Home | History | Annotate | Line # | Download | only in rumpkern
locks.c revision 1.79
      1 /*	$NetBSD: locks.c,v 1.79 2017/12/27 09:03:22 ozaki-r Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     16  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     18  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     25  * SUCH DAMAGE.
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: locks.c,v 1.79 2017/12/27 09:03:22 ozaki-r Exp $");
     30 
     31 #include <sys/param.h>
     32 #include <sys/kmem.h>
     33 #include <sys/mutex.h>
     34 #include <sys/rwlock.h>
     35 
     36 #include <rump-sys/kern.h>
     37 
     38 #include <rump/rumpuser.h>
     39 
     40 #ifdef LOCKDEBUG
     41 const int rump_lockdebug = 1;
     42 #else
     43 const int rump_lockdebug = 0;
     44 #endif
     45 
     46 /*
     47  * Simple lockdebug.  If it's compiled in, it's always active.
     48  * Currently available only for mtx/rwlock.
     49  */
     50 #ifdef LOCKDEBUG
     51 #include <sys/lockdebug.h>
     52 
     53 static lockops_t mutex_spin_lockops = {
     54 	.lo_name = "mutex",
     55 	.lo_type = LOCKOPS_SPIN,
     56 	.lo_dump = NULL,
     57 };
     58 static lockops_t mutex_adaptive_lockops = {
     59 	.lo_name = "mutex",
     60 	.lo_type = LOCKOPS_SLEEP,
     61 	.lo_dump = NULL,
     62 };
     63 static lockops_t rw_lockops = {
     64 	.lo_name = "rwlock",
     65 	.lo_type = LOCKOPS_SLEEP,
     66 	.lo_dump = NULL,
     67 };
     68 
     69 #define ALLOCK(lock, ops)				\
     70 	lockdebug_alloc(__func__, __LINE__, lock, ops,	\
     71 	    (uintptr_t)__builtin_return_address(0))
     72 #define FREELOCK(lock)					\
     73 	lockdebug_free(__func__, __LINE__, lock)
     74 #define WANTLOCK(lock, shar)				\
     75 	lockdebug_wantlock(__func__, __LINE__, lock,	\
     76 	    (uintptr_t)__builtin_return_address(0), shar)
     77 #define LOCKED(lock, shar)				\
     78 	lockdebug_locked(__func__, __LINE__, lock, NULL,\
     79 	    (uintptr_t)__builtin_return_address(0), shar)
     80 #define UNLOCKED(lock, shar)				\
     81 	lockdebug_unlocked(__func__, __LINE__, lock,	\
     82 	    (uintptr_t)__builtin_return_address(0), shar)
     83 #define BARRIER(lock, slp)				\
     84 	lockdebug_barrier(__func__, __LINE__, lock, slp)
     85 #else
     86 #define ALLOCK(a, b)	do {} while (0)
     87 #define FREELOCK(a)	do {} while (0)
     88 #define WANTLOCK(a, b)	do {} while (0)
     89 #define LOCKED(a, b)	do {} while (0)
     90 #define UNLOCKED(a, b)	do {} while (0)
     91 #define BARRIER(a, b)	do {} while (0)
     92 #endif
     93 
     94 /*
     95  * We map locks to pthread routines.  The difference between kernel
     96  * and rumpuser routines is that while the kernel uses static
     97  * storage, rumpuser allocates the object from the heap.  This
     98  * indirection is necessary because we don't know the size of
     99  * pthread objects here.  It is also beneficial, since we can
    100  * be easily compatible with the kernel ABI because all kernel
    101  * objects regardless of machine architecture are always at least
    102  * the size of a pointer.  The downside, of course, is a performance
    103  * penalty.
