Home | History | Annotate | Line # | Download | only in rumpkern
locks.c revision 1.47.2.1
      1 /*	$NetBSD: locks.c,v 1.47.2.1 2011/06/06 09:10:07 jruoho Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     16  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     18  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     25  * SUCH DAMAGE.
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: locks.c,v 1.47.2.1 2011/06/06 09:10:07 jruoho Exp $");
     30 
     31 #include <sys/param.h>
     32 #include <sys/kmem.h>
     33 #include <sys/mutex.h>
     34 #include <sys/rwlock.h>
     35 
     36 #include <rump/rumpuser.h>
     37 
     38 #include "rump_private.h"
     39 
     40 /*
     41  * Simple lockdebug.  If it's compiled in, it's always active.
     42  * Currently available only for mtx/rwlock.
     43  */
     44 #ifdef LOCKDEBUG
     45 #include <sys/lockdebug.h>
     46 
     47 static lockops_t mutex_lockops = {
     48 	"mutex",
     49 	LOCKOPS_SLEEP,
     50 	NULL
     51 };
     52 static lockops_t rw_lockops = {
     53 	"rwlock",
     54 	LOCKOPS_SLEEP,
     55 	NULL
     56 };
     57 
     58 #define ALLOCK(lock, ops)		\
     59     lockdebug_alloc(lock, ops, (uintptr_t)__builtin_return_address(0))
     60 #define FREELOCK(lock)			\
     61     lockdebug_free(lock)
     62 #define WANTLOCK(lock, shar, try)	\
     63     lockdebug_wantlock(lock, (uintptr_t)__builtin_return_address(0), shar, try)
     64 #define LOCKED(lock, shar)		\
     65     lockdebug_locked(lock, NULL, (uintptr_t)__builtin_return_address(0), shar)
     66 #define UNLOCKED(lock, shar)		\
     67     lockdebug_unlocked(lock, (uintptr_t)__builtin_return_address(0), shar)
     68 #else
     69 #define ALLOCK(a, b)
     70 #define FREELOCK(a)
     71 #define WANTLOCK(a, b, c)
     72 #define LOCKED(a, b)
     73 #define UNLOCKED(a, b)
     74 #endif
     75 
     76 /*
     77  * We map locks to pthread routines.  The difference between kernel
     78  * and rumpuser routines is that while the kernel uses static
     79  * storage, rumpuser allocates the object from the heap.  This
     80  * indirection is necessary because we don't know the size of
     81  * pthread objects here.  It is also beneficial, since we can
     82  * be easily compatible with the kernel ABI because all kernel
     83  * objects regardless of machine architecture are always at least
     84  * the size of a pointer.  The downside, of course, is a performance
     85  * penalty.
     86  */
     87 
     88 #define RUMPMTX(mtx) (*(struct rumpuser_mtx **)(mtx))
     89 
     90 void
     91 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
     92 {
     93 
     94 	CTASSERT(sizeof(kmutex_t) >= sizeof(void *));
     95 
     96 	rumpuser_mutex_init_kmutex((struct rumpuser_mtx **)mtx);
     97 	ALLOCK(mtx, &mutex_lockops);
     98 }
     99 
    100 void
    101 mutex_destroy(kmutex_t *mtx)
    102 {
    103 
    104 	FREELOCK(mtx);
    105 	rumpuser_mutex_destroy(RUMPMTX(mtx));
    106 }
    107 
    108 void
    109 mutex_enter(kmutex_t *mtx)
    110 {
    111 
    112 	WANTLOCK(mtx, false, false);
    113 	rumpuser_mutex_enter(RUMPMTX(mtx));
    114 	LOCKED(mtx, false);
    115 }
    116 __strong_alias(mutex_spin_enter,mutex_enter);
    117 
    118 int
    119 mutex_tryenter(kmutex_t *mtx)
    120 {
    121 	int rv;
    122 
    123 	rv = rumpuser_mutex_tryenter(RUMPMTX(mtx));
    124 	if (rv) {
    125 		WANTLOCK(mtx, false, true);
    126 		LOCKED(mtx, false);
    127 	}
    128 	return rv;
    129 }
