locks.c revision 1.81 1 /* $NetBSD: locks.c,v 1.81 2020/02/22 21:44:51 ad Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: locks.c,v 1.81 2020/02/22 21:44:51 ad Exp $");
30
31 #include <sys/param.h>
32 #include <sys/kmem.h>
33 #include <sys/mutex.h>
34 #include <sys/rwlock.h>
35
36 #include <rump-sys/kern.h>
37
38 #include <rump/rumpuser.h>
39
40 #ifdef LOCKDEBUG
41 const int rump_lockdebug = 1;
42 #else
43 const int rump_lockdebug = 0;
44 #endif
45
46 /*
47 * Simple lockdebug. If it's compiled in, it's always active.
48 * Currently available only for mtx/rwlock.
49 */
50 #ifdef LOCKDEBUG
51 #include <sys/lockdebug.h>
52
53 static lockops_t mutex_spin_lockops = {
54 .lo_name = "mutex",
55 .lo_type = LOCKOPS_SPIN,
56 .lo_dump = NULL,
57 };
58 static lockops_t mutex_adaptive_lockops = {
59 .lo_name = "mutex",
60 .lo_type = LOCKOPS_SLEEP,
61 .lo_dump = NULL,
62 };
63 static lockops_t rw_lockops = {
64 .lo_name = "rwlock",
65 .lo_type = LOCKOPS_SLEEP,
66 .lo_dump = NULL,
67 };
68
69 #define ALLOCK(lock, ops, return_address) \
70 lockdebug_alloc(__func__, __LINE__, lock, ops, \
71 return_address)
72 #define FREELOCK(lock) \
73 lockdebug_free(__func__, __LINE__, lock)
74 #define WANTLOCK(lock, shar) \
75 lockdebug_wantlock(__func__, __LINE__, lock, \
76 (uintptr_t)__builtin_return_address(0), shar)
77 #define LOCKED(lock, shar) \
78 lockdebug_locked(__func__, __LINE__, lock, NULL,\
79 (uintptr_t)__builtin_return_address(0), shar)
80 #define UNLOCKED(lock, shar) \
81 lockdebug_unlocked(__func__, __LINE__, lock, \
82 (uintptr_t)__builtin_return_address(0), shar)
83 #define BARRIER(lock, slp) \
84 lockdebug_barrier(__func__, __LINE__, lock, slp)
85 #else
86 #define ALLOCK(a, b, c) do {} while (0)
87 #define FREELOCK(a) do {} while (0)
88 #define WANTLOCK(a, b) do {} while (0)
89 #define LOCKED(a, b) do {} while (0)
90 #define UNLOCKED(a, b) do {} while (0)
91 #define BARRIER(a, b) do {} while (0)
92 #endif
93
94 /*
95 * We map locks to pthread routines. The difference between kernel
96 * and rumpuser routines is that while the kernel uses static
97 * storage, rumpuser allocates the object from the heap. This
98 * indirection is necessary because we don't know the size of
99 * pthread objects here. It is also beneficial, since we can
100 * be easily compatible with the kernel ABI because all kernel
101 * objects regardless of machine architecture are always at least
102 * the size of a pointer. The downside, of course, is a performance
103 * penalty.
104 */
105
106 #define RUMPMTX(mtx) (*(struct rumpuser_mtx *const*)(mtx))
107
108 void _mutex_init(kmutex_t *, kmutex_type_t, int, uintptr_t);
109 void
110 _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl, uintptr_t return_address)
111 {
112 int ruflags = RUMPUSER_MTX_KMUTEX;
113 int isspin;
114
115 CTASSERT(sizeof(kmutex_t) >= sizeof(void *));
116
117 /*
118 * Try to figure out if the caller wanted a spin mutex or
119 * not with this easy set of conditionals. The difference
120 * between a spin mutex and an adaptive mutex for a rump
121 * kernel is that the hypervisor does not relinquish the
122 * rump kernel CPU context for a spin mutex. The
123 * hypervisor itself may block even when "spinning".
