cryptosoft_xform.c revision 1.22 1 /* $NetBSD: cryptosoft_xform.c,v 1.22 2011/05/24 19:10:11 drochner Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/xform.c,v 1.1.2.1 2002/11/21 23:34:23 sam Exp $ */
3 /* $OpenBSD: xform.c,v 1.19 2002/08/16 22:47:25 dhartmei Exp $ */
4
5 /*
6 * The authors of this code are John Ioannidis (ji (at) tla.org),
7 * Angelos D. Keromytis (kermit (at) csd.uch.gr) and
8 * Niels Provos (provos (at) physnet.uni-hamburg.de).
9 *
10 * This code was written by John Ioannidis for BSD/OS in Athens, Greece,
11 * in November 1995.
12 *
13 * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
14 * by Angelos D. Keromytis.
15 *
16 * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
17 * and Niels Provos.
18 *
19 * Additional features in 1999 by Angelos D. Keromytis.
20 *
21 * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
22 * Angelos D. Keromytis and Niels Provos.
23 *
24 * Copyright (C) 2001, Angelos D. Keromytis.
25 *
26 * Permission to use, copy, and modify this software with or without fee
27 * is hereby granted, provided that this entire notice is included in
28 * all copies of any software which is or includes a copy or
29 * modification of this software.
30 * You may use this code under the GNU public license if you so wish. Please
31 * contribute changes back to the authors under this freer than GPL license
32 * so that we may further the use of strong encryption without limitations to
33 * all.
34 *
35 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
36 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
37 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
38 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
39 * PURPOSE.
40 */
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(1, "$NetBSD: cryptosoft_xform.c,v 1.22 2011/05/24 19:10:11 drochner Exp $");
44
45 #include <crypto/blowfish/blowfish.h>
46 #include <crypto/cast128/cast128.h>
47 #include <crypto/des/des.h>
48 #include <crypto/rijndael/rijndael.h>
49 #include <crypto/skipjack/skipjack.h>
50 #include <crypto/camellia/camellia.h>
51
52 #include <opencrypto/deflate.h>
53
54 #include <sys/md5.h>
55 #include <sys/rmd160.h>
56 #include <sys/sha1.h>
57 #include <sys/sha2.h>
58 #include <opencrypto/aesxcbcmac.h>
59
60 struct swcr_auth_hash {
61 const struct auth_hash *auth_hash;
62 int ctxsize;
63 void (*Init)(void *);
64 void (*Setkey)(void *, const uint8_t *, uint16_t);
65 int (*Update)(void *, const uint8_t *, uint16_t);
66 void (*Final)(uint8_t *, void *);
67 };
68
69 struct swcr_enc_xform {
70 const struct enc_xform *enc_xform;
71 void (*encrypt)(void *, uint8_t *);
72 void (*decrypt)(void *, uint8_t *);
73 int (*setkey)(uint8_t **, const uint8_t *, int);
74 void (*zerokey)(uint8_t **);
75 void (*reinit)(void *, const uint8_t *, uint8_t *);
76 };
77
78 struct swcr_comp_algo {
79 const struct comp_algo *unused_comp_algo;
80 uint32_t (*compress)(uint8_t *, uint32_t, uint8_t **);
81 uint32_t (*decompress)(uint8_t *, uint32_t, uint8_t **, int);
82 };
83
84 static void null_encrypt(void *, u_int8_t *);
85 static void null_decrypt(void *, u_int8_t *);
86 static int null_setkey(u_int8_t **, const u_int8_t *, int);
87 static void null_zerokey(u_int8_t **);
88
