
257 if (k == m->m_len) {
258 for (m = m->m_next; m && m->m_len == 0;
259 m = m->m_next)
260 ;
261 k = 0;
262 }
263
264 /* Sanity check */
265 if (m == NULL)
266 return EINVAL;
267
268 /*
269 * Warning: idat may point to garbage here, but
270 * we only use it in the while() loop, only if
271 * there are indeed enough data.
272 */
273 idat = mtod(m, unsigned char *) + k;
274
275 while (m->m_len >= k + blks && i > 0) {
276 if (exf->reinit) {
277 if (crd->crd_flags & CRD_F_ENCRYPT) {
278 exf->encrypt(sw->sw_kschedule,
279 idat);
280 } else {
281 exf->decrypt(sw->sw_kschedule,
282 idat);
283 }
284 } else if (crd->crd_flags & CRD_F_ENCRYPT) {
285 /* XOR with previous block/IV */
286 for (j = 0; j < blks; j++)
287 idat[j] ^= ivp[j];
288
289 exf->encrypt(sw->sw_kschedule, idat);
290 ivp = idat;
291 } else { /* decrypt */
292 /*
293 * Keep encrypted block to be used
294 * in next block's processing.
295 */
296 if (ivp == iv)
297 memcpy(piv, idat, blks);
298 else
299 memcpy(iv, idat, blks);
300
301 exf->decrypt(sw->sw_kschedule, idat);
302
303 /* XOR with previous block/IV */
304 for (j = 0; j < blks; j++)
305 idat[j] ^= ivp[j];
306
307 if (ivp == iv)
308 memcpy(iv, piv, blks);
309 else
310 ivp = iv;
311 }
312
313 idat += blks;
314 k += blks;
315 i -= blks;
316 }
317 }
318
319 return 0; /* Done with mbuf encryption/decryption */
320 } else if (outtype == CRYPTO_BUF_IOV) {
321 struct uio *uio = (struct uio *) buf;
322
323 /* Find beginning of data */
324 count = crd->crd_skip;
325 ind = cuio_getptr(uio, count, &k);
326 if (ind == -1)
327 return EINVAL;
328
329 i = crd->crd_len;
330
331 while (i > 0) {
332 /*
333 * If there's insufficient data at the end,
334 * we have to do some copying.
335 */
336 if (uio->uio_iov[ind].iov_len < k + blks &&
337 uio->uio_iov[ind].iov_len != k) {
338 cuio_copydata(uio, k, blks, blk);
339
340 /* Actual encryption/decryption */
341 if (exf->reinit) {
342 if (crd->crd_flags & CRD_F_ENCRYPT) {
343 exf->encrypt(sw->sw_kschedule,
344 blk);
345 } else {
346 exf->decrypt(sw->sw_kschedule,
347 blk);
348 }
349 } else if (crd->crd_flags & CRD_F_ENCRYPT) {
350 /* XOR with previous block */
351 for (j = 0; j < blks; j++)
352 blk[j] ^= ivp[j];
353
354 exf->encrypt(sw->sw_kschedule, blk);
355
356 /*
357 * Keep encrypted block for XOR'ing
358 * with next block
359 */
360 memcpy(iv, blk, blks);
361 ivp = iv;
362 } else { /* decrypt */
363 /*
364 * Keep encrypted block for XOR'ing
365 * with next block
366 */
367 if (ivp == iv)
368 memcpy(piv, blk, blks);
369 else
370 memcpy(iv, blk, blks);
371
372 exf->decrypt(sw->sw_kschedule, blk);
373
374 /* XOR with previous block */
375 for (j = 0; j < blks; j++)
376 blk[j] ^= ivp[j];
377
378 if (ivp == iv)
379 memcpy(iv, piv, blks);
380 else
381 ivp = iv;
382 }
383
384 /* Copy back decrypted block */
385 cuio_copyback(uio, k, blks, blk);
386
387 count += blks;
388
389 /* Advance pointer */
390 ind = cuio_getptr(uio, count, &k);
391 if (ind == -1)
392 return (EINVAL);
393
394 i -= blks;
395
396 /* Could be done... */
397 if (i == 0)
398 break;
399 }
400
401 /*
402 * Warning: idat may point to garbage here, but
403 * we only use it in the while() loop, only if
404 * there are indeed enough data.
405 */
406 idat = ((char *)uio->uio_iov[ind].iov_base) + k;
407
408 while (uio->uio_iov[ind].iov_len >= k + blks &&
409 i > 0) {
410 if (exf->reinit) {
411 if (crd->crd_flags & CRD_F_ENCRYPT) {
412 exf->encrypt(sw->sw_kschedule,
413 idat);
414 } else {
415 exf->decrypt(sw->sw_kschedule,
416 idat);
417 }
418 } else if (crd->crd_flags & CRD_F_ENCRYPT) {
419 /* XOR with previous block/IV */
420 for (j = 0; j < blks; j++)
421 idat[j] ^= ivp[j];
422
423 exf->encrypt(sw->sw_kschedule, idat);
424 ivp = idat;
425 } else { /* decrypt */
426 /*
427 * Keep encrypted block to be used
428 * in next block's processing.