    130 
    131 void
    132 mutex_exit(kmutex_t *mtx)
    133 {
    134 
    135 	UNLOCKED(mtx, false);
    136 	rumpuser_mutex_exit(RUMPMTX(mtx));
    137 }
    138 __strong_alias(mutex_spin_exit,mutex_exit);
    139 
    140 int
    141 mutex_owned(kmutex_t *mtx)
    142 {
    143 
    144 	return mutex_owner(mtx) == curlwp;
    145 }
    146 
    147 struct lwp *
    148 mutex_owner(kmutex_t *mtx)
    149 {
    150 
    151 	return rumpuser_mutex_owner(RUMPMTX(mtx));
    152 }
    153 
    154 #define RUMPRW(rw) (*(struct rumpuser_rw **)(rw))
    155 
    156 /* reader/writer locks */
    157 
    158 void
    159 rw_init(krwlock_t *rw)
    160 {
    161 
    162 	CTASSERT(sizeof(krwlock_t) >= sizeof(void *));
    163 
    164 	rumpuser_rw_init((struct rumpuser_rw **)rw);
    165 	ALLOCK(rw, &rw_lockops);
    166 }
    167 
    168 void
    169 rw_destroy(krwlock_t *rw)
    170 {
    171 
    172 	FREELOCK(rw);
    173 	rumpuser_rw_destroy(RUMPRW(rw));
    174 }
    175 
    176 void
    177 rw_enter(krwlock_t *rw, const krw_t op)
    178 {
    179 
    180 
    181 	WANTLOCK(rw, op == RW_READER, false);
    182 	rumpuser_rw_enter(RUMPRW(rw), op == RW_WRITER);
    183 	LOCKED(rw, op == RW_READER);
    184 }
    185 
    186 int
    187 rw_tryenter(krwlock_t *rw, const krw_t op)
    188 {
    189 	int rv;
    190 
    191 	rv = rumpuser_rw_tryenter(RUMPRW(rw), op == RW_WRITER);
    192 	if (rv) {
    193 		WANTLOCK(rw, op == RW_READER, true);
    194 		LOCKED(rw, op == RW_READER);
    195 	}
    196 	return rv;
    197 }
    198 
    199 void
    200 rw_exit(krwlock_t *rw)
    201 {
    202 
    203 #ifdef LOCKDEBUG
    204 	bool shared = !rw_write_held(rw);
    205 
    206 	if (shared)
    207 		KASSERT(rw_read_held(rw));
    208 	UNLOCKED(rw, shared);
    209 #endif
    210 	rumpuser_rw_exit(RUMPRW(rw));
    211 }
    212 
    213 /* always fails */
    214 int
    215 rw_tryupgrade(krwlock_t *rw)
    216 {
    217 
    218 	return 0;
    219 }
    220 
    221 void
    222 rw_downgrade(krwlock_t *rw)
    223 {
    224 
    225 #ifdef LOCKDEBUG
    226 	KASSERT(!rw_write_held(rw));
    227 #endif
    228 	/*
    229 	 * XXX HACK: How we can downgrade re lock in rump properly.
    230 	 */
    231 	rw_exit(rw);
    232 	rw_enter(rw, RW_READER);
    233 	return;
    234 }
    235 
    236 int
    237 rw_write_held(krwlock_t *rw)
    238 {
    239 
    240 	return rumpuser_rw_wrheld(RUMPRW(rw));
    241 }
    242 
    243 int
    244 rw_read_held(krwlock_t *rw)
    245 {
    246 
    247 	return rumpuser_rw_rdheld(RUMPRW(rw));
    248 }
    249 
    250 int
    251 rw_lock_held(krwlock_t *rw)
    252 {
    253 
    254 	return rumpuser_rw_held(RUMPRW(rw));
    255 }
    256 
    257 /* curriculum vitaes */
    258 
    259 #define RUMPCV(cv) (*(struct rumpuser_cv **)(cv))
    260 
    261 void
    262 cv_init(kcondvar_t *cv, const char *msg)
    263 {
    264 
    265 	CTASSERT(sizeof(kcondvar_t) >= sizeof(void *));
    266 
    267 	rumpuser_cv_init((struct rumpuser_cv **)cv);
    268 }
    269 
    270 void
    271 cv_destroy(kcondvar_t *cv)
    272 {
    273 
    274 	rumpuser_cv_destroy(RUMPCV(cv));
    275 }
    276 
    277 static int
    278 docvwait(kcondvar_t *cv, kmutex_t *mtx, struct timespec *ts)
    279 {
    280 	struct lwp *l = curlwp;
    281 	int rv;
    282 
    283 	if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
    284 		/*
    285 		 * yield() here, someone might want the cpu
    286 		 * to set a condition.  otherwise we'll just
    287 		 * loop forever.