89 static int des1_setkey(u_int8_t **, const u_int8_t *, int);
90 static int des3_setkey(u_int8_t **, const u_int8_t *, int);
91 static int blf_setkey(u_int8_t **, const u_int8_t *, int);
92 static int cast5_setkey(u_int8_t **, const u_int8_t *, int);
93 static int skipjack_setkey(u_int8_t **, const u_int8_t *, int);
94 static int rijndael128_setkey(u_int8_t **, const u_int8_t *, int);
95 static int cml_setkey(u_int8_t **, const u_int8_t *, int);
96 static int aes_ctr_setkey(u_int8_t **, const u_int8_t *, int);
97 static void des1_encrypt(void *, u_int8_t *);
98 static void des3_encrypt(void *, u_int8_t *);
99 static void blf_encrypt(void *, u_int8_t *);
100 static void cast5_encrypt(void *, u_int8_t *);
101 static void skipjack_encrypt(void *, u_int8_t *);
102 static void rijndael128_encrypt(void *, u_int8_t *);
103 static void cml_encrypt(void *, u_int8_t *);
104 static void des1_decrypt(void *, u_int8_t *);
105 static void des3_decrypt(void *, u_int8_t *);
106 static void blf_decrypt(void *, u_int8_t *);
107 static void cast5_decrypt(void *, u_int8_t *);
108 static void skipjack_decrypt(void *, u_int8_t *);
109 static void rijndael128_decrypt(void *, u_int8_t *);
110 static void cml_decrypt(void *, u_int8_t *);
111 static void aes_ctr_crypt(void *, u_int8_t *);
112 static void des1_zerokey(u_int8_t **);
113 static void des3_zerokey(u_int8_t **);
114 static void blf_zerokey(u_int8_t **);
115 static void cast5_zerokey(u_int8_t **);
116 static void skipjack_zerokey(u_int8_t **);
117 static void rijndael128_zerokey(u_int8_t **);
118 static void cml_zerokey(u_int8_t **);
119 static void aes_ctr_zerokey(u_int8_t **);
120 static void aes_ctr_reinit(void *, const u_int8_t *, u_int8_t *);
121
122 static void null_init(void *);
123 static int null_update(void *, const u_int8_t *, u_int16_t);
124 static void null_final(u_int8_t *, void *);
125
126 static int MD5Update_int(void *, const u_int8_t *, u_int16_t);
127 static void SHA1Init_int(void *);
128 static int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
129 static void SHA1Final_int(u_int8_t *, void *);
130
131
132 static int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
133 static int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
134 static void SHA1Final_int(u_int8_t *, void *);
135 static int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
136 static int SHA256Update_int(void *, const u_int8_t *, u_int16_t);
137 static int SHA384Update_int(void *, const u_int8_t *, u_int16_t);
138 static int SHA512Update_int(void *, const u_int8_t *, u_int16_t);
139
140 static u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
141 static u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **, int);
142 static u_int32_t gzip_compress(u_int8_t *, u_int32_t, u_int8_t **);
143 static u_int32_t gzip_decompress(u_int8_t *, u_int32_t, u_int8_t **, int);
144
145 /* Encryption instances */
146 static const struct swcr_enc_xform swcr_enc_xform_null = {
147 &enc_xform_null,
148 null_encrypt,
149 null_decrypt,
150 null_setkey,
151 null_zerokey,
152 NULL
153 };
154
155 static const struct swcr_enc_xform swcr_enc_xform_des = {
156 &enc_xform_des,
157 des1_encrypt,
158 des1_decrypt,
159 des1_setkey,
160 des1_zerokey,
161 NULL
162 };
163