429 */
430 if (ivp == iv)
431 memcpy(piv, idat, blks);
432 else
433 memcpy(iv, idat, blks);
434
435 exf->decrypt(sw->sw_kschedule, idat);
436
437 /* XOR with previous block/IV */
438 for (j = 0; j < blks; j++)
439 idat[j] ^= ivp[j];
440
441 if (ivp == iv)
442 memcpy(iv, piv, blks);
443 else
444 ivp = iv;
445 }
446
447 idat += blks;
448 count += blks;
449 k += blks;
450 i -= blks;
451 }
452 }
453 return 0; /* Done with mbuf encryption/decryption */
454 }
455
456 /* Unreachable */
457 return EINVAL;
458 }
459
460 /*
461 * Compute keyed-hash authenticator.
462 */
463 int
464 swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
465 const struct swcr_data *sw, void *buf, int outtype)
466 {
467 unsigned char aalg[AALG_MAX_RESULT_LEN];
468 const struct swcr_auth_hash *axf;
469 union authctx ctx;
470 int err;
471
472 if (sw->sw_ictx == 0)
473 return EINVAL;
474
475 axf = sw->sw_axf;
476
477 memcpy(&ctx, sw->sw_ictx, axf->ctxsize);
478
479 switch (outtype) {
480 case CRYPTO_BUF_CONTIG:
481 axf->Update(&ctx, (char *)buf + crd->crd_skip, crd->crd_len);
482 break;
483 case CRYPTO_BUF_MBUF:
484 err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
485 (int (*)(void*, void *, unsigned int))(void *)axf->Update,
486 (void *) &ctx);
487 if (err)
488 return err;
489 break;
490 case CRYPTO_BUF_IOV:
491 err = cuio_apply((struct uio *) buf, crd->crd_skip,
492 crd->crd_len,
493 (int (*)(void *, void *, unsigned int))(void *)axf->Update,
494 (void *) &ctx);
495 if (err) {
496 return err;
497 }
498 break;
499 default:
500 return EINVAL;
501 }
502
503 switch (sw->sw_alg) {
504 case CRYPTO_MD5_HMAC:
505 case CRYPTO_MD5_HMAC_96:
506 case CRYPTO_SHA1_HMAC:
507 case CRYPTO_SHA1_HMAC_96:
508 case CRYPTO_SHA2_256_HMAC:
509 case CRYPTO_SHA2_384_HMAC:
510 case CRYPTO_SHA2_512_HMAC:
511 case CRYPTO_RIPEMD160_HMAC:
512 case CRYPTO_RIPEMD160_HMAC_96:
513 if (sw->sw_octx == NULL)
514 return EINVAL;
515
516 axf->Final(aalg, &ctx);
517 memcpy(&ctx, sw->sw_octx, axf->ctxsize);
518 axf->Update(&ctx, aalg, axf->auth_hash->hashsize);
519 axf->Final(aalg, &ctx);
520 break;
521
522 case CRYPTO_MD5_KPDK:
523 case CRYPTO_SHA1_KPDK:
524 if (sw->sw_octx == NULL)
525 return EINVAL;
526
527 axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
528 axf->Final(aalg, &ctx);
529 break;
530
531 case CRYPTO_NULL_HMAC:
532 case CRYPTO_MD5:
533 case CRYPTO_SHA1:
534 case CRYPTO_AES_XCBC_MAC_96:
535 axf->Final(aalg, &ctx);
536 break;
537 }
538
539 /* Inject the authentication data */
540 switch (outtype) {
541 case CRYPTO_BUF_CONTIG:
542 (void)memcpy((char *)buf + crd->crd_inject, aalg,
543 axf->auth_hash->authsize);
544 break;
545 case CRYPTO_BUF_MBUF:
546 m_copyback((struct mbuf *) buf, crd->crd_inject,
547 axf->auth_hash->authsize, aalg);
548 break;
549 case CRYPTO_BUF_IOV:
550 memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
551 break;
552 default:
553 return EINVAL;
554 }
555 return 0;
556 }
557
558 /*
559 * Apply a combined encryption-authentication transformation
560 */
561 static int
562 swcr_combined(struct cryptop *crp, int outtype)
563 {
564 uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))];
565 u_char *blk = (u_char *)blkbuf;
566 u_char aalg[AALG_MAX_RESULT_LEN];
567 u_char iv[EALG_MAX_BLOCK_LEN];
568 union authctx ctx;
569 struct cryptodesc *crd, *crda = NULL, *crde = NULL;
570 struct swcr_data *sw, *swa, *swe = NULL;
571 const struct swcr_auth_hash *axf = NULL;
572 const struct swcr_enc_xform *exf = NULL;
573 void *buf = (void *)crp->crp_buf;
574 uint32_t *blkp;
575 int i, blksz = 0, ivlen = 0, len;
576
577 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
578 for (sw = swcr_sessions[crp->crp_sid & 0xffffffff];
579 sw && sw->sw_alg != crd->crd_alg;
580 sw = sw->sw_next)
581 ;
582 if (sw == NULL)
583 return (EINVAL);
584
585 switch (sw->sw_alg) {
586 case CRYPTO_AES_GCM_16:
587 case CRYPTO_AES_GMAC:
588 swe = sw;
589 crde = crd;
590 exf = swe->sw_exf;
591 ivlen = exf->enc_xform->ivsize;
592 break;
593 case CRYPTO_AES_128_GMAC:
594 case CRYPTO_AES_192_GMAC:
595 case CRYPTO_AES_256_GMAC:
596 swa = sw;
597 crda = crd;
598 axf = swa->sw_axf;
599 if (swa->sw_ictx == 0)
600 return (EINVAL);
601 memcpy(&ctx, swa->sw_ictx, axf->ctxsize);
602 blksz = axf->auth_hash->blocksize;
603 break;
