locks.c revision 1.63 1 /* $NetBSD: locks.c,v 1.63 2013/05/02 21:35:19 pooka Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: locks.c,v 1.63 2013/05/02 21:35:19 pooka Exp $");
30
31 #include <sys/param.h>
32 #include <sys/kmem.h>
33 #include <sys/mutex.h>
34 #include <sys/rwlock.h>
35
36 #include <rump/rumpuser.h>
37
38 #include "rump_private.h"
39
40 /*
41 * Simple lockdebug. If it's compiled in, it's always active.
42 * Currently available only for mtx/rwlock.
43 */
44 #ifdef LOCKDEBUG
45 #include <sys/lockdebug.h>
46
47 static lockops_t mutex_lockops = {
48 "mutex",
49 LOCKOPS_SLEEP,
50 NULL
51 };
52 static lockops_t rw_lockops = {
53 "rwlock",
54 LOCKOPS_SLEEP,
55 NULL
56 };
57
58 #define ALLOCK(lock, ops) \
59 lockdebug_alloc(lock, ops, (uintptr_t)__builtin_return_address(0))
60 #define FREELOCK(lock) \
61 lockdebug_free(lock)
62 #define WANTLOCK(lock, shar, try) \
63 lockdebug_wantlock(lock, (uintptr_t)__builtin_return_address(0), shar, try)
64 #define LOCKED(lock, shar) \
65 lockdebug_locked(lock, NULL, (uintptr_t)__builtin_return_address(0), shar)
66 #define UNLOCKED(lock, shar) \
67 lockdebug_unlocked(lock, (uintptr_t)__builtin_return_address(0), shar)
68 #else
69 #define ALLOCK(a, b)
70 #define FREELOCK(a)
71 #define WANTLOCK(a, b, c)
72 #define LOCKED(a, b)
73 #define UNLOCKED(a, b)
74 #endif
75
76 /*
77 * We map locks to pthread routines. The difference between kernel
78 * and rumpuser routines is that while the kernel uses static
79 * storage, rumpuser allocates the object from the heap. This
80 * indirection is necessary because we don't know the size of
81 * pthread objects here. It is also beneficial, since we can
82 * be easily compatible with the kernel ABI because all kernel
83 * objects regardless of machine architecture are always at least
84 * the size of a pointer. The downside, of course, is a performance
85 * penalty.
86 */
87
88 #define RUMPMTX(mtx) (*(struct rumpuser_mtx **)(mtx))
89
90 void
91 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
92 {
93 int ruflags = RUMPUSER_MTX_KMUTEX;
94 int isspin;
95
96 CTASSERT(sizeof(kmutex_t) >= sizeof(void *));
97
98 /*
99 * Try to figure out if the caller wanted a spin mutex or
100 * not with this easy set of conditionals. The difference
101 * between a spin mutex and an adaptive mutex for a rump
102 * kernel is that the hypervisor does not relinquish the
103 * rump kernel CPU context for a spin mutex. The
104 * hypervisor itself may block even when "spinning".