164 static const struct swcr_enc_xform swcr_enc_xform_3des = {
165 &enc_xform_3des,
166 des3_encrypt,
167 des3_decrypt,
168 des3_setkey,
169 des3_zerokey,
170 NULL
171 };
172
173 static const struct swcr_enc_xform swcr_enc_xform_blf = {
174 &enc_xform_blf,
175 blf_encrypt,
176 blf_decrypt,
177 blf_setkey,
178 blf_zerokey,
179 NULL
180 };
181
182 static const struct swcr_enc_xform swcr_enc_xform_cast5 = {
183 &enc_xform_cast5,
184 cast5_encrypt,
185 cast5_decrypt,
186 cast5_setkey,
187 cast5_zerokey,
188 NULL
189 };
190
191 static const struct swcr_enc_xform swcr_enc_xform_skipjack = {
192 &enc_xform_skipjack,
193 skipjack_encrypt,
194 skipjack_decrypt,
195 skipjack_setkey,
196 skipjack_zerokey,
197 NULL
198 };
199
200 static const struct swcr_enc_xform swcr_enc_xform_rijndael128 = {
201 &enc_xform_rijndael128,
202 rijndael128_encrypt,
203 rijndael128_decrypt,
204 rijndael128_setkey,
205 rijndael128_zerokey,
206 NULL
207 };
208
209 static const struct swcr_enc_xform swcr_enc_xform_aes_ctr = {
210 &enc_xform_aes_ctr,
211 aes_ctr_crypt,
212 aes_ctr_crypt,
213 aes_ctr_setkey,
214 aes_ctr_zerokey,
215 aes_ctr_reinit
216 };
217
218 static const struct swcr_enc_xform swcr_enc_xform_camellia = {
219 &enc_xform_camellia,
220 cml_encrypt,
221 cml_decrypt,
222 cml_setkey,
223 cml_zerokey,
224 NULL
225 };
226
227 /* Authentication instances */
228 static const struct swcr_auth_hash swcr_auth_hash_null = {
229 &auth_hash_null, sizeof(int), /* NB: context isn't used */
230 null_init, NULL, null_update, null_final
231 };
232
233 static const struct swcr_auth_hash swcr_auth_hash_hmac_md5 = {
234 &auth_hash_hmac_md5, sizeof(MD5_CTX),
235 (void (*) (void *)) MD5Init, NULL, MD5Update_int,
236 (void (*) (u_int8_t *, void *)) MD5Final
237 };
238
239 static const struct swcr_auth_hash swcr_auth_hash_hmac_sha1 = {
240 &auth_hash_hmac_sha1, sizeof(SHA1_CTX),
241 SHA1Init_int, NULL, SHA1Update_int, SHA1Final_int
242 };
243
244 static const struct swcr_auth_hash swcr_auth_hash_hmac_ripemd_160 = {
245 &auth_hash_hmac_ripemd_160, sizeof(RMD160_CTX),
246 (void (*)(void *)) RMD160Init, NULL, RMD160Update_int,
247 (void (*)(u_int8_t *, void *)) RMD160Final
248 };
249 static const struct swcr_auth_hash swcr_auth_hash_hmac_md5_96 = {
250 &auth_hash_hmac_md5_96, sizeof(MD5_CTX),
251 (void (*) (void *)) MD5Init, NULL, MD5Update_int,
252 (void (*) (u_int8_t *, void *)) MD5Final
253 };
254
255 static const struct swcr_auth_hash swcr_auth_hash_hmac_sha1_96 = {
256 &auth_hash_hmac_sha1_96, sizeof(SHA1_CTX),
257 SHA1Init_int, NULL, SHA1Update_int, SHA1Final_int
258 };
259
260 static const struct swcr_auth_hash swcr_auth_hash_hmac_ripemd_160_96 = {
261 &auth_hash_hmac_ripemd_160_96, sizeof(RMD160_CTX),
262 (void (*)(void *)) RMD160Init, NULL, RMD160Update_int,
263 (void (*)(u_int8_t *, void *)) RMD160Final
264 };
265
266 static const struct swcr_auth_hash swcr_auth_hash_key_md5 = {
267 &auth_hash_key_md5, sizeof(MD5_CTX),
268 (void (*)(void *)) MD5Init, NULL, MD5Update_int,
269 (void (*)(u_int8_t *, void *)) MD5Final
270 };
271
272 static const struct swcr_auth_hash swcr_auth_hash_key_sha1 = {
273 &auth_hash_key_sha1, sizeof(SHA1_CTX),
274 SHA1Init_int, NULL, SHA1Update_int, SHA1Final_int
275 };
276
277 static const struct swcr_auth_hash swcr_auth_hash_md5 = {