604 default:
605 return (EINVAL);
606 }
607 }
608 if (crde == NULL || crda == NULL)
609 return (EINVAL);
610 if (outtype == CRYPTO_BUF_CONTIG)
611 return (EINVAL);
612
613 /* Initialize the IV */
614 if (crde->crd_flags & CRD_F_ENCRYPT) {
615 /* IV explicitly provided ? */
616 if (crde->crd_flags & CRD_F_IV_EXPLICIT) {
617 memcpy(iv, crde->crd_iv, ivlen);
618 if (exf->reinit)
619 exf->reinit(swe->sw_kschedule, iv, 0);
620 } else if (exf->reinit)
621 exf->reinit(swe->sw_kschedule, 0, iv);
622 else
623 cprng_fast(iv, ivlen);
624
625 /* Do we need to write the IV */
626 if (!(crde->crd_flags & CRD_F_IV_PRESENT))
627 COPYBACK(outtype, buf, crde->crd_inject, ivlen, iv);
628
629 } else { /* Decryption */
630 /* IV explicitly provided ? */
631 if (crde->crd_flags & CRD_F_IV_EXPLICIT)
632 memcpy(iv, crde->crd_iv, ivlen);
633 else {
634 /* Get IV off buf */
635 COPYDATA(outtype, buf, crde->crd_inject, ivlen, iv);
636 }
637 if (exf->reinit)
638 exf->reinit(swe->sw_kschedule, iv, 0);
639 }
640
641 /* Supply MAC with IV */
642 if (axf->Reinit)
643 axf->Reinit(&ctx, iv, ivlen);
644
645 /* Supply MAC with AAD */
646 for (i = 0; i < crda->crd_len; i += blksz) {
647 len = MIN(crda->crd_len - i, blksz);
648 COPYDATA(outtype, buf, crda->crd_skip + i, len, blk);
649 axf->Update(&ctx, blk, len);
650 }
651
652 /* Do encryption/decryption with MAC */
653 for (i = 0; i < crde->crd_len; i += blksz) {
654 len = MIN(crde->crd_len - i, blksz);
655 if (len < blksz)
656 memset(blk, 0, blksz);
657 COPYDATA(outtype, buf, crde->crd_skip + i, len, blk);
658 if (crde->crd_flags & CRD_F_ENCRYPT) {
659 exf->encrypt(swe->sw_kschedule, blk);
660 axf->Update(&ctx, blk, len);
661 } else {
662 axf->Update(&ctx, blk, len);
663 exf->decrypt(swe->sw_kschedule, blk);
664 }
665 COPYBACK(outtype, buf, crde->crd_skip + i, len, blk);
666 }
667
668 /* Do any required special finalization */
669 switch (crda->crd_alg) {
670 case CRYPTO_AES_128_GMAC:
671 case CRYPTO_AES_192_GMAC:
672 case CRYPTO_AES_256_GMAC:
673 /* length block */
674 memset(blk, 0, blksz);
675 blkp = (uint32_t *)blk + 1;
676 *blkp = htobe32(crda->crd_len * 8);
677 blkp = (uint32_t *)blk + 3;
678 *blkp = htobe32(crde->crd_len * 8);
679 axf->Update(&ctx, blk, blksz);
680 break;
681 }
682
683 /* Finalize MAC */
684 axf->Final(aalg, &ctx);
685
686 /* Inject the authentication data */
687 if (outtype == CRYPTO_BUF_MBUF)
688 COPYBACK(outtype, buf, crda->crd_inject, axf->auth_hash->authsize, aalg);
689 else
690 memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
691
692 return (0);
693 }
694
695 /*
696 * Apply a compression/decompression algorithm
697 */
698 static int
699 swcr_compdec(struct cryptodesc *crd, const struct swcr_data *sw,
700 void *buf, int outtype, int *res_size)
701 {
702 u_int8_t *data, *out;
703 const struct swcr_comp_algo *cxf;
704 int adj;
705 u_int32_t result;
706
707 cxf = sw->sw_cxf;
708
709 /* We must handle the whole buffer of data in one time
710 * then if there is not all the data in the mbuf, we must
711 * copy in a buffer.
712 */
713
714 data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
715 if (data == NULL)
716 return (EINVAL);
717 COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
718
719 if (crd->crd_flags & CRD_F_COMP)
720 result = cxf->compress(data, crd->crd_len, &out);
721 else
722 result = cxf->decompress(data, crd->crd_len, &out,
723 *res_size);
724
725 free(data, M_CRYPTO_DATA);
726 if (result == 0)
727 return EINVAL;
728
729 /* Copy back the (de)compressed data. m_copyback is
730 * extending the mbuf as necessary.
731 */
732 *res_size = (int)result;
733 /* Check the compressed size when doing compression */
734 if (crd->crd_flags & CRD_F_COMP &&
735 sw->sw_alg == CRYPTO_DEFLATE_COMP_NOGROW &&
736 result >= crd->crd_len) {
737 /* Compression was useless, we lost time */
738 free(out, M_CRYPTO_DATA);
739 return 0;
740 }
741
742 COPYBACK(outtype, buf, crd->crd_skip, result, out);
743 if (result < crd->crd_len) {
744 adj = result - crd->crd_len;
745 if (outtype == CRYPTO_BUF_MBUF) {
746 m_adj((struct mbuf *)buf, adj);
747 }
748 /* Don't adjust the iov_len, it breaks the kmem_free */
749 }
750 free(out, M_CRYPTO_DATA);
751 return 0;
752 }
753
754 /*
755 * Generate a new software session.
