Home | History | Annotate | Line # | Download | only in rumpkern
locks.c revision 1.58
      1 /*	$NetBSD: locks.c,v 1.58 2013/04/28 13:37:52 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     16  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     18  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     25  * SUCH DAMAGE.
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: locks.c,v 1.58 2013/04/28 13:37:52 pooka Exp $");
     30 
     31 #include <sys/param.h>
     32 #include <sys/kmem.h>
     33 #include <sys/mutex.h>
     34 #include <sys/rwlock.h>
     35 
     36 #include <rump/rumpuser.h>
     37 
     38 #include "rump_private.h"
     39 
     40 /*
     41  * Simple lockdebug.  If it's compiled in, it's always active.
     42  * Currently available only for mtx/rwlock.
     43  */
     44 #ifdef LOCKDEBUG
     45 #include <sys/lockdebug.h>
     46 
     47 static lockops_t mutex_lockops = {
     48 	"mutex",
     49 	LOCKOPS_SLEEP,
     50 	NULL
     51 };
     52 static lockops_t rw_lockops = {
     53 	"rwlock",
     54 	LOCKOPS_SLEEP,
     55 	NULL
     56 };
     57 
     58 #define ALLOCK(lock, ops)		\
     59     lockdebug_alloc(lock, ops, (uintptr_t)__builtin_return_address(0))
     60 #define FREELOCK(lock)			\
     61     lockdebug_free(lock)
     62 #define WANTLOCK(lock, shar, try)	\
     63     lockdebug_wantlock(lock, (uintptr_t)__builtin_return_address(0), shar, try)
     64 #define LOCKED(lock, shar)		\
     65     lockdebug_locked(lock, NULL, (uintptr_t)__builtin_return_address(0), shar)
     66 #define UNLOCKED(lock, shar)		\
     67     lockdebug_unlocked(lock, (uintptr_t)__builtin_return_address(0), shar)
     68 #else
     69 #define ALLOCK(a, b)
     70 #define FREELOCK(a)
     71 #define WANTLOCK(a, b, c)
     72 #define LOCKED(a, b)
     73 #define UNLOCKED(a, b)
     74 #endif
     75 
     76 /*
     77  * We map locks to pthread routines.  The difference between kernel
     78  * and rumpuser routines is that while the kernel uses static
     79  * storage, rumpuser allocates the object from the heap.  This
     80  * indirection is necessary because we don't know the size of
     81  * pthread objects here.  It is also beneficial, since we can
     82  * be easily compatible with the kernel ABI because all kernel
     83  * objects regardless of machine architecture are always at least
     84  * the size of a pointer.  The downside, of course, is a performance
     85  * penalty.
     86  */
     87 
     88 #define RUMPMTX(mtx) (*(struct rumpuser_mtx **)(mtx))
     89 
     90 void
     91 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
     92 {
     93 	int ruflags = RUMPUSER_MTX_KMUTEX;
     94 	int isspin;
     95 
     96 	CTASSERT(sizeof(kmutex_t) >= sizeof(void *));
     97 
     98 	/*
     99 	 * Try to figure out if the caller wanted a spin mutex or
    100 	 * not with this easy set of conditionals.  The difference
    101 	 * between a spin mutex and an adaptive mutex for a rump
    102 	 * kernel is that the hypervisor does not relinquish the
    103 	 * rump kernel CPU context for a spin mutex.  The
    104 	 * hypervisor itself may block even when "spinning".
