cryptosoft_xform.c revision 1.27 1 /* $NetBSD: cryptosoft_xform.c,v 1.27 2014/11/27 20:30:21 christos Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/xform.c,v 1.1.2.1 2002/11/21 23:34:23 sam Exp $ */
3 /* $OpenBSD: xform.c,v 1.19 2002/08/16 22:47:25 dhartmei Exp $ */
4
5 /*
6 * The authors of this code are John Ioannidis (ji (at) tla.org),
7 * Angelos D. Keromytis (kermit (at) csd.uch.gr) and
8 * Niels Provos (provos (at) physnet.uni-hamburg.de).
9 *
10 * This code was written by John Ioannidis for BSD/OS in Athens, Greece,
11 * in November 1995.
12 *
13 * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
14 * by Angelos D. Keromytis.
15 *
16 * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
17 * and Niels Provos.
18 *
19 * Additional features in 1999 by Angelos D. Keromytis.
20 *
21 * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
22 * Angelos D. Keromytis and Niels Provos.
23 *
24 * Copyright (C) 2001, Angelos D. Keromytis.
25 *
26 * Permission to use, copy, and modify this software with or without fee
27 * is hereby granted, provided that this entire notice is included in
28 * all copies of any software which is or includes a copy or
29 * modification of this software.
30 * You may use this code under the GNU public license if you so wish. Please
31 * contribute changes back to the authors under this freer than GPL license
32 * so that we may further the use of strong encryption without limitations to
33 * all.
34 *
35 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
36 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
37 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
38 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
39 * PURPOSE.
40 */
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(1, "$NetBSD: cryptosoft_xform.c,v 1.27 2014/11/27 20:30:21 christos Exp $");
44
45 #include <crypto/blowfish/blowfish.h>
46 #include <crypto/cast128/cast128.h>
47 #include <crypto/des/des.h>
48 #include <crypto/rijndael/rijndael.h>
49 #include <crypto/skipjack/skipjack.h>
50 #include <crypto/camellia/camellia.h>
51
52 #include <opencrypto/deflate.h>
53
54 #include <sys/md5.h>
55 #include <sys/rmd160.h>
56 #include <sys/sha1.h>
57 #include <sys/sha2.h>
58 #include <sys/cprng.h>
59 #include <opencrypto/aesxcbcmac.h>
60 #include <opencrypto/gmac.h>
61
62 struct swcr_auth_hash {
63 const struct auth_hash *auth_hash;
64 int ctxsize;
65 void (*Init)(void *);
66 void (*Setkey)(void *, const uint8_t *, uint16_t);
67 void (*Reinit)(void *, const uint8_t *, uint16_t);
68 int (*Update)(void *, const uint8_t *, uint16_t);
69 void (*Final)(uint8_t *, void *);
70 };
71
72 struct swcr_enc_xform {
73 const struct enc_xform *enc_xform;
74 void (*encrypt)(void *, uint8_t *);
75 void (*decrypt)(void *, uint8_t *);
76 int (*setkey)(uint8_t **, const uint8_t *, int);
77 void (*zerokey)(uint8_t **);
78 void (*reinit)(void *, const uint8_t *, uint8_t *);
79 };
80
81 struct swcr_comp_algo {
82 const struct comp_algo *unused_comp_algo;
83 uint32_t (*compress)(uint8_t *, uint32_t, uint8_t **);
84 uint32_t (*decompress)(uint8_t *, uint32_t, uint8_t **, int);
85 };
86
87 static void null_encrypt(void *, u_int8_t *);
88 static void null_decrypt(void *, u_int8_t *);
89 static int null_setkey(u_int8_t **, const u_int8_t *, int);
90 static void null_zerokey(u_int8_t **);
91
92 static int des1_setkey(u_int8_t **, const u_int8_t *, int);
93 static int des3_setkey(u_int8_t **, const u_int8_t *, int);