    104  */
    105 
    106 #define RUMPMTX(mtx) (*(struct rumpuser_mtx *const*)(mtx))
    107 
    108 void
    109 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    110 {
    111 	int ruflags = RUMPUSER_MTX_KMUTEX;
    112 	int isspin;
    113 
    114 	CTASSERT(sizeof(kmutex_t) >= sizeof(void *));
    115 
    116 	/*
    117 	 * Try to figure out if the caller wanted a spin mutex or
    118 	 * not with this easy set of conditionals.  The difference
    119 	 * between a spin mutex and an adaptive mutex for a rump
    120 	 * kernel is that the hypervisor does not relinquish the
    121 	 * rump kernel CPU context for a spin mutex.  The
    122 	 * hypervisor itself may block even when "spinning".
    123 	 */
    124 	if (type == MUTEX_SPIN) {
    125 		isspin = 1;
    126 	} else if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    127 	    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    128 	    ipl == IPL_SOFTSERIAL) {
    129 		isspin = 0;
    130 	} else {
    131 		isspin = 1;
    132 	}
    133 
    134 	if (isspin)
    135 		ruflags |= RUMPUSER_MTX_SPIN;
    136 	rumpuser_mutex_init((struct rumpuser_mtx **)mtx, ruflags);
    137 	if (isspin)
    138 		ALLOCK(mtx, &mutex_spin_lockops);
    139 	else
    140 		ALLOCK(mtx, &mutex_adaptive_lockops);
    141 }
    142 
    143 void
    144 mutex_destroy(kmutex_t *mtx)
    145 {
    146 
    147 	FREELOCK(mtx);
    148 	rumpuser_mutex_destroy(RUMPMTX(mtx));
    149 }
    150 
    151 void
    152 mutex_enter(kmutex_t *mtx)
    153 {
    154 
    155 	WANTLOCK(mtx, 0);
    156 	if (!rumpuser_mutex_spin_p(RUMPMTX(mtx)))
    157 		BARRIER(mtx, 1);
    158 	rumpuser_mutex_enter(RUMPMTX(mtx));
    159 	LOCKED(mtx, false);
    160 }
    161 
    162 void
    163 mutex_spin_enter(kmutex_t *mtx)
    164 {
    165 
    166 	KASSERT(rumpuser_mutex_spin_p(RUMPMTX(mtx)));
    167 	WANTLOCK(mtx, 0);
    168 	rumpuser_mutex_enter_nowrap(RUMPMTX(mtx));
    169 	LOCKED(mtx, false);
    170 }
    171 
    172 int
    173 mutex_tryenter(kmutex_t *mtx)
    174 {
    175 	int error;
    176 
    177 	error = rumpuser_mutex_tryenter(RUMPMTX(mtx));
    178 	if (error == 0) {
    179 		WANTLOCK(mtx, 0);
    180 		LOCKED(mtx, false);
    181 	}
    182 	return error == 0;
    183 }
    184 
    185 void
    186 mutex_exit(kmutex_t *mtx)
    187 {
    188 
    189 #ifndef LOCKDEBUG
    190 	KASSERT(mutex_owned(mtx));
    191 #endif
    192 	UNLOCKED(mtx, false);
    193 	rumpuser_mutex_exit(RUMPMTX(mtx));
    194 }
    195 __strong_alias(mutex_spin_exit,mutex_exit);
    196 
    197 int
    198 mutex_ownable(const kmutex_t *mtx)
    199 {
    200 
    201 #ifdef LOCKDEBUG
    202 	WANTLOCK(mtx, -1);
    203 #endif
    204 	return 1;
    205 }
    206 
    207 int
    208 mutex_owned(const kmutex_t *mtx)
    209 {
    210 
    211 	return mutex_owner(mtx) == curlwp;
    212 }
    213 
    214 lwp_t *
    215 mutex_owner(const kmutex_t *mtx)
    216 {
    217 	struct lwp *l;
    218 
    219 	rumpuser_mutex_owner(RUMPMTX(mtx), &l);
    220 	return l;
    221 }
    222 
    223 #define RUMPRW(rw) (*(struct rumpuser_rw **)(rw))
    224 
    225 /* reader/writer locks */
    226 
    227 static enum rumprwlock
    228 krw2rumprw(const krw_t op)
    229 {
    230 
    231 	switch (op) {
    232 	case RW_READER:
    233 		return RUMPUSER_RW_READER;
    234 	case RW_WRITER:
    235 		return RUMPUSER_RW_WRITER;
    236 	default:
    237 		panic("unknown rwlock type");
    238 	}
    239 }
    240 
    241 void
    242 rw_init(krwlock_t *rw)
    243 {
    244 
    245 	CTASSERT(sizeof(krwlock_t) >= sizeof(void *));
    246 
    247 	rumpuser_rw_init((struct rumpuser_rw **)rw);
    248 	ALLOCK(rw, &rw_lockops);
    249 }
    250 
    251 void
    252 rw_destroy(krwlock_t *rw)
    253 {
    254 
    255 	FREELOCK(rw);
    256 	rumpuser_rw_destroy(RUMPRW(rw));
    257 }
    258 
    259 void
    260 rw_enter(krwlock_t *rw, const krw_t op)
    261 {
    262 
    263 	WANTLOCK(rw, op == RW_READER);
    264 	BARRIER(rw, 1);
    265 	rumpuser_rw_enter(krw2rumprw(op), RUMPRW(rw));
    266 	LOCKED(rw, op == RW_READER);
    267 }
    268 
    269 int
    270 rw_tryenter(krwlock_t *rw, const krw_t op)
    271 {
    272 	int error;
    273 
    274 	error = rumpuser_rw_tryenter(krw2rumprw(op), RUMPRW(rw));
    275 	if (error == 0) {
    276 		WANTLOCK(rw, op == RW_READER);
    277 		LOCKED(rw, op == RW_READER);
    278 	}
    279 	return error == 0;
    280 }
    281 
    282 void
    283 rw_exit(krwlock_t *rw)
    284 {
    285 
    286 #ifdef LOCKDEBUG
    287 	bool shared = !rw_write_held(rw);
    288 
    289 	if (shared)
    290 		KASSERT(rw_read_held(rw));
    291 	UNLOCKED(rw, shared);
    292 #endif
    293 	rumpuser_rw_exit(RUMPRW(rw));
    294 }
    295 
    296 int
    297 rw_tryupgrade(krwlock_t *rw)
    298 {
    299 	int rv;
    300 
    301 	rv = rumpuser_rw_tryupgrade(RUMPRW(rw));
    302 	if (rv == 0) {
    303 		UNLOCKED(rw, 1);
    304 		WANTLOCK(rw, 0);
    305 		LOCKED(rw, 0);
    306 	}
    307 	return rv == 0;
    308 }
    309 
    310 void
    311 rw_downgrade(krwlock_t *rw)
    312 {
    313 
    314 	rumpuser_rw_downgrade(RUMPRW(rw));
    315 	UNLOCKED(rw, 0);
    316 	WANTLOCK(rw, 1);
    317 	LOCKED(rw, 1);
    318 }
    319 
    320 int
    321 rw_read_held(krwlock_t *rw)
    322 {
    323 	int rv;
    324 
    325 	rumpuser_rw_held(RUMPUSER_RW_READER, RUMPRW(rw), &rv);
    326 	return rv;
    327 }
    328 
    329 int
    330 rw_write_held(krwlock_t *rw)
    331 {
    332 	int rv;
    333 
    334 	rumpuser_rw_held(RUMPUSER_RW_WRITER, RUMPRW(rw), &rv);
    335 	return rv;
    336 }
    337 
    338 int
    339 rw_lock_held(krwlock_t *rw)
    340 {
    341 
    342 	return rw_read_held(rw) || rw_write_held(rw);
    343 }
    344 
    345 /* curriculum vitaes */
    346 
    347 #define RUMPCV(cv) (*(struct rumpuser_cv **)(cv))
    348 
    349 void
    350 cv_init(kcondvar_t *cv, const char *msg)
    351 {
    352 
    353 	CTASSERT(sizeof(kcondvar_t) >= sizeof(void *));
    354 
    355 	rumpuser_cv_init((struct rumpuser_cv **)cv);
    356 }
    357 
    358 void
    359 cv_destroy(kcondvar_t *cv)
    360 {
    361 
    362 	rumpuser_cv_destroy(RUMPCV(cv));
    363 }
    364 
    365 static int
    366 docvwait(kcondvar_t *cv, kmutex_t *mtx, struct timespec *ts)
    367 {
    368 	struct lwp *l = curlwp;
    369 	int rv;
    370 
    371 	if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
    372 		/*
    373 		 * yield() here, someone might want the cpu
    374 		 * to set a condition.  otherwise we'll just
    375 		 * loop forever.