278 &auth_hash_md5, sizeof(MD5_CTX),
279 (void (*) (void *)) MD5Init, NULL, MD5Update_int,
280 (void (*) (u_int8_t *, void *)) MD5Final
281 };
282
283 static const struct swcr_auth_hash swcr_auth_hash_sha1 = {
284 &auth_hash_sha1, sizeof(SHA1_CTX),
285 (void (*)(void *)) SHA1Init, NULL, SHA1Update_int,
286 (void (*)(u_int8_t *, void *)) SHA1Final
287 };
288
289 static const struct swcr_auth_hash swcr_auth_hash_hmac_sha2_256 = {
290 &auth_hash_hmac_sha2_256, sizeof(SHA256_CTX),
291 (void (*)(void *)) SHA256_Init, NULL, SHA256Update_int,
292 (void (*)(u_int8_t *, void *)) SHA256_Final
293 };
294
295 static const struct swcr_auth_hash swcr_auth_hash_hmac_sha2_384 = {
296 &auth_hash_hmac_sha2_384, sizeof(SHA384_CTX),
297 (void (*)(void *)) SHA384_Init, NULL, SHA384Update_int,
298 (void (*)(u_int8_t *, void *)) SHA384_Final
299 };
300
301 static const struct swcr_auth_hash swcr_auth_hash_hmac_sha2_512 = {
302 &auth_hash_hmac_sha2_512, sizeof(SHA512_CTX),
303 (void (*)(void *)) SHA512_Init, NULL, SHA512Update_int,
304 (void (*)(u_int8_t *, void *)) SHA512_Final
305 };
306
307 static const struct swcr_auth_hash swcr_auth_hash_aes_xcbc_mac = {
308 &auth_hash_aes_xcbc_mac_96, sizeof(aesxcbc_ctx),
309 null_init,
310 (void (*)(void *, const u_int8_t *, u_int16_t))aes_xcbc_mac_init,
311 aes_xcbc_mac_loop, aes_xcbc_mac_result
312 };
313
314 /* Compression instance */
315 static const struct swcr_comp_algo swcr_comp_algo_deflate = {
316 &comp_algo_deflate,
317 deflate_compress,
318 deflate_decompress
319 };
320
321 static const struct swcr_comp_algo swcr_comp_algo_deflate_nogrow = {
322 &comp_algo_deflate_nogrow,
323 deflate_compress,
324 deflate_decompress
325 };
326
327 static const struct swcr_comp_algo swcr_comp_algo_gzip = {
328 &comp_algo_deflate,
329 gzip_compress,
330 gzip_decompress
331 };
332
333 /*
334 * Encryption wrapper routines.
335 */
336 static void
337 null_encrypt(void *key, u_int8_t *blk)
338 {
339 }
340 static void
341 null_decrypt(void *key, u_int8_t *blk)
342 {
343 }
344 static int
345 null_setkey(u_int8_t **sched, const u_int8_t *key, int len)
346 {
347 *sched = NULL;
348 return 0;
349 }
350 static void
351 null_zerokey(u_int8_t **sched)
352 {
353 *sched = NULL;
354 }
355
356 static void
357 des1_encrypt(void *key, u_int8_t *blk)
358 {
359 des_cblock *cb = (des_cblock *) blk;
360 des_key_schedule *p = (des_key_schedule *) key;
361
362 des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT);
363 }
364
365 static void
366 des1_decrypt(void *key, u_int8_t *blk)
367 {
368 des_cblock *cb = (des_cblock *) blk;
369 des_key_schedule *p = (des_key_schedule *) key;
370
371 des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT);
372 }
373
374 static int
375 des1_setkey(u_int8_t **sched, const u_int8_t *key, int len)
376 {
377 des_key_schedule *p;
378 int err;
379
380 p = malloc(sizeof (des_key_schedule),
381 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
382 if (p != NULL) {
383 des_set_key((des_cblock *)__UNCONST(key), p[0]);
384 err = 0;
385 } else
386 err = ENOMEM;
387 *sched = (u_int8_t *) p;
388 return err;
389 }
390
391 static void
392 des1_zerokey(u_int8_t **sched)
393 {
394 memset(*sched, 0, sizeof (des_key_schedule));
395 free(*sched, M_CRYPTO_DATA);