94 static int blf_setkey(u_int8_t **, const u_int8_t *, int);
95 static int cast5_setkey(u_int8_t **, const u_int8_t *, int);
96 static int skipjack_setkey(u_int8_t **, const u_int8_t *, int);
97 static int rijndael128_setkey(u_int8_t **, const u_int8_t *, int);
98 static int cml_setkey(u_int8_t **, const u_int8_t *, int);
99 static int aes_ctr_setkey(u_int8_t **, const u_int8_t *, int);
100 static int aes_gmac_setkey(u_int8_t **, const u_int8_t *, int);
101 static void des1_encrypt(void *, u_int8_t *);
102 static void des3_encrypt(void *, u_int8_t *);
103 static void blf_encrypt(void *, u_int8_t *);
104 static void cast5_encrypt(void *, u_int8_t *);
105 static void skipjack_encrypt(void *, u_int8_t *);
106 static void rijndael128_encrypt(void *, u_int8_t *);
107 static void cml_encrypt(void *, u_int8_t *);
108 static void des1_decrypt(void *, u_int8_t *);
109 static void des3_decrypt(void *, u_int8_t *);
110 static void blf_decrypt(void *, u_int8_t *);
111 static void cast5_decrypt(void *, u_int8_t *);
112 static void skipjack_decrypt(void *, u_int8_t *);
113 static void rijndael128_decrypt(void *, u_int8_t *);
114 static void cml_decrypt(void *, u_int8_t *);
115 static void aes_ctr_crypt(void *, u_int8_t *);
116 static void des1_zerokey(u_int8_t **);
117 static void des3_zerokey(u_int8_t **);
118 static void blf_zerokey(u_int8_t **);
119 static void cast5_zerokey(u_int8_t **);
120 static void skipjack_zerokey(u_int8_t **);
121 static void rijndael128_zerokey(u_int8_t **);
122 static void cml_zerokey(u_int8_t **);
123 static void aes_ctr_zerokey(u_int8_t **);
124 static void aes_gmac_zerokey(u_int8_t **);
125 static void aes_ctr_reinit(void *, const u_int8_t *, u_int8_t *);
126 static void aes_gcm_reinit(void *, const u_int8_t *, u_int8_t *);
127 static void aes_gmac_reinit(void *, const u_int8_t *, u_int8_t *);
128
129 static void null_init(void *);
130 static int null_update(void *, const u_int8_t *, u_int16_t);
131 static void null_final(u_int8_t *, void *);
132
133 static int MD5Update_int(void *, const u_int8_t *, u_int16_t);
134 static void SHA1Init_int(void *);
135 static int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
136 static void SHA1Final_int(u_int8_t *, void *);
137
138
139 static int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
140 static int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
141 static void SHA1Final_int(u_int8_t *, void *);
142 static int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
143 static int SHA256Update_int(void *, const u_int8_t *, u_int16_t);
144 static int SHA384Update_int(void *, const u_int8_t *, u_int16_t);
145 static int SHA512Update_int(void *, const u_int8_t *, u_int16_t);
146
147 static u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
148 static u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **, int);
149 static u_int32_t gzip_compress(u_int8_t *, u_int32_t, u_int8_t **);
150 static u_int32_t gzip_decompress(u_int8_t *, u_int32_t, u_int8_t **, int);
151
152 /* Encryption instances */
153 static const struct swcr_enc_xform swcr_enc_xform_null = {
154 &enc_xform_null,
155 null_encrypt,
156 null_decrypt,
157 null_setkey,
158 null_zerokey,
159 NULL
160 };
161
162 static const struct swcr_enc_xform swcr_enc_xform_des = {
163 &enc_xform_des,
164 des1_encrypt,
165 des1_decrypt,
166 des1_setkey,
167 des1_zerokey,
168 NULL
169 };
170
171 static const struct swcr_enc_xform swcr_enc_xform_3des = {
