Home | History | Annotate | Line # | Download | only in rumpkern
locks.c revision 1.20.2.2
      1  1.20.2.2     skrll /*	$NetBSD: locks.c,v 1.20.2.2 2009/03/03 18:34:07 skrll Exp $	*/
      2      1.14        ad 
      3      1.14        ad /*-
      4      1.14        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5      1.14        ad  * All rights reserved.
      6      1.14        ad  *
      7      1.14        ad  * Redistribution and use in source and binary forms, with or without
      8      1.14        ad  * modification, are permitted provided that the following conditions
      9      1.14        ad  * are met:
     10      1.14        ad  * 1. Redistributions of source code must retain the above copyright
     11      1.14        ad  *    notice, this list of conditions and the following disclaimer.
     12      1.14        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13      1.14        ad  *    notice, this list of conditions and the following disclaimer in the
     14      1.14        ad  *    documentation and/or other materials provided with the distribution.
     15      1.14        ad  *
     16      1.14        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17      1.14        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18      1.14        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19      1.14        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20      1.14        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21      1.14        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22      1.14        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23      1.14        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24      1.14        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25      1.14        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26      1.14        ad  * POSSIBILITY OF SUCH DAMAGE.
     27      1.14        ad  */
     28       1.1     pooka 
     29       1.1     pooka /*
     30  1.20.2.1     skrll  * Copyright (c) 2007, 2008 Antti Kantee.  All Rights Reserved.
     31       1.1     pooka  *
     32       1.1     pooka  * Development of this software was supported by the
     33       1.1     pooka  * Finnish Cultural Foundation.
     34       1.1     pooka  *
     35       1.1     pooka  * Redistribution and use in source and binary forms, with or without
     36       1.1     pooka  * modification, are permitted provided that the following conditions
     37       1.1     pooka  * are met:
     38       1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     39       1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     40       1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     41       1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     42       1.1     pooka  *    documentation and/or other materials provided with the distribution.
     43       1.1     pooka  *
     44       1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     45       1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     46       1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     47       1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     48       1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     49       1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     50       1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     51       1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     52       1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     53       1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     54       1.1     pooka  * SUCH DAMAGE.
     55       1.1     pooka  */
     56       1.1     pooka 
     57  1.20.2.1     skrll #include <sys/cdefs.h>
     58  1.20.2.2     skrll __KERNEL_RCSID(0, "$NetBSD: locks.c,v 1.20.2.2 2009/03/03 18:34:07 skrll Exp $");
     59  1.20.2.1     skrll 
     60       1.1     pooka #include <sys/param.h>
     61  1.20.2.1     skrll #include <sys/atomic.h>
     62  1.20.2.1     skrll #include <sys/kmem.h>
     63       1.1     pooka #include <sys/mutex.h>
     64       1.1     pooka #include <sys/rwlock.h>
     65       1.1     pooka 
     66      1.18     pooka #include <rump/rumpuser.h>
     67      1.18     pooka 
     68       1.2     pooka #include "rump_private.h"
     69       1.2     pooka 
     70  1.20.2.1     skrll /*
     71  1.20.2.1     skrll  * We map locks to pthread routines.  The difference between kernel
     72  1.20.2.1     skrll  * and rumpuser routines is that while the kernel uses static
     73  1.20.2.1     skrll  * storage, rumpuser allocates the object from the heap.  This
     74  1.20.2.1     skrll  * indirection is necessary because we don't know the size of
     75  1.20.2.1     skrll  * pthread objects here.  It is also benefitial, since we can
     76  1.20.2.1     skrll  * be easily compatible with the kernel ABI because all kernel
     77  1.20.2.1     skrll  * objects regardless of machine architecture are always at least
     78  1.20.2.1     skrll  * the size of a pointer.  The downside, of course, is a performance
     79  1.20.2.1     skrll  * penalty.