396 *sched = NULL;
397 }
398
399 static void
400 des3_encrypt(void *key, u_int8_t *blk)
401 {
402 des_cblock *cb = (des_cblock *) blk;
403 des_key_schedule *p = (des_key_schedule *) key;
404
405 des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT);
406 }
407
408 static void
409 des3_decrypt(void *key, u_int8_t *blk)
410 {
411 des_cblock *cb = (des_cblock *) blk;
412 des_key_schedule *p = (des_key_schedule *) key;
413
414 des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT);
415 }
416
417 static int
418 des3_setkey(u_int8_t **sched, const u_int8_t *key, int len)
419 {
420 des_key_schedule *p;
421 int err;
422
423 p = malloc(3*sizeof (des_key_schedule),
424 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
425 if (p != NULL) {
426 des_set_key((des_cblock *)__UNCONST(key + 0), p[0]);
427 des_set_key((des_cblock *)__UNCONST(key + 8), p[1]);
428 des_set_key((des_cblock *)__UNCONST(key + 16), p[2]);
429 err = 0;
430 } else
431 err = ENOMEM;
432 *sched = (u_int8_t *) p;
433 return err;
434 }
435
436 static void
437 des3_zerokey(u_int8_t **sched)
438 {
439 memset(*sched, 0, 3*sizeof (des_key_schedule));
440 free(*sched, M_CRYPTO_DATA);
441 *sched = NULL;
442 }
443
444 static void
445 blf_encrypt(void *key, u_int8_t *blk)
446 {
447
448 BF_ecb_encrypt(blk, blk, (BF_KEY *)key, 1);
449 }
450
451 static void
452 blf_decrypt(void *key, u_int8_t *blk)
453 {
454
455 BF_ecb_encrypt(blk, blk, (BF_KEY *)key, 0);
456 }
457
458 static int
459 blf_setkey(u_int8_t **sched, const u_int8_t *key, int len)
460 {
461 int err;
462
463 *sched = malloc(sizeof(BF_KEY),
464 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
465 if (*sched != NULL) {
466 BF_set_key((BF_KEY *) *sched, len, key);
467 err = 0;
468 } else
469 err = ENOMEM;
470 return err;
471 }
472
473 static void
474 blf_zerokey(u_int8_t **sched)
475 {
476 memset(*sched, 0, sizeof(BF_KEY));
477 free(*sched, M_CRYPTO_DATA);
478 *sched = NULL;
479 }
480
481 static void
482 cast5_encrypt(void *key, u_int8_t *blk)
483 {
484 cast128_encrypt((cast128_key *) key, blk, blk);
485 }
486
487 static void
488 cast5_decrypt(void *key, u_int8_t *blk)
489 {
490 cast128_decrypt((cast128_key *) key, blk, blk);
491 }
492
493 static int
494 cast5_setkey(u_int8_t **sched, const u_int8_t *key, int len)
495 {
496 int err;
497
498 *sched = malloc(sizeof(cast128_key), M_CRYPTO_DATA,
499 M_NOWAIT|M_ZERO);
500 if (*sched != NULL) {
501 cast128_setkey((cast128_key *)*sched, key, len);
502 err = 0;
503 } else
504 err = ENOMEM;
505 return err;
506 }
507
508 static void
509 cast5_zerokey(u_int8_t **sched)
510 {
511 memset(*sched, 0, sizeof(cast128_key));
512 free(*sched, M_CRYPTO_DATA);
513 *sched = NULL;
514 }
515
516 static void
517 skipjack_encrypt(void *key, u_int8_t *blk)
518 {
519 skipjack_forwards(blk, blk, (u_int8_t **) key);
520 }
521
522 static void
523 skipjack_decrypt(void *key, u_int8_t *blk)
524 {
525 skipjack_backwards(blk, blk, (u_int8_t **) key);
526 }
527
528 static int
529 skipjack_setkey(u_int8_t **sched, const u_int8_t *key, int len)
530 {
531 int err;
532
533 /* NB: allocate all the memory that's needed at once */
534 /* XXX assumes bytes are aligned on sizeof(u_char) == 1 boundaries.
535 * Will this break a pdp-10, Cray-1, or GE-645 port?