172 &enc_xform_3des,
173 des3_encrypt,
174 des3_decrypt,
175 des3_setkey,
176 des3_zerokey,
177 NULL
178 };
179
180 static const struct swcr_enc_xform swcr_enc_xform_blf = {
181 &enc_xform_blf,
182 blf_encrypt,
183 blf_decrypt,
184 blf_setkey,
185 blf_zerokey,
186 NULL
187 };
188
189 static const struct swcr_enc_xform swcr_enc_xform_cast5 = {
190 &enc_xform_cast5,
191 cast5_encrypt,
192 cast5_decrypt,
193 cast5_setkey,
194 cast5_zerokey,
195 NULL
196 };
197
198 static const struct swcr_enc_xform swcr_enc_xform_skipjack = {
199 &enc_xform_skipjack,
200 skipjack_encrypt,
201 skipjack_decrypt,
202 skipjack_setkey,
203 skipjack_zerokey,
204 NULL
205 };
206
207 static const struct swcr_enc_xform swcr_enc_xform_rijndael128 = {
208 &enc_xform_rijndael128,
209 rijndael128_encrypt,
210 rijndael128_decrypt,
211 rijndael128_setkey,
212 rijndael128_zerokey,
213 NULL
214 };
215
216 static const struct swcr_enc_xform swcr_enc_xform_aes_ctr = {
217 &enc_xform_aes_ctr,
218 aes_ctr_crypt,
219 aes_ctr_crypt,
220 aes_ctr_setkey,
221 aes_ctr_zerokey,
222 aes_ctr_reinit
223 };
224
225 static const struct swcr_enc_xform swcr_enc_xform_aes_gcm = {
226 &enc_xform_aes_gcm,
227 aes_ctr_crypt,
228 aes_ctr_crypt,
229 aes_ctr_setkey,
230 aes_ctr_zerokey,
231 aes_gcm_reinit
232 };
233
234 static const struct swcr_enc_xform swcr_enc_xform_aes_gmac = {
235 &enc_xform_aes_gmac,
236 NULL,
237 NULL,
238 aes_gmac_setkey,
239 aes_gmac_zerokey,
240 aes_gmac_reinit
241 };
242
243 static const struct swcr_enc_xform swcr_enc_xform_camellia = {
244 &enc_xform_camellia,
245 cml_encrypt,
246 cml_decrypt,
247 cml_setkey,
248 cml_zerokey,
249 NULL
250 };
251
252 /* Authentication instances */
253 static const struct swcr_auth_hash swcr_auth_hash_null = {
254 &auth_hash_null, sizeof(int), /* NB: context isn't used */
255 null_init, NULL, NULL, null_update, null_final
256 };
257
258 static const struct swcr_auth_hash swcr_auth_hash_hmac_md5 = {
259 &auth_hash_hmac_md5, sizeof(MD5_CTX),
260 (void (*) (void *)) MD5Init, NULL, NULL, MD5Update_int,
261 (void (*) (u_int8_t *, void *)) MD5Final
262 };
263
264 static const struct swcr_auth_hash swcr_auth_hash_hmac_sha1 = {
265 &auth_hash_hmac_sha1, sizeof(SHA1_CTX),
266 SHA1Init_int, NULL, NULL, SHA1Update_int, SHA1Final_int
267 };
268
269 static const struct swcr_auth_hash swcr_auth_hash_hmac_ripemd_160 = {
270 &auth_hash_hmac_ripemd_160, sizeof(RMD160_CTX),
271 (void (*)(void *)) RMD160Init, NULL, NULL, RMD160Update_int,
272 (void (*)(u_int8_t *, void *)) RMD160Final
273 };
274 static const struct swcr_auth_hash swcr_auth_hash_hmac_md5_96 = {
275 &auth_hash_hmac_md5_96, sizeof(MD5_CTX),
276 (void (*) (void *)) MD5Init, NULL, NULL, MD5Update_int,
277 (void (*) (u_int8_t *, void *)) MD5Final
278 };
279
280 static const struct swcr_auth_hash swcr_auth_hash_hmac_sha1_96 = {
281 &auth_hash_hmac_sha1_96, sizeof(SHA1_CTX),
282 SHA1Init_int, NULL, NULL, SHA1Update_int, SHA1Final_int
283 };
284
285 static const struct swcr_auth_hash swcr_auth_hash_hmac_ripemd_160_96 = {
286 &auth_hash_hmac_ripemd_160_96, sizeof(RMD160_CTX),
287 (void (*)(void *)) RMD160Init, NULL, NULL, RMD160Update_int,
288 (void (*)(u_int8_t *, void *)) RMD160Final
289 };
290
291 static const struct swcr_auth_hash swcr_auth_hash_key_md5 = {
292 &auth_hash_key_md5, sizeof(MD5_CTX),
293 (void (*)(void *)) MD5Init, NULL, NULL, MD5Update_int,
294 (void (*)(u_int8_t *, void *)) MD5Final
295 };
296