    105 	 */
    106 	if (type == MUTEX_SPIN) {
    107 		isspin = 1;
    108 	} else if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    109 	    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    110 	    ipl == IPL_SOFTSERIAL) {
    111 		isspin = 0;
    112 	} else {
    113 		isspin = 1;
    114 	}
    115 
    116 	if (isspin)
    117 		ruflags |= RUMPUSER_MTX_SPIN;
    118 	rumpuser_mutex_init((struct rumpuser_mtx **)mtx, ruflags);
    119 	ALLOCK(mtx, &mutex_lockops);
    120 }
    121 
    122 void
    123 mutex_destroy(kmutex_t *mtx)
    124 {
    125 
    126 	FREELOCK(mtx);
    127 	rumpuser_mutex_destroy(RUMPMTX(mtx));
    128 }
    129 
    130 void
    131 mutex_enter(kmutex_t *mtx)
    132 {
    133 
    134 	WANTLOCK(mtx, false, false);
    135 	rumpuser_mutex_enter(RUMPMTX(mtx));
    136 	LOCKED(mtx, false);
    137 }
    138 
    139 void
    140 mutex_spin_enter(kmutex_t *mtx)
    141 {
    142 
    143 	WANTLOCK(mtx, false, false);
    144 	rumpuser_mutex_enter_nowrap(RUMPMTX(mtx));
    145 	LOCKED(mtx, false);
    146 }
    147 
    148 int
    149 mutex_tryenter(kmutex_t *mtx)
    150 {
    151 	int rv;
    152 
    153 	rv = rumpuser_mutex_tryenter(RUMPMTX(mtx));
    154 	if (rv) {
    155 		WANTLOCK(mtx, false, true);
    156 		LOCKED(mtx, false);
    157 	}
    158 	return rv;
    159 }
    160 
    161 void
    162 mutex_exit(kmutex_t *mtx)
    163 {
    164 
    165 	UNLOCKED(mtx, false);
    166 	rumpuser_mutex_exit(RUMPMTX(mtx));
    167 }
    168 __strong_alias(mutex_spin_exit,mutex_exit);
    169 
    170 int
    171 mutex_owned(kmutex_t *mtx)
    172 {
    173 
    174 	return mutex_owner(mtx) == curlwp;
    175 }
    176 
    177 struct lwp *
    178 mutex_owner(kmutex_t *mtx)
    179 {
    180 
    181 	return rumpuser_mutex_owner(RUMPMTX(mtx));
    182 }
    183 
    184 #define RUMPRW(rw) (*(struct rumpuser_rw **)(rw))
    185 
    186 /* reader/writer locks */
    187 
    188 void
    189 rw_init(krwlock_t *rw)
    190 {
    191 
    192 	CTASSERT(sizeof(krwlock_t) >= sizeof(void *));
    193 
    194 	rumpuser_rw_init((struct rumpuser_rw **)rw);
    195 	ALLOCK(rw, &rw_lockops);
    196 }
    197 
    198 void
    199 rw_destroy(krwlock_t *rw)
    200 {
    201 
    202 	FREELOCK(rw);
    203 	rumpuser_rw_destroy(RUMPRW(rw));
    204 }
    205 
    206 void
    207 rw_enter(krwlock_t *rw, const krw_t op)
    208 {
    209 
    210 
    211 	WANTLOCK(rw, op == RW_READER, false);
    212 	rumpuser_rw_enter(RUMPRW(rw), op == RW_WRITER);
    213 	LOCKED(rw, op == RW_READER);
    214 }
    215 
    216 int
    217 rw_tryenter(krwlock_t *rw, const krw_t op)
    218 {
    219 	int rv;
    220 
    221 	rv = rumpuser_rw_tryenter(RUMPRW(rw), op == RW_WRITER);
    222 	if (rv) {
    223 		WANTLOCK(rw, op == RW_READER, true);
    224 		LOCKED(rw, op == RW_READER);
    225 	}
    226 	return rv;
    227 }
    228 
    229 void
    230 rw_exit(krwlock_t *rw)
    231 {
    232 
    233 #ifdef LOCKDEBUG
    234 	bool shared = !rw_write_held(rw);
    235 
    236 	if (shared)
    237 		KASSERT(rw_read_held(rw));
    238 	UNLOCKED(rw, shared);
    239 #endif
    240 	rumpuser_rw_exit(RUMPRW(rw));
    241 }
    242 
    243 /* always fails */
    244 int
    245 rw_tryupgrade(krwlock_t *rw)
    246 {
    247 
    248 	return 0;
    249 }
    250 
    251 void
    252 rw_downgrade(krwlock_t *rw)
    253 {
    254 
    255 	/*
    256 	 * XXX HACK: How we can downgrade re lock in rump properly.