105 */
106 if (type == MUTEX_SPIN) {
107 isspin = 1;
108 } else if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
109 ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
110 ipl == IPL_SOFTSERIAL) {
111 isspin = 0;
112 } else {
113 isspin = 1;
114 }
115
116 if (isspin)
117 ruflags |= RUMPUSER_MTX_SPIN;
118 rumpuser_mutex_init((struct rumpuser_mtx **)mtx, ruflags);
119 ALLOCK(mtx, &mutex_lockops);
120 }
121
122 void
123 mutex_destroy(kmutex_t *mtx)
124 {
125
126 FREELOCK(mtx);
127 rumpuser_mutex_destroy(RUMPMTX(mtx));
128 }
129
130 void
131 mutex_enter(kmutex_t *mtx)
132 {
133
134 WANTLOCK(mtx, false, false);
135 rumpuser_mutex_enter(RUMPMTX(mtx));
136 LOCKED(mtx, false);
137 }
138
139 void
140 mutex_spin_enter(kmutex_t *mtx)
141 {
142
143 WANTLOCK(mtx, false, false);
144 rumpuser_mutex_enter_nowrap(RUMPMTX(mtx));
145 LOCKED(mtx, false);
146 }
147
148 int
149 mutex_tryenter(kmutex_t *mtx)
150 {
151 int error;
152
153 error = rumpuser_mutex_tryenter(RUMPMTX(mtx));
154 if (error == 0) {
155 WANTLOCK(mtx, false, true);
156 LOCKED(mtx, false);
157 }
158 return error == 0;
159 }
160
161 void
162 mutex_exit(kmutex_t *mtx)
163 {
164
165 UNLOCKED(mtx, false);
166 rumpuser_mutex_exit(RUMPMTX(mtx));
167 }
168 __strong_alias(mutex_spin_exit,mutex_exit);
169
170 int
171 mutex_owned(kmutex_t *mtx)
172 {
173
174 return mutex_owner(mtx) == curlwp;
175 }
176
177 struct lwp *
178 mutex_owner(kmutex_t *mtx)
179 {
180 struct lwp *l;
181
182 rumpuser_mutex_owner(RUMPMTX(mtx), &l);
183 return l;
184 }
185
186 #define RUMPRW(rw) (*(struct rumpuser_rw **)(rw))
187
188 /* reader/writer locks */
189
190 static enum rumprwlock
191 krw2rumprw(const krw_t op)
192 {
193
194 switch (op) {
195 case RW_READER:
196 return RUMPUSER_RW_READER;
197 case RW_WRITER:
198 return RUMPUSER_RW_WRITER;
199 default:
200 panic("unknown rwlock type");
201 }
202 }
203
204 void
205 rw_init(krwlock_t *rw)
206 {
207
208 CTASSERT(sizeof(krwlock_t) >= sizeof(void *));
209
210 rumpuser_rw_init((struct rumpuser_rw **)rw);
211 ALLOCK(rw, &rw_lockops);
212 }
213
214 void
215 rw_destroy(krwlock_t *rw)
216 {
217
218 FREELOCK(rw);
219 rumpuser_rw_destroy(RUMPRW(rw));
220 }
221
222 void
223 rw_enter(krwlock_t *rw, const krw_t op)
224 {
225
226
227 WANTLOCK(rw, op == RW_READER, false);
228 rumpuser_rw_enter(RUMPRW(rw), krw2rumprw(op));
229 LOCKED(rw, op == RW_READER);
230 }
231
232 int
233 rw_tryenter(krwlock_t *rw, const krw_t op)
234 {
235 int error;
236
237 error = rumpuser_rw_tryenter(RUMPRW(rw), krw2rumprw(op));
238 if (error == 0) {
239 WANTLOCK(rw, op == RW_READER, true);
240 LOCKED(rw, op == RW_READER);
241 }
242 return error == 0;
243 }
244
245 void
246 rw_exit(krwlock_t *rw)
247 {
248
249 #ifdef LOCKDEBUG
250 bool shared = !rw_write_held(rw);
251
252 if (shared)
253 KASSERT(rw_read_held(rw));
254 UNLOCKED(rw, shared);
255 #endif
256 rumpuser_rw_exit(RUMPRW(rw));
257 }
258
259 int
260 rw_tryupgrade(krwlock_t *rw)
261 {
262 int rv;
263
264 rv = rumpuser_rw_tryupgrade(RUMPRW(rw));
265 if (rv == 0) {
266 UNLOCKED(rw, 1);
267 WANTLOCK(rw, 0, true);
268 LOCKED(rw, 0);
269 }
270 return rv == 0;
271 }
272
273 void
274 rw_downgrade(krwlock_t *rw)
275 {
276
277 rumpuser_rw_downgrade(RUMPRW(rw));
278 UNLOCKED(rw, 0);
279 WANTLOCK(rw, 1, false);
280 LOCKED(rw, 1);
281 }
282
283 int
284 rw_read_held(krwlock_t *rw)
285 {
286 int rv;
287
288 rumpuser_rw_held(RUMPRW(rw), RUMPUSER_RW_READER, &rv);
289 return rv;
290 }
291
292 int
293 rw_write_held(krwlock_t *rw)
294 {
295 int rv;
296
297 rumpuser_rw_held(RUMPRW(rw), RUMPUSER_RW_WRITER, &rv);
298 return rv;
299 }
300
301 int
302 rw_lock_held(krwlock_t *rw)
303 {
304
305 return rw_read_held(rw) || rw_write_held(rw);
306 }
307
308 /* curriculum vitaes */
309
310 #define RUMPCV(cv) (*(struct rumpuser_cv **)(cv))
311
312 void
313 cv_init(kcondvar_t *cv, const char *msg)
314 {
315
316 CTASSERT(sizeof(kcondvar_t) >= sizeof(void *));
317
318 rumpuser_cv_init((struct rumpuser_cv **)cv);
319 }
320
321 void
322 cv_destroy(kcondvar_t *cv)
323 {
324
325 rumpuser_cv_destroy(RUMPCV(cv));
326 }
327
328 static int
329 docvwait(kcondvar_t *cv, kmutex_t *mtx, struct timespec *ts)
330 {
331 struct lwp *l = curlwp;
332 int rv;
333
334 if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
335 /*
336 * yield() here, someone might want the cpu
337 * to set a condition. otherwise we'll just
338 * loop forever.