297 static const struct swcr_auth_hash swcr_auth_hash_key_sha1 = {
298 &auth_hash_key_sha1, sizeof(SHA1_CTX),
299 SHA1Init_int, NULL, NULL, SHA1Update_int, SHA1Final_int
300 };
301
302 static const struct swcr_auth_hash swcr_auth_hash_md5 = {
303 &auth_hash_md5, sizeof(MD5_CTX),
304 (void (*) (void *)) MD5Init, NULL, NULL, MD5Update_int,
305 (void (*) (u_int8_t *, void *)) MD5Final
306 };
307
308 static const struct swcr_auth_hash swcr_auth_hash_sha1 = {
309 &auth_hash_sha1, sizeof(SHA1_CTX),
310 (void (*)(void *)) SHA1Init, NULL, NULL, SHA1Update_int,
311 (void (*)(u_int8_t *, void *)) SHA1Final
312 };
313
314 static const struct swcr_auth_hash swcr_auth_hash_hmac_sha2_256 = {
315 &auth_hash_hmac_sha2_256, sizeof(SHA256_CTX),
316 (void (*)(void *)) SHA256_Init, NULL, NULL, SHA256Update_int,
317 (void (*)(u_int8_t *, void *)) SHA256_Final
318 };
319
320 static const struct swcr_auth_hash swcr_auth_hash_hmac_sha2_384 = {
321 &auth_hash_hmac_sha2_384, sizeof(SHA384_CTX),
322 (void (*)(void *)) SHA384_Init, NULL, NULL, SHA384Update_int,
323 (void (*)(u_int8_t *, void *)) SHA384_Final
324 };
325
326 static const struct swcr_auth_hash swcr_auth_hash_hmac_sha2_512 = {
327 &auth_hash_hmac_sha2_512, sizeof(SHA512_CTX),
328 (void (*)(void *)) SHA512_Init, NULL, NULL, SHA512Update_int,
329 (void (*)(u_int8_t *, void *)) SHA512_Final
330 };
331
332 static const struct swcr_auth_hash swcr_auth_hash_aes_xcbc_mac = {
333 &auth_hash_aes_xcbc_mac_96, sizeof(aesxcbc_ctx),
334 null_init,
335 (void (*)(void *, const u_int8_t *, u_int16_t))aes_xcbc_mac_init,
336 NULL, aes_xcbc_mac_loop, aes_xcbc_mac_result
337 };
338
339 static const struct swcr_auth_hash swcr_auth_hash_gmac_aes_128 = {
340 &auth_hash_gmac_aes_128, sizeof(AES_GMAC_CTX),
341 (void (*)(void *))AES_GMAC_Init,
342 (void (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Setkey,
343 (void (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Reinit,
344 (int (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Update,
345 (void (*)(u_int8_t *, void *))AES_GMAC_Final
346 };
347
348 static const struct swcr_auth_hash swcr_auth_hash_gmac_aes_192 = {
349 &auth_hash_gmac_aes_192, sizeof(AES_GMAC_CTX),
350 (void (*)(void *))AES_GMAC_Init,
351 (void (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Setkey,
352 (void (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Reinit,
353 (int (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Update,
354 (void (*)(u_int8_t *, void *))AES_GMAC_Final
355 };
356
357 static const struct swcr_auth_hash swcr_auth_hash_gmac_aes_256 = {
358 &auth_hash_gmac_aes_256, sizeof(AES_GMAC_CTX),
359 (void (*)(void *))AES_GMAC_Init,
360 (void (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Setkey,
361 (void (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Reinit,
362 (int (*)(void *, const u_int8_t *, u_int16_t))AES_GMAC_Update,
363 (void (*)(u_int8_t *, void *))AES_GMAC_Final
364 };
365
366 /* Compression instance */
367 static const struct swcr_comp_algo swcr_comp_algo_deflate = {
368 &comp_algo_deflate,
369 deflate_compress,
370 deflate_decompress
371 };
372
373 static const struct swcr_comp_algo swcr_comp_algo_deflate_nogrow = {
374 &comp_algo_deflate_nogrow,
375 deflate_compress,
376 deflate_decompress
377 };
378
379 static const struct swcr_comp_algo swcr_comp_algo_gzip = {
380 &comp_algo_deflate,
381 gzip_compress,
382 gzip_decompress
383 };
384
385 /*
386 * Encryption wrapper routines.