124 */
125 if (type == MUTEX_SPIN) {
126 isspin = 1;
127 } else if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
128 ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
129 ipl == IPL_SOFTSERIAL) {
130 isspin = 0;
131 } else {
132 isspin = 1;
133 }
134
135 if (isspin)
136 ruflags |= RUMPUSER_MTX_SPIN;
137 rumpuser_mutex_init((struct rumpuser_mtx **)mtx, ruflags);
138 if (isspin)
139 ALLOCK(mtx, &mutex_spin_lockops, return_address);
140 else
141 ALLOCK(mtx, &mutex_adaptive_lockops, return_address);
142 }
143
144 void
145 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
146 {
147
148 _mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
149 }
150
151 void
152 mutex_destroy(kmutex_t *mtx)
153 {
154
155 FREELOCK(mtx);
156 rumpuser_mutex_destroy(RUMPMTX(mtx));
157 }
158
159 void
160 mutex_enter(kmutex_t *mtx)
161 {
162
163 WANTLOCK(mtx, 0);
164 if (!rumpuser_mutex_spin_p(RUMPMTX(mtx)))
165 BARRIER(mtx, 1);
166 rumpuser_mutex_enter(RUMPMTX(mtx));
167 LOCKED(mtx, false);
168 }
169
170 void
171 mutex_spin_enter(kmutex_t *mtx)
172 {
173
174 KASSERT(rumpuser_mutex_spin_p(RUMPMTX(mtx)));
175 WANTLOCK(mtx, 0);
176 rumpuser_mutex_enter_nowrap(RUMPMTX(mtx));
177 LOCKED(mtx, false);
178 }
179
180 int
181 mutex_tryenter(kmutex_t *mtx)
182 {
183 int error;
184
185 error = rumpuser_mutex_tryenter(RUMPMTX(mtx));
186 if (error == 0) {
187 WANTLOCK(mtx, 0);
188 LOCKED(mtx, false);
189 }
190 return error == 0;
191 }
192
193 void
194 mutex_exit(kmutex_t *mtx)
195 {
196
197 #ifndef LOCKDEBUG
198 KASSERT(mutex_owned(mtx));
199 #endif
200 UNLOCKED(mtx, false);
201 rumpuser_mutex_exit(RUMPMTX(mtx));
202 }
203 __strong_alias(mutex_spin_exit,mutex_exit);
204
205 int
206 mutex_ownable(const kmutex_t *mtx)
207 {
208
209 #ifdef LOCKDEBUG
210 WANTLOCK(mtx, -1);
211 #endif
212 return 1;
213 }
214
215 int
216 mutex_owned(const kmutex_t *mtx)
217 {
218
219 return mutex_owner(mtx) == curlwp;
220 }
221
222 lwp_t *
223 mutex_owner(const kmutex_t *mtx)
224 {
225 struct lwp *l;
226
227 rumpuser_mutex_owner(RUMPMTX(mtx), &l);
228 return l;
229 }
230
231 #define RUMPRW(rw) (*(struct rumpuser_rw **)(rw))
232
233 /* reader/writer locks */
234
235 static enum rumprwlock
236 krw2rumprw(const krw_t op)
237 {
238
239 switch (op) {
240 case RW_READER:
241 return RUMPUSER_RW_READER;
242 case RW_WRITER:
243 return RUMPUSER_RW_WRITER;
244 default:
245 panic("unknown rwlock type");
246 }
247 }
248
249 void _rw_init(krwlock_t *, uintptr_t);
250 void
251 _rw_init(krwlock_t *rw, uintptr_t return_address)
252 {
253
254 CTASSERT(sizeof(krwlock_t) >= sizeof(void *));
255
256 rumpuser_rw_init((struct rumpuser_rw **)rw);
257 ALLOCK(rw, &rw_lockops, return_address);
258 }
259
260 void
261 rw_init(krwlock_t *rw)
262 {
263
264 _rw_init(rw, (uintptr_t)__builtin_return_address(0));
265 }
266
267 void
268 rw_destroy(krwlock_t *rw)
269 {
270
271 FREELOCK(rw);
272 rumpuser_rw_destroy(RUMPRW(rw));
273 }
274
275 void
276 rw_enter(krwlock_t *rw, const krw_t op)
277 {
278
279 WANTLOCK(rw, op == RW_READER);
280 BARRIER(rw, 1);
281 rumpuser_rw_enter(krw2rumprw(op), RUMPRW(rw));
282 LOCKED(rw, op == RW_READER);
283 }
284
285 int
286 rw_tryenter(krwlock_t *rw, const krw_t op)
287 {
288 int error;
289
290 error = rumpuser_rw_tryenter(krw2rumprw(op), RUMPRW(rw));
291 if (error == 0) {
292 WANTLOCK(rw, op == RW_READER);
293 LOCKED(rw, op == RW_READER);
294 }
295 return error == 0;
296 }
297
298 void
299 rw_exit(krwlock_t *rw)
300 {
301
302 #ifdef LOCKDEBUG
303 bool shared = !rw_write_held(rw);
304
305 if (shared)
306 KASSERT(rw_read_held(rw));
307 UNLOCKED(rw, shared);
308 #endif
309 rumpuser_rw_exit(RUMPRW(rw));
310 }
311
312 int
313 rw_tryupgrade(krwlock_t *rw)
314 {
315 int rv;
316
317 rv = rumpuser_rw_tryupgrade(RUMPRW(rw));
318 if (rv == 0) {
