locks.c revision 1.58 1 /* $NetBSD: locks.c,v 1.58 2013/04/28 13:37:52 pooka Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: locks.c,v 1.58 2013/04/28 13:37:52 pooka Exp $");
30
31 #include <sys/param.h>
32 #include <sys/kmem.h>
33 #include <sys/mutex.h>
34 #include <sys/rwlock.h>
35
36 #include <rump/rumpuser.h>
37
38 #include "rump_private.h"
39
40 /*
41 * Simple lockdebug. If it's compiled in, it's always active.
42 * Currently available only for mtx/rwlock.
43 */
44 #ifdef LOCKDEBUG
45 #include <sys/lockdebug.h>
46
47 static lockops_t mutex_lockops = {
48 "mutex",
49 LOCKOPS_SLEEP,
50 NULL
51 };
52 static lockops_t rw_lockops = {
53 "rwlock",
54 LOCKOPS_SLEEP,
55 NULL
56 };
57
58 #define ALLOCK(lock, ops) \
59 lockdebug_alloc(lock, ops, (uintptr_t)__builtin_return_address(0))
60 #define FREELOCK(lock) \
61 lockdebug_free(lock)
62 #define WANTLOCK(lock, shar, try) \
63 lockdebug_wantlock(lock, (uintptr_t)__builtin_return_address(0), shar, try)
64 #define LOCKED(lock, shar) \
65 lockdebug_locked(lock, NULL, (uintptr_t)__builtin_return_address(0), shar)
66 #define UNLOCKED(lock, shar) \
67 lockdebug_unlocked(lock, (uintptr_t)__builtin_return_address(0), shar)
68 #else
69 #define ALLOCK(a, b)
70 #define FREELOCK(a)
71 #define WANTLOCK(a, b, c)
72 #define LOCKED(a, b)
73 #define UNLOCKED(a, b)
74 #endif
75
76 /*
77 * We map locks to pthread routines. The difference between kernel
78 * and rumpuser routines is that while the kernel uses static
79 * storage, rumpuser allocates the object from the heap. This
80 * indirection is necessary because we don't know the size of
81 * pthread objects here. It is also beneficial, since we can
82 * be easily compatible with the kernel ABI because all kernel
83 * objects regardless of machine architecture are always at least
84 * the size of a pointer. The downside, of course, is a performance
85 * penalty.
86 */
87
88 #define RUMPMTX(mtx) (*(struct rumpuser_mtx **)(mtx))
89
90 void
91 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
92 {
93 int ruflags = RUMPUSER_MTX_KMUTEX;
94 int isspin;
95
96 CTASSERT(sizeof(kmutex_t) >= sizeof(void *));
97
98 /*
99 * Try to figure out if the caller wanted a spin mutex or
100 * not with this easy set of conditionals. The difference
101 * between a spin mutex and an adaptive mutex for a rump
102 * kernel is that the hypervisor does not relinquish the
103 * rump kernel CPU context for a spin mutex. The
104 * hypervisor itself may block even when "spinning".