387 */
388 static void
389 null_encrypt(void *key, u_int8_t *blk)
390 {
391 }
392 static void
393 null_decrypt(void *key, u_int8_t *blk)
394 {
395 }
396 static int
397 null_setkey(u_int8_t **sched, const u_int8_t *key, int len)
398 {
399 *sched = NULL;
400 return 0;
401 }
402 static void
403 null_zerokey(u_int8_t **sched)
404 {
405 *sched = NULL;
406 }
407
408 static void
409 des1_encrypt(void *key, u_int8_t *blk)
410 {
411 des_cblock *cb = (des_cblock *) blk;
412 des_key_schedule *p = (des_key_schedule *) key;
413
414 des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT);
415 }
416
417 static void
418 des1_decrypt(void *key, u_int8_t *blk)
419 {
420 des_cblock *cb = (des_cblock *) blk;
421 des_key_schedule *p = (des_key_schedule *) key;
422
423 des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT);
424 }
425
426 static int
427 des1_setkey(u_int8_t **sched, const u_int8_t *key, int len)
428 {
429 des_key_schedule *p;
430
431 p = malloc(sizeof (des_key_schedule),
432 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
433 *sched = (u_int8_t *) p;
434 if (p == NULL)
435 return ENOMEM;
436 des_set_key((des_cblock *)__UNCONST(key), p[0]);
437 return 0;
438 }
439
440 static void
441 des1_zerokey(u_int8_t **sched)
442 {
443 memset(*sched, 0, sizeof (des_key_schedule));
444 free(*sched, M_CRYPTO_DATA);
445 *sched = NULL;
446 }
447
448 static void
449 des3_encrypt(void *key, u_int8_t *blk)
450 {
451 des_cblock *cb = (des_cblock *) blk;
452 des_key_schedule *p = (des_key_schedule *) key;
453
454 des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT);
455 }
456
457 static void
458 des3_decrypt(void *key, u_int8_t *blk)
459 {
460 des_cblock *cb = (des_cblock *) blk;
461 des_key_schedule *p = (des_key_schedule *) key;
462
463 des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT);
464 }
465
466 static int
467 des3_setkey(u_int8_t **sched, const u_int8_t *key, int len)
468 {
469 des_key_schedule *p;
470
471 p = malloc(3*sizeof (des_key_schedule),
472 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
473 *sched = (u_int8_t *) p;
474 if (p == NULL)
475 return ENOMEM;
476 des_set_key((des_cblock *)__UNCONST(key + 0), p[0]);
477 des_set_key((des_cblock *)__UNCONST(key + 8), p[1]);
478 des_set_key((des_cblock *)__UNCONST(key + 16), p[2]);
479 return 0;
480 }
481
482 static void
483 des3_zerokey(u_int8_t **sched)
484 {
485 memset(*sched, 0, 3*sizeof (des_key_schedule));
486 free(*sched, M_CRYPTO_DATA);
487 *sched = NULL;
488 }
489
490 static void
491 blf_encrypt(void *key, u_int8_t *blk)
492 {
493
494 BF_ecb_encrypt(blk, blk, (BF_KEY *)key, 1);
495 }
496
497 static void
498 blf_decrypt(void *key, u_int8_t *blk)
499 {
500
501 BF_ecb_encrypt(blk, blk, (BF_KEY *)key, 0);
502 }
503
504 static int
505 blf_setkey(u_int8_t **sched, const u_int8_t *key, int len)
506 {
507
508 *sched = malloc(sizeof(BF_KEY),
509 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
510 if (*sched == NULL)
511 return ENOMEM;
512 BF_set_key((BF_KEY *) *sched, len, key);
513 return 0;
514 }
515
516 static void
517 blf_zerokey(u_int8_t **sched)
518 {