     80  1.20.2.1     skrll  */
     81  1.20.2.1     skrll 
     82  1.20.2.1     skrll #define RUMPMTX(mtx) (*(struct rumpuser_mtx **)(mtx))
     83  1.20.2.1     skrll 
     84       1.1     pooka void
     85       1.1     pooka mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
     86       1.1     pooka {
     87       1.1     pooka 
     88  1.20.2.1     skrll 	CTASSERT(sizeof(kmutex_t) >= sizeof(void *));
     89  1.20.2.1     skrll 
     90  1.20.2.1     skrll 	rumpuser_mutex_init((struct rumpuser_mtx **)mtx);
     91       1.1     pooka }
     92       1.1     pooka 
     93       1.1     pooka void
     94       1.1     pooka mutex_destroy(kmutex_t *mtx)
     95       1.1     pooka {
     96       1.1     pooka 
     97  1.20.2.1     skrll 	rumpuser_mutex_destroy(RUMPMTX(mtx));
     98       1.1     pooka }
     99       1.1     pooka 
    100       1.1     pooka void
    101       1.1     pooka mutex_enter(kmutex_t *mtx)
    102       1.1     pooka {
    103       1.1     pooka 
    104  1.20.2.1     skrll 	rumpuser_mutex_enter(RUMPMTX(mtx));
    105       1.1     pooka }
    106       1.1     pooka 
    107       1.6     pooka void
    108       1.6     pooka mutex_spin_enter(kmutex_t *mtx)
    109       1.6     pooka {
    110       1.6     pooka 
    111      1.20     pooka 	if (__predict_true(mtx != RUMP_LMUTEX_MAGIC))
    112      1.20     pooka 		mutex_enter(mtx);
    113       1.6     pooka }
    114       1.6     pooka 
    115       1.1     pooka int
    116       1.1     pooka mutex_tryenter(kmutex_t *mtx)
    117       1.1     pooka {
    118       1.1     pooka 
    119  1.20.2.1     skrll 	return rumpuser_mutex_tryenter(RUMPMTX(mtx));
    120       1.1     pooka }
    121       1.1     pooka 
    122       1.1     pooka void
    123       1.1     pooka mutex_exit(kmutex_t *mtx)
    124       1.1     pooka {
    125       1.1     pooka 
    126  1.20.2.1     skrll 	rumpuser_mutex_exit(RUMPMTX(mtx));
    127       1.1     pooka }
    128       1.1     pooka 
    129       1.6     pooka void
    130       1.6     pooka mutex_spin_exit(kmutex_t *mtx)
    131       1.6     pooka {
    132       1.6     pooka 
    133      1.20     pooka 	if (__predict_true(mtx != RUMP_LMUTEX_MAGIC))
    134      1.20     pooka 		mutex_exit(mtx);
    135       1.6     pooka }
    136       1.6     pooka 
    137       1.1     pooka int
    138       1.1     pooka mutex_owned(kmutex_t *mtx)
    139       1.1     pooka {
    140       1.1     pooka 
    141  1.20.2.1     skrll 	return rumpuser_mutex_held(RUMPMTX(mtx));
    142       1.1     pooka }
    143       1.1     pooka 
    144  1.20.2.1     skrll #define RUMPRW(rw) (*(struct rumpuser_rw **)(rw))
    145  1.20.2.1     skrll 
    146       1.1     pooka /* reader/writer locks */
    147       1.1     pooka 
    148       1.1     pooka void
    149       1.1     pooka rw_init(krwlock_t *rw)
    150       1.1     pooka {
    151       1.1     pooka 
    152  1.20.2.1     skrll 	CTASSERT(sizeof(krwlock_t) >= sizeof(void *));
    153  1.20.2.1     skrll 
    154  1.20.2.1     skrll 	rumpuser_rw_init((struct rumpuser_rw **)rw);
    155       1.1     pooka }
    156       1.1     pooka 
    157       1.1     pooka void
    158       1.1     pooka rw_destroy(krwlock_t *rw)
    159       1.1     pooka {
    160       1.1     pooka 
    161  1.20.2.1     skrll 	rumpuser_rw_destroy(RUMPRW(rw));
    162       1.1     pooka }
    163       1.1     pooka 
    164       1.1     pooka void
    165       1.1     pooka rw_enter(krwlock_t *rw, const krw_t op)
    166       1.1     pooka {
    167       1.1     pooka 
    168  1.20.2.1     skrll 	rumpuser_rw_enter(RUMPRW(rw), op == RW_WRITER);
    169       1.1     pooka }
    170       1.1     pooka 
    171       1.1     pooka int
    172       1.1     pooka rw_tryenter(krwlock_t *rw, const krw_t op)
    173       1.1     pooka {
    174       1.1     pooka 
    175  1.20.2.1     skrll 	return rumpuser_rw_tryenter(RUMPRW(rw), op == RW_WRITER);
    176       1.1     pooka }
    177       1.1     pooka 
    178       1.1     pooka void