319 UNLOCKED(rw, 1);
320 WANTLOCK(rw, 0);
321 LOCKED(rw, 0);
322 }
323 return rv == 0;
324 }
325
326 void
327 rw_downgrade(krwlock_t *rw)
328 {
329
330 rumpuser_rw_downgrade(RUMPRW(rw));
331 UNLOCKED(rw, 0);
332 WANTLOCK(rw, 1);
333 LOCKED(rw, 1);
334 }
335
336 int
337 rw_read_held(krwlock_t *rw)
338 {
339 int rv;
340
341 rumpuser_rw_held(RUMPUSER_RW_READER, RUMPRW(rw), &rv);
342 return rv;
343 }
344
345 int
346 rw_write_held(krwlock_t *rw)
347 {
348 int rv;
349
350 rumpuser_rw_held(RUMPUSER_RW_WRITER, RUMPRW(rw), &rv);
351 return rv;
352 }
353
354 int
355 rw_lock_held(krwlock_t *rw)
356 {
357
358 return rw_read_held(rw) || rw_write_held(rw);
359 }
360
361 krw_t
362 rw_lock_op(krwlock_t *rw)
363 {
364
365 return rw_write_held(rw) ? RW_WRITER : RW_READER;
366 }
367
368 /* curriculum vitaes */
369
370 #define RUMPCV(cv) (*(struct rumpuser_cv **)(cv))
371
372 void
373 cv_init(kcondvar_t *cv, const char *msg)
374 {
375
376 CTASSERT(sizeof(kcondvar_t) >= sizeof(void *));
377
378 rumpuser_cv_init((struct rumpuser_cv **)cv);
379 }
380
381 void
382 cv_destroy(kcondvar_t *cv)
383 {
384
385 rumpuser_cv_destroy(RUMPCV(cv));
386 }
387
388 static int
389 docvwait(kcondvar_t *cv, kmutex_t *mtx, struct timespec *ts)
390 {
391 struct lwp *l = curlwp;
392 int rv;
393
394 if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
395 /*
396 * yield() here, someone might want the cpu
397 * to set a condition. otherwise we'll just
398 * loop forever.
399 */
400 yield();
401 return EINTR;
402 }
403
404 UNLOCKED(mtx, false);
405
406 l->l_private = cv;
407 rv = 0;
408 if (ts) {
409 if (rumpuser_cv_timedwait(RUMPCV(cv), RUMPMTX(mtx),
410 ts->tv_sec, ts->tv_nsec))
411 rv = EWOULDBLOCK;
412 } else {
413 rumpuser_cv_wait(RUMPCV(cv), RUMPMTX(mtx));
414 }
415
416 LOCKED(mtx, false);
417
418 /*
419 * Check for QEXIT. if so, we need to wait here until we
420 * are allowed to exit.
421 */
422 if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
423 struct proc *p = l->l_proc;
424
425 mutex_exit(mtx); /* drop and retake later */
426
427 mutex_enter(p->p_lock);
428 while ((p->p_sflag & PS_RUMP_LWPEXIT) == 0) {
429 /* avoid recursion */
430 rumpuser_cv_wait(RUMPCV(&p->p_waitcv),
431 RUMPMTX(p->p_lock));
432 }
433 KASSERT(p->p_sflag & PS_RUMP_LWPEXIT);
434 mutex_exit(p->p_lock);
435
436 /* ok, we can exit and remove "reference" to l->private */
437
438 mutex_enter(mtx);
439 rv = EINTR;
440 }
441 l->l_private = NULL;
442
443 return rv;
444 }
445
446 void
447 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
448 {
449
450 if (__predict_false(rump_threads == 0))
451 panic("cv_wait without threads");
452 (void) docvwait(cv, mtx, NULL);
453 }
454
455 int
456 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
457 {
458
459 if (__predict_false(rump_threads == 0))
460 panic("cv_wait without threads");
461 return docvwait(cv, mtx, NULL);
462 }
463
464 int
465 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int ticks)
466 {
467 struct timespec ts;
468 extern int hz;
469 int rv;
470
471 if (ticks == 0) {
472 rv = cv_wait_sig(cv, mtx);
473 } else {
474 ts.tv_sec = ticks / hz;
475 ts.tv_nsec = (ticks % hz) * (1000000000/hz);
476 rv = docvwait(cv, mtx, &ts);
477 }
478
479 return rv;
480 }
481 __strong_alias(cv_timedwait_sig,cv_timedwait);
482
483 void
484 cv_signal(kcondvar_t *cv)
485 {
486
487 rumpuser_cv_signal(RUMPCV(cv));
488 }
489
490 void
491 cv_broadcast(kcondvar_t *cv)
492 {
493
494 rumpuser_cv_broadcast(RUMPCV(cv));
495 }
496
497 bool
498 cv_has_waiters(kcondvar_t *cv)
499 {
500 int rv;
501
502 rumpuser_cv_has_waiters(RUMPCV(cv), &rv);
503 return rv != 0;
504 }
505
506 /* this is not much of an attempt, but ... */
507 bool
508 cv_is_valid(kcondvar_t *cv)
509 {
510
511 return RUMPCV(cv) != NULL;
512 }
513