519 memset(*sched, 0, sizeof(BF_KEY));
520 free(*sched, M_CRYPTO_DATA);
521 *sched = NULL;
522 }
523
524 static void
525 cast5_encrypt(void *key, u_int8_t *blk)
526 {
527 cast128_encrypt((cast128_key *) key, blk, blk);
528 }
529
530 static void
531 cast5_decrypt(void *key, u_int8_t *blk)
532 {
533 cast128_decrypt((cast128_key *) key, blk, blk);
534 }
535
536 static int
537 cast5_setkey(u_int8_t **sched, const u_int8_t *key, int len)
538 {
539
540 *sched = malloc(sizeof(cast128_key), M_CRYPTO_DATA,
541 M_NOWAIT|M_ZERO);
542 if (*sched == NULL)
543 return ENOMEM;
544 cast128_setkey((cast128_key *)*sched, key, len);
545 return 0;
546 }
547
548 static void
549 cast5_zerokey(u_int8_t **sched)
550 {
551 memset(*sched, 0, sizeof(cast128_key));
552 free(*sched, M_CRYPTO_DATA);
553 *sched = NULL;
554 }
555
556 static void
557 skipjack_encrypt(void *key, u_int8_t *blk)
558 {
559 skipjack_forwards(blk, blk, (u_int8_t **) key);
560 }
561
562 static void
563 skipjack_decrypt(void *key, u_int8_t *blk)
564 {
565 skipjack_backwards(blk, blk, (u_int8_t **) key);
566 }
567
568 static int
569 skipjack_setkey(u_int8_t **sched, const u_int8_t *key, int len)
570 {
571
572 /* NB: allocate all the memory that's needed at once */
573 /* XXX assumes bytes are aligned on sizeof(u_char) == 1 boundaries.
574 * Will this break a pdp-10, Cray-1, or GE-645 port?
575 */
576 *sched = malloc(10 * (sizeof(u_int8_t *) + 0x100),
577 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
578
579 if (*sched == NULL)
580 return ENOMEM;
581
582 u_int8_t** key_tables = (u_int8_t**) *sched;
583 u_int8_t* table = (u_int8_t*) &key_tables[10];
584 int k;
585
586 for (k = 0; k < 10; k++) {
587 key_tables[k] = table;
588 table += 0x100;
589 }
590 subkey_table_gen(key, (u_int8_t **) *sched);
591 return 0;
592 }
593
594 static void
595 skipjack_zerokey(u_int8_t **sched)
596 {
597 memset(*sched, 0, 10 * (sizeof(u_int8_t *) + 0x100));
598 free(*sched, M_CRYPTO_DATA);
599 *sched = NULL;
600 }
601
602 static void
603 rijndael128_encrypt(void *key, u_int8_t *blk)
604 {
605 rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
606 }
607
608 static void
609 rijndael128_decrypt(void *key, u_int8_t *blk)
610 {
611 rijndael_decrypt((rijndael_ctx *) key, (u_char *) blk,
612 (u_char *) blk);
613 }
614
615 static int
616 rijndael128_setkey(u_int8_t **sched, const u_int8_t *key, int len)
617 {
618
619 if (len != 16 && len != 24 && len != 32)
620 return EINVAL;
621 *sched = malloc(sizeof(rijndael_ctx), M_CRYPTO_DATA,
622 M_NOWAIT|M_ZERO);
623 if (*sched == NULL)
624 return ENOMEM;
625 rijndael_set_key((rijndael_ctx *) *sched, key, len * 8);
626 return 0;
627 }
628
629 static void
630 rijndael128_zerokey(u_int8_t **sched)
631 {
632 memset(*sched, 0, sizeof(rijndael_ctx));
633 free(*sched, M_CRYPTO_DATA);
634 *sched = NULL;
635 }
636
637 static void
638 cml_encrypt(void *key, u_int8_t *blk)
639 {
640
641 camellia_encrypt(key, blk, blk);
642 }
643
644 static void
645 cml_decrypt(void *key, u_int8_t *blk)
646 {
647
648 camellia_decrypt(key, blk, blk);
649 }
650
651 static int