536 */
537 *sched = malloc(10 * (sizeof(u_int8_t *) + 0x100),
538 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
539
540 if (*sched != NULL) {
541
542 u_int8_t** key_tables = (u_int8_t**) *sched;
543 u_int8_t* table = (u_int8_t*) &key_tables[10];
544 int k;
545
546 for (k = 0; k < 10; k++) {
547 key_tables[k] = table;
548 table += 0x100;
549 }
550 subkey_table_gen(key, (u_int8_t **) *sched);
551 err = 0;
552 } else
553 err = ENOMEM;
554 return err;
555 }
556
557 static void
558 skipjack_zerokey(u_int8_t **sched)
559 {
560 memset(*sched, 0, 10 * (sizeof(u_int8_t *) + 0x100));
561 free(*sched, M_CRYPTO_DATA);
562 *sched = NULL;
563 }
564
565 static void
566 rijndael128_encrypt(void *key, u_int8_t *blk)
567 {
568 rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
569 }
570
571 static void
572 rijndael128_decrypt(void *key, u_int8_t *blk)
573 {
574 rijndael_decrypt((rijndael_ctx *) key, (u_char *) blk,
575 (u_char *) blk);
576 }
577
578 static int
579 rijndael128_setkey(u_int8_t **sched, const u_int8_t *key, int len)
580 {
581 int err;
582
583 if (len != 16 && len != 24 && len != 32)
584 return EINVAL;
585 *sched = malloc(sizeof(rijndael_ctx), M_CRYPTO_DATA,
586 M_NOWAIT|M_ZERO);
587 if (*sched != NULL) {
588 rijndael_set_key((rijndael_ctx *) *sched, key, len * 8);
589 err = 0;
590 } else
591 err = ENOMEM;
592 return err;
593 }
594
595 static void
596 rijndael128_zerokey(u_int8_t **sched)
597 {
598 memset(*sched, 0, sizeof(rijndael_ctx));
599 free(*sched, M_CRYPTO_DATA);
600 *sched = NULL;
601 }
602
603 static void
604 cml_encrypt(void *key, u_int8_t *blk)
605 {
606
607 camellia_encrypt(key, blk, blk);
608 }
609
610 static void
611 cml_decrypt(void *key, u_int8_t *blk)
612 {
613
614 camellia_decrypt(key, blk, blk);
615 }
616
617 static int
618 cml_setkey(u_int8_t **sched, const u_int8_t *key, int len)
619 {
620 int err;
621
622 if (len != 16 && len != 24 && len != 32)
623 return (EINVAL);
624 *sched = malloc(sizeof(camellia_ctx), M_CRYPTO_DATA,
625 M_NOWAIT|M_ZERO);
626 if (*sched != NULL) {
627 camellia_set_key((camellia_ctx *) *sched, key, len * 8);
628 err = 0;
629 } else
630 err = ENOMEM;
631 return err;
632 }
633
634 static void
635 cml_zerokey(u_int8_t **sched)
636 {
637
638 memset(*sched, 0, sizeof(camellia_ctx));
639 free(*sched, M_CRYPTO_DATA);
640 *sched = NULL;
641 }
642
643 #define AESCTR_NONCESIZE 4
644 #define AESCTR_IVSIZE 8
645 #define AESCTR_BLOCKSIZE 16
646
647 struct aes_ctr_ctx {
648 /* need only encryption half */
649 u_int32_t ac_ek[4*(RIJNDAEL_MAXNR + 1)];
650 u_int8_t ac_block[AESCTR_BLOCKSIZE];
651 int ac_nr;
652 struct {
653 u_int64_t lastiv;
654 } ivgenctx;
655 };
656
657 static void
658 aes_ctr_crypt(void *key, u_int8_t *blk)
659 {
660 struct aes_ctr_ctx *ctx;
661 u_int8_t keystream[AESCTR_BLOCKSIZE];
662 int i;
663
664 ctx = key;
665 /* increment counter */
666 for (i = AESCTR_BLOCKSIZE - 1;
667 i >= AESCTR_NONCESIZE + AESCTR_IVSIZE; i--)
668 if (++ctx->ac_block[i]) /* continue on overflow */
669 break;
670 rijndaelEncrypt(ctx->ac_ek, ctx->ac_nr, ctx->ac_block, keystream);
671 for (i = 0; i < AESCTR_BLOCKSIZE; i++)
672 blk[i] ^= keystream[i];
673 memset(keystream, 0, sizeof(keystream));
674 }
675
676 int
677 aes_ctr_setkey(u_int8_t **sched, const u_int8_t *key, int len)
678 {
679 struct aes_ctr_ctx *ctx;