    179       1.1     pooka rw_exit(krwlock_t *rw)
    180       1.1     pooka {
    181       1.1     pooka 
    182  1.20.2.1     skrll 	rumpuser_rw_exit(RUMPRW(rw));
    183       1.1     pooka }
    184       1.1     pooka 
    185       1.1     pooka /* always fails */
    186       1.1     pooka int
    187       1.1     pooka rw_tryupgrade(krwlock_t *rw)
    188       1.1     pooka {
    189       1.1     pooka 
    190       1.1     pooka 	return 0;
    191       1.1     pooka }
    192       1.1     pooka 
    193       1.6     pooka int
    194       1.6     pooka rw_write_held(krwlock_t *rw)
    195       1.6     pooka {
    196       1.6     pooka 
    197  1.20.2.1     skrll 	return rumpuser_rw_wrheld(RUMPRW(rw));
    198      1.10        ad }
    199      1.10        ad 
    200      1.10        ad int
    201      1.10        ad rw_read_held(krwlock_t *rw)
    202      1.10        ad {
    203      1.10        ad 
    204  1.20.2.1     skrll 	return rumpuser_rw_rdheld(RUMPRW(rw));
    205      1.10        ad }
    206      1.10        ad 
    207      1.10        ad int
    208      1.10        ad rw_lock_held(krwlock_t *rw)
    209      1.10        ad {
    210      1.10        ad 
    211  1.20.2.1     skrll 	return rumpuser_rw_held(RUMPRW(rw));
    212       1.6     pooka }
    213       1.6     pooka 
    214       1.1     pooka /* curriculum vitaes */
    215       1.1     pooka 
    216  1.20.2.1     skrll #define RUMPCV(cv) (*(struct rumpuser_cv **)(cv))
    217       1.1     pooka 
    218       1.1     pooka void
    219       1.1     pooka cv_init(kcondvar_t *cv, const char *msg)
    220       1.1     pooka {
    221       1.1     pooka 
    222  1.20.2.1     skrll 	CTASSERT(sizeof(kcondvar_t) >= sizeof(void *));
    223  1.20.2.1     skrll 
    224  1.20.2.1     skrll 	rumpuser_cv_init((struct rumpuser_cv **)cv);
    225       1.1     pooka }
    226       1.1     pooka 
    227       1.1     pooka void
    228       1.1     pooka cv_destroy(kcondvar_t *cv)
    229       1.1     pooka {
    230       1.1     pooka 
    231       1.1     pooka 	rumpuser_cv_destroy(RUMPCV(cv));
    232       1.1     pooka }
    233       1.1     pooka 
    234       1.1     pooka void
    235       1.1     pooka cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    236       1.1     pooka {
    237       1.1     pooka 
    238  1.20.2.1     skrll 	rumpuser_cv_wait(RUMPCV(cv), RUMPMTX(mtx));
    239       1.1     pooka }
    240       1.1     pooka 
    241       1.3     pooka int
    242       1.5     pooka cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    243       1.5     pooka {
    244       1.5     pooka 
    245  1.20.2.1     skrll 	rumpuser_cv_wait(RUMPCV(cv), RUMPMTX(mtx));
    246       1.5     pooka 	return 0;
    247       1.5     pooka }
    248       1.5     pooka 
    249       1.5     pooka int
    250       1.3     pooka cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int ticks)
    251       1.3     pooka {
    252  1.20.2.2     skrll 	struct timespec ts, tick;
    253       1.3     pooka 	extern int hz;
    254  1.20.2.2     skrll 
    255  1.20.2.2     skrll 	nanotime(&ts);
    256  1.20.2.2     skrll 	tick.tv_sec = ticks / hz;
    257  1.20.2.2     skrll 	tick.tv_nsec = (ticks % hz) * (1000000000/hz);
    258  1.20.2.2     skrll 	timespecadd(&ts, &tick, &ts);
    259       1.3     pooka 
    260       1.9     pooka 	if (ticks == 0) {
    261       1.9     pooka 		cv_wait(cv, mtx);
    262       1.9     pooka 		return 0;
    263       1.9     pooka 	} else {
    264  1.20.2.2     skrll 		return rumpuser_cv_timedwait(RUMPCV(cv), RUMPMTX(mtx), &ts);
    265       1.9     pooka 	}
    266       1.3     pooka }
    267       1.3     pooka 
    268       1.5     pooka int
    269       1.5     pooka cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int ticks)
    270       1.5     pooka {
    271       1.5     pooka 
    272       1.9     pooka 	return cv_timedwait(cv, mtx, ticks);
    273       1.5     pooka }
    274       1.5     pooka 
    275       1.1     pooka void
    276       1.1     pooka cv_signal(kcondvar_t *cv)