652 cml_setkey(u_int8_t **sched, const u_int8_t *key, int len)
653 {
654
655 if (len != 16 && len != 24 && len != 32)
656 return (EINVAL);
657 *sched = malloc(sizeof(camellia_ctx), M_CRYPTO_DATA,
658 M_NOWAIT|M_ZERO);
659 if (*sched == NULL)
660 return ENOMEM;
661
662 camellia_set_key((camellia_ctx *) *sched, key, len * 8);
663 return 0;
664 }
665
666 static void
667 cml_zerokey(u_int8_t **sched)
668 {
669
670 memset(*sched, 0, sizeof(camellia_ctx));
671 free(*sched, M_CRYPTO_DATA);
672 *sched = NULL;
673 }
674
675 #define AESCTR_NONCESIZE 4
676 #define AESCTR_IVSIZE 8
677 #define AESCTR_BLOCKSIZE 16
678
679 struct aes_ctr_ctx {
680 /* need only encryption half */
681 u_int32_t ac_ek[4*(RIJNDAEL_MAXNR + 1)];
682 u_int8_t ac_block[AESCTR_BLOCKSIZE];
683 int ac_nr;
684 struct {
685 u_int64_t lastiv;
686 } ivgenctx;
687 };
688
689 static void
690 aes_ctr_crypt(void *key, u_int8_t *blk)
691 {
692 struct aes_ctr_ctx *ctx;
693 u_int8_t keystream[AESCTR_BLOCKSIZE];
694 int i;
695
696 ctx = key;
697 /* increment counter */
698 for (i = AESCTR_BLOCKSIZE - 1;
699 i >= AESCTR_NONCESIZE + AESCTR_IVSIZE; i--)
700 if (++ctx->ac_block[i]) /* continue on overflow */
701 break;
702 rijndaelEncrypt(ctx->ac_ek, ctx->ac_nr, ctx->ac_block, keystream);
703 for (i = 0; i < AESCTR_BLOCKSIZE; i++)
704 blk[i] ^= keystream[i];
705 memset(keystream, 0, sizeof(keystream));
706 }
707
708 int
709 aes_ctr_setkey(u_int8_t **sched, const u_int8_t *key, int len)
710 {
711 struct aes_ctr_ctx *ctx;
712
713 if (len < AESCTR_NONCESIZE)
714 return EINVAL;
715
716 ctx = malloc(sizeof(struct aes_ctr_ctx), M_CRYPTO_DATA,
717 M_NOWAIT|M_ZERO);
718 if (!ctx)
719 return ENOMEM;
720 ctx->ac_nr = rijndaelKeySetupEnc(ctx->ac_ek, (const u_char *)key,
721 (len - AESCTR_NONCESIZE) * 8);
722 if (!ctx->ac_nr) { /* wrong key len */
723 aes_ctr_zerokey((u_int8_t **)&ctx);
724 return EINVAL;
725 }
726 memcpy(ctx->ac_block, key + len - AESCTR_NONCESIZE, AESCTR_NONCESIZE);
727 /* random start value for simple counter */
728 cprng_fast(&ctx->ivgenctx.lastiv, sizeof(ctx->ivgenctx.lastiv));
729 *sched = (void *)ctx;
730 return 0;
731 }
732
733 void
734 aes_ctr_zerokey(u_int8_t **sched)
735 {
736
737 memset(*sched, 0, sizeof(struct aes_ctr_ctx));
738 free(*sched, M_CRYPTO_DATA);
739 *sched = NULL;
740 }
741
742 void
743 aes_ctr_reinit(void *key, const u_int8_t *iv, u_int8_t *ivout)
744 {
745 struct aes_ctr_ctx *ctx = key;
746
747 if (!iv) {
748 ctx->ivgenctx.lastiv++;
749 iv = (const u_int8_t *)&ctx->ivgenctx.lastiv;
750 }
751 if (ivout)
752 memcpy(ivout, iv, AESCTR_IVSIZE);
753 memcpy(ctx->ac_block + AESCTR_NONCESIZE, iv, AESCTR_IVSIZE);
754 /* reset counter */
755 memset(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 0, 4);
756 }
757
758 void
759 aes_gcm_reinit(void *key, const u_int8_t *iv, u_int8_t *ivout)
760 {
761 struct aes_ctr_ctx *ctx = key;
762
763 if (!iv) {
764 ctx->ivgenctx.lastiv++;
765 iv = (const u_int8_t *)&ctx->ivgenctx.lastiv;
766 }
767 if (ivout)
768 memcpy(ivout, iv, AESCTR_IVSIZE);
769 memcpy(ctx->ac_block + AESCTR_NONCESIZE, iv, AESCTR_IVSIZE);
770 /* reset counter */