756 */
757 static int
758 swcr_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
759 {
760 struct swcr_data **swd;
761 const struct swcr_auth_hash *axf;
762 const struct swcr_enc_xform *txf;
763 const struct swcr_comp_algo *cxf;
764 u_int32_t i;
765 int k, error;
766
767 if (sid == NULL || cri == NULL)
768 return EINVAL;
769
770 if (swcr_sessions) {
771 for (i = 1; i < swcr_sesnum; i++)
772 if (swcr_sessions[i] == NULL)
773 break;
774 } else
775 i = 1; /* NB: to silence compiler warning */
776
777 if (swcr_sessions == NULL || i == swcr_sesnum) {
778 if (swcr_sessions == NULL) {
779 i = 1; /* We leave swcr_sessions[0] empty */
780 swcr_sesnum = CRYPTO_SW_SESSIONS;
781 } else
782 swcr_sesnum *= 2;
783
784 swd = malloc(swcr_sesnum * sizeof(struct swcr_data *),
785 M_CRYPTO_DATA, M_NOWAIT);
786 if (swd == NULL) {
787 /* Reset session number */
788 if (swcr_sesnum == CRYPTO_SW_SESSIONS)
789 swcr_sesnum = 0;
790 else
791 swcr_sesnum /= 2;
792 return ENOBUFS;
793 }
794
795 memset(swd, 0, swcr_sesnum * sizeof(struct swcr_data *));
796
797 /* Copy existing sessions */
798 if (swcr_sessions) {
799 memcpy(swd, swcr_sessions,
800 (swcr_sesnum / 2) * sizeof(struct swcr_data *));
801 free(swcr_sessions, M_CRYPTO_DATA);
802 }
803
804 swcr_sessions = swd;
805 }
806
807 swd = &swcr_sessions[i];
808 *sid = i;
809
810 while (cri) {
811 *swd = malloc(sizeof **swd, M_CRYPTO_DATA, M_NOWAIT);
812 if (*swd == NULL) {
813 swcr_freesession(NULL, i);
814 return ENOBUFS;
815 }
816 memset(*swd, 0, sizeof(struct swcr_data));
817
818 switch (cri->cri_alg) {
819 case CRYPTO_DES_CBC:
820 txf = &swcr_enc_xform_des;
821 goto enccommon;
822 case CRYPTO_3DES_CBC:
823 txf = &swcr_enc_xform_3des;
824 goto enccommon;
825 case CRYPTO_BLF_CBC:
826 txf = &swcr_enc_xform_blf;
827 goto enccommon;
828 case CRYPTO_CAST_CBC:
829 txf = &swcr_enc_xform_cast5;
830 goto enccommon;
831 case CRYPTO_SKIPJACK_CBC:
832 txf = &swcr_enc_xform_skipjack;
833 goto enccommon;
834 case CRYPTO_AES_CBC:
835 txf = &swcr_enc_xform_aes;
836 goto enccommon;
837 case CRYPTO_CAMELLIA_CBC:
838 txf = &swcr_enc_xform_camellia;
839 goto enccommon;
840 case CRYPTO_AES_CTR:
841 txf = &swcr_enc_xform_aes_ctr;
842 goto enccommon;
843 case CRYPTO_AES_GCM_16:
844 txf = &swcr_enc_xform_aes_gcm;
845 goto enccommon;
846 case CRYPTO_AES_GMAC:
847 txf = &swcr_enc_xform_aes_gmac;
848 goto enccommon;
849 case CRYPTO_NULL_CBC:
850 txf = &swcr_enc_xform_null;
851 goto enccommon;
852 enccommon:
853 error = txf->setkey(&((*swd)->sw_kschedule),
854 cri->cri_key, cri->cri_klen / 8);
855 if (error) {
856 swcr_freesession(NULL, i);
857 return error;
858 }
859 (*swd)->sw_exf = txf;
860 break;
861
862 case CRYPTO_MD5_HMAC:
863 axf = &swcr_auth_hash_hmac_md5;
864 goto authcommon;
865 case CRYPTO_MD5_HMAC_96:
866 axf = &swcr_auth_hash_hmac_md5_96;
867 goto authcommon;
868 case CRYPTO_SHA1_HMAC:
869 axf = &swcr_auth_hash_hmac_sha1;
870 goto authcommon;
871 case CRYPTO_SHA1_HMAC_96:
872 axf = &swcr_auth_hash_hmac_sha1_96;
873 goto authcommon;
874 case CRYPTO_SHA2_256_HMAC:
875 axf = &swcr_auth_hash_hmac_sha2_256;
876 goto authcommon;
877 case CRYPTO_SHA2_384_HMAC:
878 axf = &swcr_auth_hash_hmac_sha2_384;
879 goto authcommon;
880 case CRYPTO_SHA2_512_HMAC:
881 axf = &swcr_auth_hash_hmac_sha2_512;
882 goto authcommon;
883 case CRYPTO_NULL_HMAC:
884 axf = &swcr_auth_hash_null;
885 goto authcommon;
886 case CRYPTO_RIPEMD160_HMAC:
887 axf = &swcr_auth_hash_hmac_ripemd_160;
888 goto authcommon;
889 case CRYPTO_RIPEMD160_HMAC_96:
890 axf = &swcr_auth_hash_hmac_ripemd_160_96;
891 goto authcommon; /* leave this for safety */
892 authcommon:
893 (*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
894 if ((*swd)->sw_ictx == NULL) {
895 swcr_freesession(NULL, i);
896 return ENOBUFS;
897 }
898
899 (*swd)->sw_octx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
900 if ((*swd)->sw_octx == NULL) {
901 swcr_freesession(NULL, i);
902 return ENOBUFS;
903 }
904
905 for (k = 0; k < cri->cri_klen / 8; k++)
906 cri->cri_key[k] ^= HMAC_IPAD_VAL;
907
908 axf->Init((*swd)->sw_ictx);
909 axf->Update((*swd)->sw_ictx, cri->cri_key,
910 cri->cri_klen / 8);
911 axf->Update((*swd)->sw_ictx, hmac_ipad_buffer,
912 axf->auth_hash->blocksize - (cri->cri_klen / 8));
913
914 for (k = 0; k < cri->cri_klen / 8; k++)
915 cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
916
917 axf->Init((*swd)->sw_octx);
918 axf->Update((*swd)->sw_octx, cri->cri_key,
919 cri->cri_klen / 8);
920 axf->Update((*swd)->sw_octx, hmac_opad_buffer,
921 axf->auth_hash->blocksize - (cri->cri_klen / 8));
922
923 for (k = 0; k < cri->cri_klen / 8; k++)
924 cri->cri_key[k] ^= HMAC_OPAD_VAL;
925 (*swd)->sw_axf = axf;
926 break;
927
928 case CRYPTO_MD5_KPDK:
929 axf = &swcr_auth_hash_key_md5;
930 goto auth2common;
931
932 case CRYPTO_SHA1_KPDK: {
933 unsigned char digest[SHA1_DIGEST_LENGTH];
934 CTASSERT(SHA1_DIGEST_LENGTH >= MD5_DIGEST_LENGTH);
935 axf = &swcr_auth_hash_key_sha1;
936 auth2common:
937 (*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
938 if ((*swd)->sw_ictx == NULL) {
939 swcr_freesession(NULL, i);
940 return ENOBUFS;
941 }
942
943 /* Store the key so we can "append" it to the payload */
944 (*swd)->sw_octx = kmem_alloc(cri->cri_klen / 8,
945 KM_NOSLEEP);
946 if ((*swd)->sw_octx == NULL) {
947 swcr_freesession(NULL, i);
948 return ENOBUFS;
949 }
950
951 (*swd)->sw_klen = cri->cri_klen / 8;
952 memcpy((*swd)->sw_octx, cri->cri_key, cri->cri_klen / 8);
953 axf->Init((*swd)->sw_ictx);
954 axf->Update((*swd)->sw_ictx, cri->cri_key,
955 cri->cri_klen / 8);
956 axf->Final(digest, (*swd)->sw_ictx);
957 (*swd)->sw_axf = axf;
958 break;
959 }
960
961 case CRYPTO_MD5:
962 axf = &swcr_auth_hash_md5;
963 goto auth3common;
964
965 case CRYPTO_SHA1:
966 axf = &swcr_auth_hash_sha1;
967 auth3common:
968 (*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
969 if ((*swd)->sw_ictx == NULL) {
970 swcr_freesession(NULL, i);
971 return ENOBUFS;
972 }
973
974 axf->Init((*swd)->sw_ictx);
975 (*swd)->sw_axf = axf;
976 break;
977
978 case CRYPTO_AES_XCBC_MAC_96:
979 axf = &swcr_auth_hash_aes_xcbc_mac;
980 goto auth4common;
981 case CRYPTO_AES_128_GMAC:
982 axf = &swcr_auth_hash_gmac_aes_128;
983 goto auth4common;
984 case CRYPTO_AES_192_GMAC:
985 axf = &swcr_auth_hash_gmac_aes_192;
986 goto auth4common;
987 case CRYPTO_AES_256_GMAC:
988 axf = &swcr_auth_hash_gmac_aes_256;
989 auth4common:
990 (*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
991 if ((*swd)->sw_ictx == NULL) {
992 swcr_freesession(NULL, i);
993 return ENOBUFS;
994 }
995 axf->Init((*swd)->sw_ictx);
996 axf->Setkey((*swd)->sw_ictx,
997 cri->cri_key, cri->cri_klen / 8);
998 (*swd)->sw_axf = axf;
999 break;
1000
1001 case CRYPTO_DEFLATE_COMP:
1002 cxf = &swcr_comp_algo_deflate;
1003 (*swd)->sw_cxf = cxf;
1004 break;
1005
1006 case CRYPTO_DEFLATE_COMP_NOGROW:
1007 cxf = &swcr_comp_algo_deflate_nogrow;
1008 (*swd)->sw_cxf = cxf;
1009 break;
1010
1011 case CRYPTO_GZIP_COMP:
1012 cxf = &swcr_comp_algo_gzip;
1013 (*swd)->sw_cxf = cxf;
1014 break;
1015 default:
1016 swcr_freesession(NULL, i);
1017 return EINVAL;
1018 }
1019
1020 (*swd)->sw_alg = cri->cri_alg;
1021 cri = cri->cri_next;
1022 swd = &((*swd)->sw_next);
1023 }
1024 return 0;
1025 }
1026
1027 /*
1028 * Free a session.