105 */
106 if (type == MUTEX_SPIN) {
107 isspin = 1;
108 } else if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
109 ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
110 ipl == IPL_SOFTSERIAL) {
111 isspin = 0;
112 } else {
113 isspin = 1;
114 }
115
116 if (isspin)
117 ruflags |= RUMPUSER_MTX_SPIN;
118 rumpuser_mutex_init((struct rumpuser_mtx **)mtx, ruflags);
119 ALLOCK(mtx, &mutex_lockops);
120 }
121
122 void
123 mutex_destroy(kmutex_t *mtx)
124 {
125
126 FREELOCK(mtx);
127 rumpuser_mutex_destroy(RUMPMTX(mtx));
128 }
129
130 void
131 mutex_enter(kmutex_t *mtx)
132 {
133
134 WANTLOCK(mtx, false, false);
135 rumpuser_mutex_enter(RUMPMTX(mtx));
136 LOCKED(mtx, false);
137 }
138
139 void
140 mutex_spin_enter(kmutex_t *mtx)
141 {
142
143 WANTLOCK(mtx, false, false);
144 rumpuser_mutex_enter_nowrap(RUMPMTX(mtx));
145 LOCKED(mtx, false);
146 }
147
148 int
149 mutex_tryenter(kmutex_t *mtx)
150 {
151 int rv;
152
153 rv = rumpuser_mutex_tryenter(RUMPMTX(mtx));
154 if (rv) {
155 WANTLOCK(mtx, false, true);
156 LOCKED(mtx, false);
157 }
158 return rv;
159 }
160
161 void
162 mutex_exit(kmutex_t *mtx)
163 {
164
165 UNLOCKED(mtx, false);
166 rumpuser_mutex_exit(RUMPMTX(mtx));
167 }
168 __strong_alias(mutex_spin_exit,mutex_exit);
169
170 int
171 mutex_owned(kmutex_t *mtx)
172 {
173
174 return mutex_owner(mtx) == curlwp;
175 }
176
177 struct lwp *
178 mutex_owner(kmutex_t *mtx)
179 {
180
181 return rumpuser_mutex_owner(RUMPMTX(mtx));
182 }
183
184 #define RUMPRW(rw) (*(struct rumpuser_rw **)(rw))
185
186 /* reader/writer locks */
187
188 void
189 rw_init(krwlock_t *rw)
190 {
191
192 CTASSERT(sizeof(krwlock_t) >= sizeof(void *));
193
194 rumpuser_rw_init((struct rumpuser_rw **)rw);
195 ALLOCK(rw, &rw_lockops);
196 }
197
198 void
199 rw_destroy(krwlock_t *rw)
200 {
201
202 FREELOCK(rw);
203 rumpuser_rw_destroy(RUMPRW(rw));
204 }
205
206 void
207 rw_enter(krwlock_t *rw, const krw_t op)
208 {
209
210
211 WANTLOCK(rw, op == RW_READER, false);
212 rumpuser_rw_enter(RUMPRW(rw), op == RW_WRITER);
213 LOCKED(rw, op == RW_READER);
214 }
215
216 int
217 rw_tryenter(krwlock_t *rw, const krw_t op)
218 {
219 int rv;
220
221 rv = rumpuser_rw_tryenter(RUMPRW(rw), op == RW_WRITER);
222 if (rv) {
223 WANTLOCK(rw, op == RW_READER, true);
224 LOCKED(rw, op == RW_READER);
225 }
226 return rv;
227 }
228
229 void
230 rw_exit(krwlock_t *rw)
231 {
232
233 #ifdef LOCKDEBUG
234 bool shared = !rw_write_held(rw);
235
236 if (shared)
237 KASSERT(rw_read_held(rw));
238 UNLOCKED(rw, shared);
239 #endif
240 rumpuser_rw_exit(RUMPRW(rw));
241 }
242
243 /* always fails */
244 int
245 rw_tryupgrade(krwlock_t *rw)
246 {
247
248 return 0;
249 }
250
251 void
252 rw_downgrade(krwlock_t *rw)
253 {
254
255 /*
256 * XXX HACK: How we can downgrade re lock in rump properly.
