Home | History | Annotate | Line # | Download | only in rumpkern
locks.c revision 1.61
      1 /*	$NetBSD: locks.c,v 1.61 2013/05/02 20:33:54 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     16  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     18  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     25  * SUCH DAMAGE.
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: locks.c,v 1.61 2013/05/02 20:33:54 pooka Exp $");
     30 
     31 #include <sys/param.h>
     32 #include <sys/kmem.h>
     33 #include <sys/mutex.h>
     34 #include <sys/rwlock.h>
     35 
     36 #include <rump/rumpuser.h>
     37 
     38 #include "rump_private.h"
     39 
     40 /*
     41  * Simple lockdebug.  If it's compiled in, it's always active.
     42  * Currently available only for mtx/rwlock.
     43  */
     44 #ifdef LOCKDEBUG
     45 #include <sys/lockdebug.h>
     46 
     47 static lockops_t mutex_lockops = {
     48 	"mutex",
     49 	LOCKOPS_SLEEP,
     50 	NULL
     51 };
     52 static lockops_t rw_lockops = {
     53 	"rwlock",
     54 	LOCKOPS_SLEEP,
     55 	NULL
     56 };
     57 
     58 #define ALLOCK(lock, ops)		\
     59     lockdebug_alloc(lock, ops, (uintptr_t)__builtin_return_address(0))
     60 #define FREELOCK(lock)			\
     61     lockdebug_free(lock)
     62 #define WANTLOCK(lock, shar, try)	\
     63     lockdebug_wantlock(lock, (uintptr_t)__builtin_return_address(0), shar, try)
     64 #define LOCKED(lock, shar)		\
     65     lockdebug_locked(lock, NULL, (uintptr_t)__builtin_return_address(0), shar)
     66 #define UNLOCKED(lock, shar)		\
     67     lockdebug_unlocked(lock, (uintptr_t)__builtin_return_address(0), shar)
     68 #else
     69 #define ALLOCK(a, b)
     70 #define FREELOCK(a)
     71 #define WANTLOCK(a, b, c)
     72 #define LOCKED(a, b)
     73 #define UNLOCKED(a, b)
     74 #endif
     75 
     76 /*
     77  * We map locks to pthread routines.  The difference between kernel
     78  * and rumpuser routines is that while the kernel uses static
     79  * storage, rumpuser allocates the object from the heap.  This
     80  * indirection is necessary because we don't know the size of
     81  * pthread objects here.  It is also beneficial, since we can
     82  * be easily compatible with the kernel ABI because all kernel
     83  * objects regardless of machine architecture are always at least
     84  * the size of a pointer.  The downside, of course, is a performance
     85  * penalty.
     86  */
     87 
     88 #define RUMPMTX(mtx) (*(struct rumpuser_mtx **)(mtx))
     89 
     90 void
     91 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
     92 {
     93 	int ruflags = RUMPUSER_MTX_KMUTEX;
     94 	int isspin;
     95 
     96 	CTASSERT(sizeof(kmutex_t) >= sizeof(void *));
     97 
     98 	/*
     99 	 * Try to figure out if the caller wanted a spin mutex or
    100 	 * not with this easy set of conditionals.  The difference
    101 	 * between a spin mutex and an adaptive mutex for a rump
    102 	 * kernel is that the hypervisor does not relinquish the
    103 	 * rump kernel CPU context for a spin mutex.  The
    104 	 * hypervisor itself may block even when "spinning".