1029 */
1030 static int
1031 swcr_freesession(void *arg, u_int64_t tid)
1032 {
1033 struct swcr_data *swd;
1034 const struct swcr_enc_xform *txf;
1035 const struct swcr_auth_hash *axf;
1036 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1037
1038 if (sid > swcr_sesnum || swcr_sessions == NULL ||
1039 swcr_sessions[sid] == NULL)
1040 return EINVAL;
1041
1042 /* Silently accept and return */
1043 if (sid == 0)
1044 return 0;
1045
1046 while ((swd = swcr_sessions[sid]) != NULL) {
1047 swcr_sessions[sid] = swd->sw_next;
1048
1049 switch (swd->sw_alg) {
1050 case CRYPTO_DES_CBC:
1051 case CRYPTO_3DES_CBC:
1052 case CRYPTO_BLF_CBC:
1053 case CRYPTO_CAST_CBC:
1054 case CRYPTO_SKIPJACK_CBC:
1055 case CRYPTO_AES_CBC:
1056 case CRYPTO_CAMELLIA_CBC:
1057 case CRYPTO_AES_CTR:
1058 case CRYPTO_AES_GCM_16:
1059 case CRYPTO_AES_GMAC:
1060 case CRYPTO_NULL_CBC:
1061 txf = swd->sw_exf;
1062
1063 if (swd->sw_kschedule)
1064 txf->zerokey(&(swd->sw_kschedule));
1065 break;
1066
1067 case CRYPTO_MD5_HMAC:
1068 case CRYPTO_MD5_HMAC_96:
1069 case CRYPTO_SHA1_HMAC:
1070 case CRYPTO_SHA1_HMAC_96:
1071 case CRYPTO_SHA2_256_HMAC:
1072 case CRYPTO_SHA2_384_HMAC:
1073 case CRYPTO_SHA2_512_HMAC:
1074 case CRYPTO_RIPEMD160_HMAC:
1075 case CRYPTO_RIPEMD160_HMAC_96:
1076 case CRYPTO_NULL_HMAC:
1077 axf = swd->sw_axf;
1078
1079 if (swd->sw_ictx) {
1080 explicit_memset(swd->sw_ictx, 0, axf->ctxsize);
1081 kmem_free(swd->sw_ictx, axf->ctxsize);
1082 }
1083 if (swd->sw_octx) {
1084 explicit_memset(swd->sw_octx, 0, axf->ctxsize);
1085 kmem_free(swd->sw_octx, axf->ctxsize);
1086 }
1087 break;
1088
1089 case CRYPTO_MD5_KPDK:
1090 case CRYPTO_SHA1_KPDK:
1091 axf = swd->sw_axf;
1092
1093 if (swd->sw_ictx) {
1094 explicit_memset(swd->sw_ictx, 0, axf->ctxsize);
1095 kmem_free(swd->sw_ictx, axf->ctxsize);
1096 }
1097 if (swd->sw_octx) {
1098 explicit_memset(swd->sw_octx, 0, swd->sw_klen);
1099 kmem_free(swd->sw_octx, axf->ctxsize);
1100 }
1101 break;
1102
1103 case CRYPTO_MD5:
1104 case CRYPTO_SHA1:
1105 case CRYPTO_AES_XCBC_MAC_96:
1106 case CRYPTO_AES_128_GMAC:
1107 case CRYPTO_AES_192_GMAC:
1108 case CRYPTO_AES_256_GMAC:
1109 axf = swd->sw_axf;
1110
1111 if (swd->sw_ictx) {
1112 explicit_memset(swd->sw_ictx, 0, axf->ctxsize);
1113 kmem_free(swd->sw_ictx, axf->ctxsize);
1114 }
1115 break;
1116
1117 case CRYPTO_DEFLATE_COMP:
1118 case CRYPTO_DEFLATE_COMP_NOGROW:
1119 case CRYPTO_GZIP_COMP:
1120 break;
1121 }
1122
1123 free(swd, M_CRYPTO_DATA);
1124 }
1125 return 0;
1126 }
1127
1128 /*
1129 * Process a software request.
1130 */
1131 static int
1132 swcr_process(void *arg, struct cryptop *crp, int hint)
1133 {
1134 struct cryptodesc *crd;
1135 struct swcr_data *sw;
1136 u_int32_t lid;
1137 int type;
1138
1139 /* Sanity check */
1140 if (crp == NULL)
1141 return EINVAL;
1142
1143 if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
1144 crp->crp_etype = EINVAL;
1145 goto done;
1146 }
1147
1148 lid = crp->crp_sid & 0xffffffff;
1149 if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
1150 crp->crp_etype = ENOENT;
1151 goto done;
1152 }
1153
1154 if (crp->crp_flags & CRYPTO_F_IMBUF) {
1155 type = CRYPTO_BUF_MBUF;
1156 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1157 type = CRYPTO_BUF_IOV;
1158 } else {
1159 type = CRYPTO_BUF_CONTIG;
1160 }
1161
1162 /* Go through crypto descriptors, processing as we go */
1163 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1164 /*
1165 * Find the crypto context.