680
681 if (len < AESCTR_NONCESIZE)
682 return EINVAL;
683
684 ctx = malloc(sizeof(struct aes_ctr_ctx), M_CRYPTO_DATA,
685 M_NOWAIT|M_ZERO);
686 if (!ctx)
687 return ENOMEM;
688 ctx->ac_nr = rijndaelKeySetupEnc(ctx->ac_ek, (const u_char *)key,
689 (len - AESCTR_NONCESIZE) * 8);
690 if (!ctx->ac_nr) { /* wrong key len */
691 aes_ctr_zerokey((u_int8_t **)&ctx);
692 return EINVAL;
693 }
694 memcpy(ctx->ac_block, key + len - AESCTR_NONCESIZE, AESCTR_NONCESIZE);
695 /* random start value for simple counter */
696 arc4randbytes(&ctx->ivgenctx.lastiv, sizeof(ctx->ivgenctx.lastiv));
697 *sched = (void *)ctx;
698 return 0;
699 }
700
701 void
702 aes_ctr_zerokey(u_int8_t **sched)
703 {
704
705 memset(*sched, 0, sizeof(struct aes_ctr_ctx));
706 free(*sched, M_CRYPTO_DATA);
707 *sched = NULL;
708 }
709
710 void
711 aes_ctr_reinit(void *key, const u_int8_t *iv, u_int8_t *ivout)
712 {
713 struct aes_ctr_ctx *ctx = key;
714
715 if (!iv) {
716 ctx->ivgenctx.lastiv++;
717 iv = (const u_int8_t *)&ctx->ivgenctx.lastiv;
718 }
719 if (ivout)
720 memcpy(ivout, iv, AESCTR_IVSIZE);
721 memcpy(ctx->ac_block + AESCTR_NONCESIZE, iv, AESCTR_IVSIZE);
722 /* reset counter */
723 memset(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 0, 4);
724 }
725
726 /*
727 * And now for auth.
728 */
729
730 static void
731 null_init(void *ctx)
732 {
733 }
734
735 static int
736 null_update(void *ctx, const u_int8_t *buf,
737 u_int16_t len)
738 {
739 return 0;
740 }
741
742 static void
743 null_final(u_int8_t *buf, void *ctx)
744 {
745 if (buf != (u_int8_t *) 0)
746 memset(buf, 0, 12);
747 }
748
749 static int
750 RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
751 {
752 RMD160Update(ctx, buf, len);
753 return 0;
754 }
755
756 static int
757 MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
758 {
759 MD5Update(ctx, buf, len);
760 return 0;
761 }
762
763 static void
764 SHA1Init_int(void *ctx)
765 {
766 SHA1Init(ctx);
767 }
768
769 static int
770 SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
771 {
772 SHA1Update(ctx, buf, len);
773 return 0;
774 }
775
776 static void
777 SHA1Final_int(u_int8_t *blk, void *ctx)
778 {
779 SHA1Final(blk, ctx);
780 }
781
782 static int
783 SHA256Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
784 {
785 SHA256_Update(ctx, buf, len);
786 return 0;
787 }
788
789 static int
790 SHA384Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
791 {
792 SHA384_Update(ctx, buf, len);
793 return 0;
794 }
795
796 static int
797 SHA512Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
798 {
799 SHA512_Update(ctx, buf, len);
800 return 0;
801 }
802
803 /*
804 * And compression
805 */
806
807 static u_int32_t
808 deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
809 {
810 return deflate_global(data, size, 0, out, 0);
811 }
812
813 static u_int32_t
814 deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out,
815 int size_hint)
816 {
817 return deflate_global(data, size, 1, out, size_hint);
818 }
819
820 static u_int32_t
821 gzip_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
822 {
823 return gzip_global(data, size, 0, out, 0);
824 }
825
826 static u_int32_t
827 gzip_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out,
828 int size_hint)
829 {
830 return gzip_global(data, size, 1, out, size_hint);
831 }
832