339 */
340 yield();
341 return EINTR;
342 }
343
344 UNLOCKED(mtx, false);
345
346 l->l_private = cv;
347 rv = 0;
348 if (ts) {
349 if (rumpuser_cv_timedwait(RUMPCV(cv), RUMPMTX(mtx),
350 ts->tv_sec, ts->tv_nsec))
351 rv = EWOULDBLOCK;
352 } else {
353 rumpuser_cv_wait(RUMPCV(cv), RUMPMTX(mtx));
354 }
355
356 LOCKED(mtx, false);
357
358 /*
359 * Check for QEXIT. if so, we need to wait here until we
360 * are allowed to exit.
361 */
362 if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
363 struct proc *p = l->l_proc;
364
365 UNLOCKED(mtx, false);
366 mutex_exit(mtx); /* drop and retake later */
367
368 mutex_enter(p->p_lock);
369 while ((p->p_sflag & PS_RUMP_LWPEXIT) == 0) {
370 /* avoid recursion */
371 rumpuser_cv_wait(RUMPCV(&p->p_waitcv),
372 RUMPMTX(p->p_lock));
373 }
374 KASSERT(p->p_sflag & PS_RUMP_LWPEXIT);
375 mutex_exit(p->p_lock);
376
377 /* ok, we can exit and remove "reference" to l->private */
378
379 mutex_enter(mtx);
380 LOCKED(mtx, false);
381 rv = EINTR;
382 }
383 l->l_private = NULL;
384
385 return rv;
386 }
387
388 void
389 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
390 {
391
392 if (__predict_false(rump_threads == 0))
393 panic("cv_wait without threads");
394 (void) docvwait(cv, mtx, NULL);
395 }
396
397 int
398 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
399 {
400
401 if (__predict_false(rump_threads == 0))
402 panic("cv_wait without threads");
403 return docvwait(cv, mtx, NULL);
404 }
405
406 int
407 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int ticks)
408 {
409 struct timespec ts;
410 extern int hz;
411 int rv;
412
413 if (ticks == 0) {
414 rv = cv_wait_sig(cv, mtx);
415 } else {
416 ts.tv_sec = ticks / hz;
417 ts.tv_nsec = (ticks % hz) * (1000000000/hz);
418 rv = docvwait(cv, mtx, &ts);
419 }
420
421 return rv;
422 }
423 __strong_alias(cv_timedwait_sig,cv_timedwait);
424
425 void
426 cv_signal(kcondvar_t *cv)
427 {
428
429 rumpuser_cv_signal(RUMPCV(cv));
430 }
431
432 void
433 cv_broadcast(kcondvar_t *cv)
434 {
435
436 rumpuser_cv_broadcast(RUMPCV(cv));
437 }
438
439 bool
440 cv_has_waiters(kcondvar_t *cv)
441 {
442 int rv;
443
444 rumpuser_cv_has_waiters(RUMPCV(cv), &rv);
445 return rv != 0;
446 }
447
448 /* this is not much of an attempt, but ... */
449 bool
450 cv_is_valid(kcondvar_t *cv)
451 {
452
453 return RUMPCV(cv) != NULL;
454 }
455