1166 *
1167 * XXX Note that the logic here prevents us from having
1168 * XXX the same algorithm multiple times in a session
1169 * XXX (or rather, we can but it won't give us the right
1170 * XXX results). To do that, we'd need some way of differentiating
1171 * XXX between the various instances of an algorithm (so we can
1172 * XXX locate the correct crypto context).
1173 */
1174 for (sw = swcr_sessions[lid];
1175 sw && sw->sw_alg != crd->crd_alg;
1176 sw = sw->sw_next)
1177 ;
1178
1179 /* No such context ? */
1180 if (sw == NULL) {
1181 crp->crp_etype = EINVAL;
1182 goto done;
1183 }
1184
1185 switch (sw->sw_alg) {
1186 case CRYPTO_DES_CBC:
1187 case CRYPTO_3DES_CBC:
1188 case CRYPTO_BLF_CBC:
1189 case CRYPTO_CAST_CBC:
1190 case CRYPTO_SKIPJACK_CBC:
1191 case CRYPTO_AES_CBC:
1192 case CRYPTO_CAMELLIA_CBC:
1193 case CRYPTO_AES_CTR:
1194 if ((crp->crp_etype = swcr_encdec(crd, sw,
1195 crp->crp_buf, type)) != 0)
1196 goto done;
1197 break;
1198 case CRYPTO_NULL_CBC:
1199 crp->crp_etype = 0;
1200 break;
1201 case CRYPTO_MD5_HMAC:
1202 case CRYPTO_MD5_HMAC_96:
1203 case CRYPTO_SHA1_HMAC:
1204 case CRYPTO_SHA1_HMAC_96:
1205 case CRYPTO_SHA2_256_HMAC:
1206 case CRYPTO_SHA2_384_HMAC:
1207 case CRYPTO_SHA2_512_HMAC:
1208 case CRYPTO_RIPEMD160_HMAC:
1209 case CRYPTO_RIPEMD160_HMAC_96:
1210 case CRYPTO_NULL_HMAC:
1211 case CRYPTO_MD5_KPDK:
1212 case CRYPTO_SHA1_KPDK:
1213 case CRYPTO_MD5:
1214 case CRYPTO_SHA1:
1215 case CRYPTO_AES_XCBC_MAC_96:
1216 if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
1217 crp->crp_buf, type)) != 0)
1218 goto done;
1219 break;
1220
1221 case CRYPTO_AES_GCM_16:
1222 case CRYPTO_AES_GMAC:
1223 case CRYPTO_AES_128_GMAC:
1224 case CRYPTO_AES_192_GMAC:
1225 case CRYPTO_AES_256_GMAC:
1226 crp->crp_etype = swcr_combined(crp, type);
1227 goto done;
1228
1229 case CRYPTO_DEFLATE_COMP:
1230 case CRYPTO_DEFLATE_COMP_NOGROW:
1231 case CRYPTO_GZIP_COMP:
1232 DPRINTF("compdec for %d\n", sw->sw_alg);
1233 if ((crp->crp_etype = swcr_compdec(crd, sw,
1234 crp->crp_buf, type, &crp->crp_olen)) != 0)
1235 goto done;
1236 break;
1237
1238 default:
1239 /* Unknown/unsupported algorithm */
1240 crp->crp_etype = EINVAL;
1241 goto done;
1242 }
1243 }
1244
1245 done:
1246 DPRINTF("request %p done\n", crp);
1247 crypto_done(crp);
1248 return 0;
1249 }
1250
1251 static void
1252 swcr_init(void)
1253 {
1254 swcr_id = crypto_get_driverid(CRYPTOCAP_F_SOFTWARE);
1255 if (swcr_id < 0) {
1256 /* This should never happen */
1257 panic("Software crypto device cannot initialize!");
1258 }
1259
1260 crypto_register(swcr_id, CRYPTO_DES_CBC,
1261 0, 0, swcr_newsession, swcr_freesession, swcr_process, NULL);
1262 #define REGISTER(alg) \
1263 crypto_register(swcr_id, alg, 0, 0, NULL, NULL, NULL, NULL)
1264
1265 REGISTER(CRYPTO_3DES_CBC);
1266 REGISTER(CRYPTO_BLF_CBC);
1267 REGISTER(CRYPTO_CAST_CBC);
1268 REGISTER(CRYPTO_SKIPJACK_CBC);
1269 REGISTER(CRYPTO_CAMELLIA_CBC);
1270 REGISTER(CRYPTO_AES_CTR);
1271 REGISTER(CRYPTO_AES_GCM_16);
1272 REGISTER(CRYPTO_AES_GMAC);
1273 REGISTER(CRYPTO_NULL_CBC);
1274 REGISTER(CRYPTO_MD5_HMAC);
1275 REGISTER(CRYPTO_MD5_HMAC_96);
1276 REGISTER(CRYPTO_SHA1_HMAC);
1277 REGISTER(CRYPTO_SHA1_HMAC_96);
1278 REGISTER(CRYPTO_SHA2_256_HMAC);
1279 REGISTER(CRYPTO_SHA2_384_HMAC);
1280 REGISTER(CRYPTO_SHA2_512_HMAC);
1281 REGISTER(CRYPTO_RIPEMD160_HMAC);
1282 REGISTER(CRYPTO_RIPEMD160_HMAC_96);
1283 REGISTER(CRYPTO_NULL_HMAC);
1284 REGISTER(CRYPTO_MD5_KPDK);
1285 REGISTER(CRYPTO_SHA1_KPDK);
1286 REGISTER(CRYPTO_MD5);
1287 REGISTER(CRYPTO_SHA1);
1288 REGISTER(CRYPTO_AES_XCBC_MAC_96);
1289 REGISTER(CRYPTO_AES_128_GMAC);
1290 REGISTER(CRYPTO_AES_192_GMAC);
1291 REGISTER(CRYPTO_AES_256_GMAC);
1292 REGISTER(CRYPTO_AES_CBC);
1293 REGISTER(CRYPTO_DEFLATE_COMP);
1294 REGISTER(CRYPTO_DEFLATE_COMP_NOGROW);
1295 REGISTER(CRYPTO_GZIP_COMP);
1296 #undef REGISTER
1297 }
1298
1299
1300 /*
1301 * Pseudo-device init routine for software crypto.