257 */
258 rw_exit(rw);
259 rw_enter(rw, RW_READER);
260 return;
261 }
262
263 int
264 rw_write_held(krwlock_t *rw)
265 {
266
267 return rumpuser_rw_wrheld(RUMPRW(rw));
268 }
269
270 int
271 rw_read_held(krwlock_t *rw)
272 {
273
274 return rumpuser_rw_rdheld(RUMPRW(rw));
275 }
276
277 int
278 rw_lock_held(krwlock_t *rw)
279 {
280
281 return rumpuser_rw_held(RUMPRW(rw));
282 }
283
284 /* curriculum vitaes */
285
286 #define RUMPCV(cv) (*(struct rumpuser_cv **)(cv))
287
288 void
289 cv_init(kcondvar_t *cv, const char *msg)
290 {
291
292 CTASSERT(sizeof(kcondvar_t) >= sizeof(void *));
293
294 rumpuser_cv_init((struct rumpuser_cv **)cv);
295 }
296
297 void
298 cv_destroy(kcondvar_t *cv)
299 {
300
301 rumpuser_cv_destroy(RUMPCV(cv));
302 }
303
304 static int
305 docvwait(kcondvar_t *cv, kmutex_t *mtx, struct timespec *ts)
306 {
307 struct lwp *l = curlwp;
308 int rv;
309
310 if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
311 /*
312 * yield() here, someone might want the cpu
313 * to set a condition. otherwise we'll just
314 * loop forever.
315 */
316 yield();
317 return EINTR;
318 }
319
320 UNLOCKED(mtx, false);
321
322 l->l_private = cv;
323 rv = 0;
324 if (ts) {
325 if (rumpuser_cv_timedwait(RUMPCV(cv), RUMPMTX(mtx),
326 ts->tv_sec, ts->tv_nsec))
327 rv = EWOULDBLOCK;
328 } else {
329 rumpuser_cv_wait(RUMPCV(cv), RUMPMTX(mtx));
330 }
331
332 LOCKED(mtx, false);
333
334 /*
335 * Check for QEXIT. if so, we need to wait here until we
336 * are allowed to exit.
337 */
338 if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
339 struct proc *p = l->l_proc;
340
341 UNLOCKED(mtx, false);
342 mutex_exit(mtx); /* drop and retake later */
343
344 mutex_enter(p->p_lock);
345 while ((p->p_sflag & PS_RUMP_LWPEXIT) == 0) {
346 /* avoid recursion */
347 rumpuser_cv_wait(RUMPCV(&p->p_waitcv),
348 RUMPMTX(p->p_lock));
349 }
350 KASSERT(p->p_sflag & PS_RUMP_LWPEXIT);
351 mutex_exit(p->p_lock);
352
353 /* ok, we can exit and remove "reference" to l->private */
354
355 mutex_enter(mtx);
356 LOCKED(mtx, false);
357 rv = EINTR;
358 }
359 l->l_private = NULL;
360
361 return rv;
362 }
363
364 void
365 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
366 {
367
368 if (__predict_false(rump_threads == 0))
369 panic("cv_wait without threads");
370 (void) docvwait(cv, mtx, NULL);
371 }
372
373 int
374 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
375 {
376
377 if (__predict_false(rump_threads == 0))
378 panic("cv_wait without threads");
379 return docvwait(cv, mtx, NULL);
380 }
381
382 int
383 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int ticks)
384 {
385 struct timespec ts;
386 extern int hz;
387 int rv;
388
389 if (ticks == 0) {
390 rv = cv_wait_sig(cv, mtx);
391 } else {
392 ts.tv_sec = ticks / hz;
393 ts.tv_nsec = (ticks % hz) * (1000000000/hz);
394 rv = docvwait(cv, mtx, &ts);
395 }
396
397 return rv;
398 }
399 __strong_alias(cv_timedwait_sig,cv_timedwait);
400
401 void
402 cv_signal(kcondvar_t *cv)
403 {
404
405 rumpuser_cv_signal(RUMPCV(cv));
406 }
407
408 void
409 cv_broadcast(kcondvar_t *cv)
410 {
411
412 rumpuser_cv_broadcast(RUMPCV(cv));
413 }
414
415 bool
416 cv_has_waiters(kcondvar_t *cv)
417 {
418
419 return rumpuser_cv_has_waiters(RUMPCV(cv));
420 }
421
422 /* this is not much of an attempt, but ... */
423 bool
424 cv_is_valid(kcondvar_t *cv)
425 {
426
427 return RUMPCV(cv) != NULL;
428 }
429