    257 	 */
    258 	rw_exit(rw);
    259 	rw_enter(rw, RW_READER);
    260 	return;
    261 }
    262 
    263 int
    264 rw_write_held(krwlock_t *rw)
    265 {
    266 
    267 	return rumpuser_rw_wrheld(RUMPRW(rw));
    268 }
    269 
    270 int
    271 rw_read_held(krwlock_t *rw)
    272 {
    273 
    274 	return rumpuser_rw_rdheld(RUMPRW(rw));
    275 }
    276 
    277 int
    278 rw_lock_held(krwlock_t *rw)
    279 {
    280 
    281 	return rumpuser_rw_held(RUMPRW(rw));
    282 }
    283 
    284 /* curriculum vitaes */
    285 
    286 #define RUMPCV(cv) (*(struct rumpuser_cv **)(cv))
    287 
    288 void
    289 cv_init(kcondvar_t *cv, const char *msg)
    290 {
    291 
    292 	CTASSERT(sizeof(kcondvar_t) >= sizeof(void *));
    293 
    294 	rumpuser_cv_init((struct rumpuser_cv **)cv);
    295 }
    296 
    297 void
    298 cv_destroy(kcondvar_t *cv)
    299 {
    300 
    301 	rumpuser_cv_destroy(RUMPCV(cv));
    302 }
    303 
    304 static int
    305 docvwait(kcondvar_t *cv, kmutex_t *mtx, struct timespec *ts)
    306 {
    307 	struct lwp *l = curlwp;
    308 	int rv;
    309 
    310 	if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
    311 		/*
    312 		 * yield() here, someone might want the cpu
    313 		 * to set a condition.  otherwise we'll just
    314 		 * loop forever.
    315 		 */
    316 		yield();
    317 		return EINTR;
    318 	}
    319 
    320 	UNLOCKED(mtx, false);
    321 
    322 	l->l_private = cv;
    323 	rv = 0;
    324 	if (ts) {
    325 		if (rumpuser_cv_timedwait(RUMPCV(cv), RUMPMTX(mtx),
    326 		    ts->tv_sec, ts->tv_nsec))
    327 			rv = EWOULDBLOCK;
    328 	} else {
    329 		rumpuser_cv_wait(RUMPCV(cv), RUMPMTX(mtx));
    330 	}
    331 
    332 	LOCKED(mtx, false);
    333 
    334 	/*
    335 	 * Check for QEXIT.  if so, we need to wait here until we
    336 	 * are allowed to exit.
    337 	 */
    338 	if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
    339 		struct proc *p = l->l_proc;
    340 
    341 		UNLOCKED(mtx, false);
    342 		mutex_exit(mtx); /* drop and retake later */
    343 
    344 		mutex_enter(p->p_lock);
    345 		while ((p->p_sflag & PS_RUMP_LWPEXIT) == 0) {
    346 			/* avoid recursion */
    347 			rumpuser_cv_wait(RUMPCV(&p->p_waitcv),
    348 			    RUMPMTX(p->p_lock));
    349 		}
    350 		KASSERT(p->p_sflag & PS_RUMP_LWPEXIT);
    351 		mutex_exit(p->p_lock);
    352 
    353 		/* ok, we can exit and remove "reference" to l->private */
    354 
    355 		mutex_enter(mtx);
    356 		LOCKED(mtx, false);
    357 		rv = EINTR;
    358 	}
    359 	l->l_private = NULL;
    360 
    361 	return rv;
    362 }
    363 
    364 void
    365 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    366 {
    367 
    368 	if (__predict_false(rump_threads == 0))
    369 		panic("cv_wait without threads");
    370 	(void) docvwait(cv, mtx, NULL);
    371 }
    372 
    373 int
    374 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    375 {
    376 
    377 	if (__predict_false(rump_threads == 0))
    378 		panic("cv_wait without threads");
    379 	return docvwait(cv, mtx, NULL);
    380 }
    381 
    382 int
    383 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int ticks)
    384 {
    385 	struct timespec ts;
    386 	extern int hz;
    387 	int rv;
    388 
    389 	if (ticks == 0) {
    390 		rv = cv_wait_sig(cv, mtx);
    391 	} else {
    392 		ts.tv_sec = ticks / hz;
    393 		ts.tv_nsec = (ticks % hz) * (1000000000/hz);
    394 		rv = docvwait(cv, mtx, &ts);
    395 	}
    396 
    397 	return rv;
    398 }
    399 __strong_alias(cv_timedwait_sig,cv_timedwait);
    400 
    401 void
    402 cv_signal(kcondvar_t *cv)
    403 {
    404 
    405 	rumpuser_cv_signal(RUMPCV(cv));
    406 }
    407 
    408 void
    409 cv_broadcast(kcondvar_t *cv)
    410 {
    411 
    412 	rumpuser_cv_broadcast(RUMPCV(cv));
    413 }
    414 
    415 bool
    416 cv_has_waiters(kcondvar_t *cv)
    417 {
    418 
    419 	return rumpuser_cv_has_waiters(RUMPCV(cv));
    420 }
    421 
    422 /* this is not much of an attempt, but ... */
    423 bool
    424 cv_is_valid(kcondvar_t *cv)
    425 {
    426 
    427 	return RUMPCV(cv) != NULL;
    428 }
    429