1302 */
1303
1304 void
1305 swcryptoattach(int num)
1306 {
1307 /*
1308 * swcrypto_attach() must be called after attached cpus, because
1309 * it calls softint_establish() through below call path.
1310 * swcr_init() => crypto_get_driverid() => crypto_init()
1311 * => crypto_init0()
1312 * If softint_establish() is called before attached cpus that ncpu == 0,
1313 * the softint handler is established to CPU#0 only.
1314 *
1315 * So, swcrypto_attach() must be called from not module_init_class()
1316 * but config_finalize() when it is built as builtin module.
1317 */
1318 swcryptoattach_internal();
1319 }
1320
1321 void swcrypto_attach(device_t, device_t, void *);
1322
1323 void
1324 swcrypto_attach(device_t parent, device_t self, void *opaque)
1325 {
1326
1327 swcr_init();
1328
1329 if (!pmf_device_register(self, NULL, NULL))
1330 aprint_error_dev(self, "couldn't establish power handler\n");
1331 }
1332
1333 int swcrypto_detach(device_t, int);
1334
1335 int
1336 swcrypto_detach(device_t self, int flag)
1337 {
1338 pmf_device_deregister(self);
1339 if (swcr_id >= 0)
1340 crypto_unregister_all(swcr_id);
1341 return 0;
1342 }
1343
1344 int swcrypto_match(device_t, cfdata_t, void *);
1345
1346 int
1347 swcrypto_match(device_t parent, cfdata_t data, void *opaque)
1348 {
1349
1350 return 1;
1351 }
1352
1353 MODULE(MODULE_CLASS_DRIVER, swcrypto,
1354 "opencrypto,zlib,blowfish,des,cast128,camellia,skipjack");
1355
1356 CFDRIVER_DECL(swcrypto, DV_DULL, NULL);
1357
1358 CFATTACH_DECL2_NEW(swcrypto, 0, swcrypto_match, swcrypto_attach,
1359 swcrypto_detach, NULL, NULL, NULL);
1360
1361 static int swcryptoloc[] = { -1, -1 };
1362
1363 static struct cfdata swcrypto_cfdata[] = {
1364 {
1365 .cf_name = "swcrypto",
1366 .cf_atname = "swcrypto",
1367 .cf_unit = 0,
1368 .cf_fstate = 0,
1369 .cf_loc = swcryptoloc,
1370 .cf_flags = 0,
1371 .cf_pspec = NULL,
1372 },
1373 { NULL, NULL, 0, 0, NULL, 0, NULL }
1374 };
1375
1376 /*
1377 * Internal attach routine.
1378 * Don't call before attached cpus.
1379 */
1380 static int
1381 swcryptoattach_internal(void)
1382 {
1383 int error;
1384
1385 error = config_cfdriver_attach(&swcrypto_cd);
1386 if (error) {
1387 return error;
1388 }
1389
1390 error = config_cfattach_attach(swcrypto_cd.cd_name, &swcrypto_ca);
1391 if (error) {
1392 config_cfdriver_detach(&swcrypto_cd);
1393 aprint_error("%s: unable to register cfattach\n",
1394 swcrypto_cd.cd_name);
1395
1396 return error;
1397 }
1398
1399 error = config_cfdata_attach(swcrypto_cfdata, 1);
1400 if (error) {
1401 config_cfattach_detach(swcrypto_cd.cd_name,
1402 &swcrypto_ca);
1403 config_cfdriver_detach(&swcrypto_cd);
1404 aprint_error("%s: unable to register cfdata\n",
1405 swcrypto_cd.cd_name);
1406
1407 return error;
1408 }
1409
1410 (void)config_attach_pseudo(swcrypto_cfdata);
1411
1412 return 0;
1413 }
1414
1415 static int
1416 swcrypto_modcmd(modcmd_t cmd, void *arg)
1417 {
1418 int error = 0;
1419
1420 switch (cmd) {
1421 case MODULE_CMD_INIT:
1422 #ifdef _MODULE
1423 error = swcryptoattach_internal();
1424 #endif
1425 return error;
1426 case MODULE_CMD_FINI:
1427 #if 1
1428 // XXX: Need to keep track if we are in use.
1429 return ENOTTY;
1430 #else
1431 error = config_cfdata_detach(swcrypto_cfdata);
1432 if (error) {
1433 return error;
1434 }
1435
1436 config_cfattach_detach(swcrypto_cd.cd_name, &swcrypto_ca);
1437 config_cfdriver_detach(&swcrypto_cd);
1438
1439 return 0;
1440 #endif
1441 default:
1442 return ENOTTY;
1443 }
1444 }
1445