    376 		 */
    377 		yield();
    378 		return EINTR;
    379 	}
    380 
    381 	UNLOCKED(mtx, false);
    382 
    383 	l->l_private = cv;
    384 	rv = 0;
    385 	if (ts) {
    386 		if (rumpuser_cv_timedwait(RUMPCV(cv), RUMPMTX(mtx),
    387 		    ts->tv_sec, ts->tv_nsec))
    388 			rv = EWOULDBLOCK;
    389 	} else {
    390 		rumpuser_cv_wait(RUMPCV(cv), RUMPMTX(mtx));
    391 	}
    392 
    393 	LOCKED(mtx, false);
    394 
    395 	/*
    396 	 * Check for QEXIT.  if so, we need to wait here until we
    397 	 * are allowed to exit.
    398 	 */
    399 	if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
    400 		struct proc *p = l->l_proc;
    401 
    402 		mutex_exit(mtx); /* drop and retake later */
    403 
    404 		mutex_enter(p->p_lock);
    405 		while ((p->p_sflag & PS_RUMP_LWPEXIT) == 0) {
    406 			/* avoid recursion */
    407 			rumpuser_cv_wait(RUMPCV(&p->p_waitcv),
    408 			    RUMPMTX(p->p_lock));
    409 		}
    410 		KASSERT(p->p_sflag & PS_RUMP_LWPEXIT);
    411 		mutex_exit(p->p_lock);
    412 
    413 		/* ok, we can exit and remove "reference" to l->private */
    414 
    415 		mutex_enter(mtx);
    416 		rv = EINTR;
    417 	}
    418 	l->l_private = NULL;
    419 
    420 	return rv;
    421 }
    422 
    423 void
    424 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    425 {
    426 
    427 	if (__predict_false(rump_threads == 0))
    428 		panic("cv_wait without threads");
    429 	(void) docvwait(cv, mtx, NULL);
    430 }
    431 
    432 int
    433 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    434 {
    435 
    436 	if (__predict_false(rump_threads == 0))
    437 		panic("cv_wait without threads");
    438 	return docvwait(cv, mtx, NULL);
    439 }
    440 
    441 int
    442 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int ticks)
    443 {
    444 	struct timespec ts;
    445 	extern int hz;
    446 	int rv;
    447 
    448 	if (ticks == 0) {
    449 		rv = cv_wait_sig(cv, mtx);
    450 	} else {
    451 		ts.tv_sec = ticks / hz;
    452 		ts.tv_nsec = (ticks % hz) * (1000000000/hz);
    453 		rv = docvwait(cv, mtx, &ts);
    454 	}
    455 
    456 	return rv;
    457 }
    458 __strong_alias(cv_timedwait_sig,cv_timedwait);
    459 
    460 void
    461 cv_signal(kcondvar_t *cv)
    462 {
    463 
    464 	rumpuser_cv_signal(RUMPCV(cv));
    465 }
    466 
    467 void
    468 cv_broadcast(kcondvar_t *cv)
    469 {
    470 
    471 	rumpuser_cv_broadcast(RUMPCV(cv));
    472 }
    473 
    474 bool
    475 cv_has_waiters(kcondvar_t *cv)
    476 {
    477 	int rv;
    478 
    479 	rumpuser_cv_has_waiters(RUMPCV(cv), &rv);
    480 	return rv != 0;
    481 }
    482 
    483 /* this is not much of an attempt, but ... */
    484 bool
    485 cv_is_valid(kcondvar_t *cv)
    486 {
    487 
    488 	return RUMPCV(cv) != NULL;
    489 }
    490