    105 	 */
    106 	if (type == MUTEX_SPIN) {
    107 		isspin = 1;
    108 	} else if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    109 	    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    110 	    ipl == IPL_SOFTSERIAL) {
    111 		isspin = 0;
    112 	} else {
    113 		isspin = 1;
    114 	}
    115 
    116 	/* spin mutex support needs some cpu scheduler rework  */
    117 	if (isspin)
    118 		ruflags |= RUMPUSER_MTX_SPIN;
    119 	rumpuser_mutex_init((struct rumpuser_mtx **)mtx, ruflags);
    120 	ALLOCK(mtx, &mutex_lockops);
    121 }
    122 
    123 void
    124 mutex_destroy(kmutex_t *mtx)
    125 {
    126 
    127 	FREELOCK(mtx);
    128 	rumpuser_mutex_destroy(RUMPMTX(mtx));
    129 }
    130 
    131 void
    132 mutex_enter(kmutex_t *mtx)
    133 {
    134 
    135 	WANTLOCK(mtx, false, false);
    136 	rumpuser_mutex_enter(RUMPMTX(mtx));
    137 	LOCKED(mtx, false);
    138 }
    139 
    140 void
    141 mutex_spin_enter(kmutex_t *mtx)
    142 {
    143 
    144 	WANTLOCK(mtx, false, false);
    145 	rumpuser_mutex_enter_nowrap(RUMPMTX(mtx));
    146 	LOCKED(mtx, false);
    147 }
    148 
    149 int
    150 mutex_tryenter(kmutex_t *mtx)
    151 {
    152 	int error;
    153 
    154 	error = rumpuser_mutex_tryenter(RUMPMTX(mtx));
    155 	if (error == 0) {
    156 		WANTLOCK(mtx, false, true);
    157 		LOCKED(mtx, false);
    158 	}
    159 	return error == 0;
    160 }
    161 
    162 void
    163 mutex_exit(kmutex_t *mtx)
    164 {
    165 
    166 	UNLOCKED(mtx, false);
    167 	rumpuser_mutex_exit(RUMPMTX(mtx));
    168 }
    169 __strong_alias(mutex_spin_exit,mutex_exit);
    170 
    171 int
    172 mutex_owned(kmutex_t *mtx)
    173 {
    174 
    175 	return mutex_owner(mtx) == curlwp;
    176 }
    177 
    178 struct lwp *
    179 mutex_owner(kmutex_t *mtx)
    180 {
    181 	struct lwp *l;
    182 
    183 	rumpuser_mutex_owner(RUMPMTX(mtx), &l);
    184 	return l;
    185 }
    186 
    187 #define RUMPRW(rw) (*(struct rumpuser_rw **)(rw))
    188 
    189 /* reader/writer locks */
    190 
    191 void
    192 rw_init(krwlock_t *rw)
    193 {
    194 
    195 	CTASSERT(sizeof(krwlock_t) >= sizeof(void *));
    196 
    197 	rumpuser_rw_init((struct rumpuser_rw **)rw);
    198 	ALLOCK(rw, &rw_lockops);
    199 }
    200 
    201 void
    202 rw_destroy(krwlock_t *rw)
    203 {
    204 
    205 	FREELOCK(rw);
    206 	rumpuser_rw_destroy(RUMPRW(rw));
    207 }
    208 
    209 void
    210 rw_enter(krwlock_t *rw, const krw_t op)
    211 {
    212 
    213 
    214 	WANTLOCK(rw, op == RW_READER, false);
    215 	rumpuser_rw_enter(RUMPRW(rw), op == RW_WRITER);
    216 	LOCKED(rw, op == RW_READER);
    217 }
    218 
    219 int
    220 rw_tryenter(krwlock_t *rw, const krw_t op)
    221 {
    222 	int error;
    223 
    224 	error = rumpuser_rw_tryenter(RUMPRW(rw), op == RW_WRITER);
    225 	if (error == 0) {
    226 		WANTLOCK(rw, op == RW_READER, true);
    227 		LOCKED(rw, op == RW_READER);
    228 	}
    229 	return error == 0;
    230 }
    231 
    232 void
    233 rw_exit(krwlock_t *rw)
    234 {
    235 
    236 #ifdef LOCKDEBUG
    237 	bool shared = !rw_write_held(rw);
    238 
    239 	if (shared)
    240 		KASSERT(rw_read_held(rw));
    241 	UNLOCKED(rw, shared);
    242 #endif
    243 	rumpuser_rw_exit(RUMPRW(rw));
    244 }
    245 
    246 /* always fails */
    247 int
    248 rw_tryupgrade(krwlock_t *rw)
    249 {
    250 
    251 	return 0;
    252 }
    253 
    254 void
    255 rw_downgrade(krwlock_t *rw)
    256 {
    257 
    258 	/*
    259 	 * XXX HACK: How we can downgrade re lock in rump properly.