771 memset(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 0, 4);
772 ctx->ac_block[AESCTR_BLOCKSIZE - 1] = 1; /* GCM starts with 1 */
773 }
774
775 struct aes_gmac_ctx {
776 struct {
777 u_int64_t lastiv;
778 } ivgenctx;
779 };
780
781 int
782 aes_gmac_setkey(u_int8_t **sched, const u_int8_t *key, int len)
783 {
784 struct aes_gmac_ctx *ctx;
785
786 ctx = malloc(sizeof(struct aes_gmac_ctx), M_CRYPTO_DATA,
787 M_NOWAIT|M_ZERO);
788 if (!ctx)
789 return ENOMEM;
790
791 /* random start value for simple counter */
792 cprng_fast(&ctx->ivgenctx.lastiv, sizeof(ctx->ivgenctx.lastiv));
793 *sched = (void *)ctx;
794 return 0;
795 }
796
797 void
798 aes_gmac_zerokey(u_int8_t **sched)
799 {
800
801 free(*sched, M_CRYPTO_DATA);
802 *sched = NULL;
803 }
804
805 void
806 aes_gmac_reinit(void *key, const u_int8_t *iv, u_int8_t *ivout)
807 {
808 struct aes_gmac_ctx *ctx = key;
809
810 if (!iv) {
811 ctx->ivgenctx.lastiv++;
812 iv = (const u_int8_t *)&ctx->ivgenctx.lastiv;
813 }
814 if (ivout)
815 memcpy(ivout, iv, AESCTR_IVSIZE);
816 }
817
818 /*
819 * And now for auth.
820 */
821
822 static void
823 null_init(void *ctx)
824 {
825 }
826
827 static int
828 null_update(void *ctx, const u_int8_t *buf,
829 u_int16_t len)
830 {
831 return 0;
832 }
833
834 static void
835 null_final(u_int8_t *buf, void *ctx)
836 {
837 if (buf != (u_int8_t *) 0)
838 memset(buf, 0, 12);
839 }
840
841 static int
842 RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
843 {
844 RMD160Update(ctx, buf, len);
845 return 0;
846 }
847
848 static int
849 MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
850 {
851 MD5Update(ctx, buf, len);
852 return 0;
853 }
854
855 static void
856 SHA1Init_int(void *ctx)
857 {
858 SHA1Init(ctx);
859 }
860
861 static int
862 SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
863 {
864 SHA1Update(ctx, buf, len);
865 return 0;
866 }
867
868 static void
869 SHA1Final_int(u_int8_t *blk, void *ctx)
870 {
871 SHA1Final(blk, ctx);
872 }
873
874 static int
875 SHA256Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
876 {
877 SHA256_Update(ctx, buf, len);
878 return 0;
879 }
880
881 static int
882 SHA384Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
883 {
884 SHA384_Update(ctx, buf, len);
885 return 0;
886 }
887
888 static int
889 SHA512Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
890 {
891 SHA512_Update(ctx, buf, len);
892 return 0;
893 }
894
895 /*
896 * And compression
897 */
898
899 static u_int32_t
900 deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
901 {
902 return deflate_global(data, size, 0, out, 0);
903 }
904
905 static u_int32_t
906 deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out,
907 int size_hint)
908 {
909 return deflate_global(data, size, 1, out, size_hint);
910 }
911
912 static u_int32_t
913 gzip_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
914 {
915 return gzip_global(data, size, 0, out, 0);
916 }
917
918 static u_int32_t
919 gzip_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out,
920 int size_hint)
921 {
922 return gzip_global(data, size, 1, out, size_hint);
923 }
924