    288 		 */
    289 		yield();
    290 		return EINTR;
    291 	}
    292 
    293 	UNLOCKED(mtx, false);
    294 
    295 	l->l_private = cv;
    296 	rv = 0;
    297 	if (ts) {
    298 		if (rumpuser_cv_timedwait(RUMPCV(cv), RUMPMTX(mtx),
    299 		    ts->tv_sec, ts->tv_nsec))
    300 			rv = EWOULDBLOCK;
    301 	} else {
    302 		rumpuser_cv_wait(RUMPCV(cv), RUMPMTX(mtx));
    303 	}
    304 
    305 	LOCKED(mtx, false);
    306 
    307 	/*
    308 	 * Check for QEXIT.  if so, we need to wait here until we
    309 	 * are allowed to exit.
    310 	 */
    311 	if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
    312 		struct proc *p = l->l_proc;
    313 
    314 		UNLOCKED(mtx, false);
    315 		mutex_exit(mtx); /* drop and retake later */
    316 
    317 		mutex_enter(p->p_lock);
    318 		while ((p->p_sflag & PS_RUMP_LWPEXIT) == 0) {
    319 			/* avoid recursion */
    320 			rumpuser_cv_wait(RUMPCV(&p->p_waitcv),
    321 			    RUMPMTX(p->p_lock));
    322 		}
    323 		KASSERT(p->p_sflag & PS_RUMP_LWPEXIT);
    324 		mutex_exit(p->p_lock);
    325 
    326 		/* ok, we can exit and remove "reference" to l->private */
    327 
    328 		mutex_enter(mtx);
    329 		LOCKED(mtx, false);
    330 		rv = EINTR;
    331 	}
    332 	l->l_private = NULL;
    333 
    334 	return rv;
    335 }
    336 
    337 void
    338 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    339 {
    340 
    341 	if (__predict_false(rump_threads == 0))
    342 		panic("cv_wait without threads");
    343 	(void) docvwait(cv, mtx, NULL);
    344 }
    345 
    346 int
    347 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    348 {
    349 
    350 	if (__predict_false(rump_threads == 0))
    351 		panic("cv_wait without threads");
    352 	return docvwait(cv, mtx, NULL);
    353 }
    354 
    355 int
    356 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int ticks)
    357 {
    358 	struct timespec ts, tick;
    359 	extern int hz;
    360 	int rv;
    361 
    362 	if (ticks == 0) {
    363 		rv = cv_wait_sig(cv, mtx);
    364 	} else {
    365 		/*
    366 		 * XXX: this fetches rump kernel time, but
    367 		 * rumpuser_cv_timedwait uses host time.
    368 		 */
    369 		nanotime(&ts);
    370 		tick.tv_sec = ticks / hz;
    371 		tick.tv_nsec = (ticks % hz) * (1000000000/hz);
    372 		timespecadd(&ts, &tick, &ts);
    373 
    374 		rv = docvwait(cv, mtx, &ts);
    375 	}
    376 
    377 	return rv;
    378 }
    379 __strong_alias(cv_timedwait_sig,cv_timedwait);
    380 
    381 void
    382 cv_signal(kcondvar_t *cv)
    383 {
    384 
    385 	rumpuser_cv_signal(RUMPCV(cv));
    386 }
    387 
    388 void
    389 cv_broadcast(kcondvar_t *cv)
    390 {
    391 
    392 	rumpuser_cv_broadcast(RUMPCV(cv));
    393 }
    394 
    395 bool
    396 cv_has_waiters(kcondvar_t *cv)
    397 {
    398 
    399 	return rumpuser_cv_has_waiters(RUMPCV(cv));
    400 }
    401 
    402 /* this is not much of an attempt, but ... */
    403 bool
    404 cv_is_valid(kcondvar_t *cv)
    405 {
    406 
    407 	return RUMPCV(cv) != NULL;
    408 }
    409