    260 	 */
    261 	rw_exit(rw);
    262 	rw_enter(rw, RW_READER);
    263 	return;
    264 }
    265 
    266 int
    267 rw_write_held(krwlock_t *rw)
    268 {
    269 	int rv;
    270 
    271 	rumpuser_rw_wrheld(RUMPRW(rw), &rv);
    272 	return rv;
    273 }
    274 
    275 int
    276 rw_read_held(krwlock_t *rw)
    277 {
    278 	int rv;
    279 
    280 	rumpuser_rw_rdheld(RUMPRW(rw), &rv);
    281 	return rv;
    282 }
    283 
    284 int
    285 rw_lock_held(krwlock_t *rw)
    286 {
    287 	int rv;
    288 
    289 	rumpuser_rw_held(RUMPRW(rw), &rv);
    290 	return rv;
    291 }
    292 
    293 /* curriculum vitaes */
    294 
    295 #define RUMPCV(cv) (*(struct rumpuser_cv **)(cv))
    296 
    297 void
    298 cv_init(kcondvar_t *cv, const char *msg)
    299 {
    300 
    301 	CTASSERT(sizeof(kcondvar_t) >= sizeof(void *));
    302 
    303 	rumpuser_cv_init((struct rumpuser_cv **)cv);
    304 }
    305 
    306 void
    307 cv_destroy(kcondvar_t *cv)
    308 {
    309 
    310 	rumpuser_cv_destroy(RUMPCV(cv));
    311 }
    312 
    313 static int
    314 docvwait(kcondvar_t *cv, kmutex_t *mtx, struct timespec *ts)
    315 {
    316 	struct lwp *l = curlwp;
    317 	int rv;
    318 
    319 	if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
    320 		/*
    321 		 * yield() here, someone might want the cpu
    322 		 * to set a condition.  otherwise we'll just
    323 		 * loop forever.
    324 		 */
    325 		yield();
    326 		return EINTR;
    327 	}
    328 
    329 	UNLOCKED(mtx, false);
    330 
    331 	l->l_private = cv;
    332 	rv = 0;
    333 	if (ts) {
    334 		if (rumpuser_cv_timedwait(RUMPCV(cv), RUMPMTX(mtx),
    335 		    ts->tv_sec, ts->tv_nsec))
    336 			rv = EWOULDBLOCK;
    337 	} else {
    338 		rumpuser_cv_wait(RUMPCV(cv), RUMPMTX(mtx));
    339 	}
    340 
    341 	LOCKED(mtx, false);
    342 
    343 	/*
    344 	 * Check for QEXIT.  if so, we need to wait here until we
    345 	 * are allowed to exit.
    346 	 */
    347 	if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
    348 		struct proc *p = l->l_proc;
    349 
    350 		UNLOCKED(mtx, false);
    351 		mutex_exit(mtx); /* drop and retake later */
    352 
    353 		mutex_enter(p->p_lock);
    354 		while ((p->p_sflag & PS_RUMP_LWPEXIT) == 0) {
    355 			/* avoid recursion */
    356 			rumpuser_cv_wait(RUMPCV(&p->p_waitcv),
    357 			    RUMPMTX(p->p_lock));
    358 		}
    359 		KASSERT(p->p_sflag & PS_RUMP_LWPEXIT);
    360 		mutex_exit(p->p_lock);
    361 
    362 		/* ok, we can exit and remove "reference" to l->private */
    363 
    364 		mutex_enter(mtx);
    365 		LOCKED(mtx, false);
    366 		rv = EINTR;
    367 	}
    368 	l->l_private = NULL;
    369 
    370 	return rv;
    371 }
    372 
    373 void
    374 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    375 {
    376 
    377 	if (__predict_false(rump_threads == 0))
    378 		panic("cv_wait without threads");
    379 	(void) docvwait(cv, mtx, NULL);
    380 }
    381 
    382 int
    383 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    384 {
    385 
    386 	if (__predict_false(rump_threads == 0))
    387 		panic("cv_wait without threads");
    388 	return docvwait(cv, mtx, NULL);
    389 }
    390 
    391 int
    392 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int ticks)
    393 {
    394 	struct timespec ts;
    395 	extern int hz;
    396 	int rv;
    397 
    398 	if (ticks == 0) {
    399 		rv = cv_wait_sig(cv, mtx);
    400 	} else {
    401 		ts.tv_sec = ticks / hz;
    402 		ts.tv_nsec = (ticks % hz) * (1000000000/hz);
    403 		rv = docvwait(cv, mtx, &ts);
    404 	}
    405 
    406 	return rv;
    407 }
    408 __strong_alias(cv_timedwait_sig,cv_timedwait);
    409 
    410 void
    411 cv_signal(kcondvar_t *cv)
    412 {
    413 
    414 	rumpuser_cv_signal(RUMPCV(cv));
    415 }
    416 
    417 void
    418 cv_broadcast(kcondvar_t *cv)
    419 {
    420 
    421 	rumpuser_cv_broadcast(RUMPCV(cv));
    422 }
    423 
    424 bool
    425 cv_has_waiters(kcondvar_t *cv)
    426 {
    427 	int rv;
    428 
    429 	rumpuser_cv_has_waiters(RUMPCV(cv), &rv);
    430 	return rv != 0;
    431 }
    432 
    433 /* this is not much of an attempt, but ... */
    434 bool
    435 cv_is_valid(kcondvar_t *cv)
    436 {
    437 
    438 	return RUMPCV(cv) != NULL;
    439 }
    440