    277       1.1     pooka {
    278       1.1     pooka 
    279       1.1     pooka 	rumpuser_cv_signal(RUMPCV(cv));
    280       1.1     pooka }
    281       1.2     pooka 
    282       1.4     pooka void
    283       1.4     pooka cv_broadcast(kcondvar_t *cv)
    284       1.4     pooka {
    285       1.4     pooka 
    286       1.4     pooka 	rumpuser_cv_broadcast(RUMPCV(cv));
    287       1.4     pooka }
    288       1.4     pooka 
    289      1.17     pooka bool
    290      1.17     pooka cv_has_waiters(kcondvar_t *cv)
    291      1.17     pooka {
    292      1.17     pooka 
    293      1.17     pooka 	return rumpuser_cv_has_waiters(RUMPCV(cv));
    294      1.17     pooka }
    295      1.17     pooka 
    296      1.19     pooka /*
    297      1.19     pooka  * giant lock
    298      1.19     pooka  */
    299       1.2     pooka 
    300  1.20.2.1     skrll static volatile int lockcnt;
    301       1.2     pooka void
    302      1.13  drochner _kernel_lock(int nlocks)
    303       1.2     pooka {
    304       1.2     pooka 
    305      1.19     pooka 	while (nlocks--) {
    306  1.20.2.1     skrll 		rumpuser_mutex_enter(rump_giantlock);
    307      1.19     pooka 		lockcnt++;
    308      1.19     pooka 	}
    309       1.2     pooka }
    310       1.2     pooka 
    311       1.2     pooka void
    312      1.13  drochner _kernel_unlock(int nlocks, int *countp)
    313       1.2     pooka {
    314       1.2     pooka 
    315  1.20.2.1     skrll 	if (!rumpuser_mutex_held(rump_giantlock)) {
    316      1.19     pooka 		KASSERT(nlocks == 0);
    317      1.19     pooka 		if (countp)
    318      1.19     pooka 			*countp = 0;
    319      1.19     pooka 		return;
    320      1.19     pooka 	}
    321      1.19     pooka 
    322       1.2     pooka 	if (countp)
    323      1.19     pooka 		*countp = lockcnt;
    324      1.19     pooka 	if (nlocks == 0)
    325      1.19     pooka 		nlocks = lockcnt;
    326      1.19     pooka 	if (nlocks == -1) {
    327      1.19     pooka 		KASSERT(lockcnt == 1);
    328      1.19     pooka 		nlocks = 1;
    329      1.19     pooka 	}
    330      1.19     pooka 	KASSERT(nlocks <= lockcnt);
    331      1.19     pooka 	while (nlocks--) {
    332      1.19     pooka 		lockcnt--;
    333  1.20.2.1     skrll 		rumpuser_mutex_exit(rump_giantlock);
    334      1.19     pooka 	}
    335       1.2     pooka }
    336      1.14        ad 
    337      1.14        ad struct kmutexobj {
    338      1.14        ad 	kmutex_t	mo_lock;
    339      1.14        ad 	u_int		mo_refcnt;
    340      1.14        ad };
    341      1.14        ad 
    342      1.14        ad kmutex_t *
    343      1.14        ad mutex_obj_alloc(kmutex_type_t type, int ipl)
    344      1.14        ad {
    345      1.14        ad 	struct kmutexobj *mo;
    346      1.14        ad 
    347      1.14        ad 	mo = kmem_alloc(sizeof(*mo), KM_SLEEP);
    348      1.14        ad 	mutex_init(&mo->mo_lock, type, ipl);
    349      1.14        ad 	mo->mo_refcnt = 1;
    350      1.14        ad 
    351      1.14        ad 	return (kmutex_t *)mo;
    352      1.14        ad }
    353      1.14        ad 
    354      1.14        ad void
    355      1.14        ad mutex_obj_hold(kmutex_t *lock)
    356      1.14        ad {
    357      1.14        ad 	struct kmutexobj *mo = (struct kmutexobj *)lock;
    358      1.14        ad 
    359      1.14        ad 	atomic_inc_uint(&mo->mo_refcnt);
    360      1.14        ad }
    361      1.14        ad 
    362      1.14        ad bool
    363      1.14        ad mutex_obj_free(kmutex_t *lock)
    364      1.14        ad {
    365      1.14        ad 	struct kmutexobj *mo = (struct kmutexobj *)lock;
    366      1.14        ad 
    367      1.14        ad 	if (atomic_dec_uint_nv(&mo->mo_refcnt) > 0) {
    368      1.14        ad 		return false;
    369      1.14        ad 	}
    370      1.14        ad 	mutex_destroy(&mo->mo_lock);
    371      1.14        ad 	kmem_free(mo, sizeof(*mo));
    372      1.14        ad 	return true;
    373      1.14        ad }
    374