locks.c revision 1.86 1 /* $NetBSD: locks.c,v 1.86 2023/07/16 23:12:17 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: locks.c,v 1.86 2023/07/16 23:12:17 riastradh Exp $");
30
31 #include <sys/param.h>
32 #include <sys/kmem.h>
33 #include <sys/mutex.h>
34 #include <sys/rwlock.h>
35
36 #include <rump-sys/kern.h>
37
38 #include <rump/rumpuser.h>
39
40 #ifdef LOCKDEBUG
41 const int rump_lockdebug = 1;
42 #else
43 const int rump_lockdebug = 0;
44 #endif
45
46 /*
47 * Simple lockdebug. If it's compiled in, it's always active.
48 * Currently available only for mtx/rwlock.
49 */
50 #ifdef LOCKDEBUG
51 #include <sys/lockdebug.h>
52
53 static lockops_t mutex_spin_lockops = {
54 .lo_name = "mutex",
55 .lo_type = LOCKOPS_SPIN,
56 .lo_dump = NULL,
57 };
58 static lockops_t mutex_adaptive_lockops = {
59 .lo_name = "mutex",
60 .lo_type = LOCKOPS_SLEEP,
61 .lo_dump = NULL,
62 };
63 static lockops_t rw_lockops = {
64 .lo_name = "rwlock",
65 .lo_type = LOCKOPS_SLEEP,
66 .lo_dump = NULL,
67 };
68
69 #define ALLOCK(lock, ops, return_address) \
70 lockdebug_alloc(__func__, __LINE__, lock, ops, \
71 return_address)
72 #define FREELOCK(lock) \
73 lockdebug_free(__func__, __LINE__, lock)
74 #define WANTLOCK(lock, shar) \
75 lockdebug_wantlock(__func__, __LINE__, lock, \
76 (uintptr_t)__builtin_return_address(0), shar)
77 #define LOCKED(lock, shar) \
78 lockdebug_locked(__func__, __LINE__, lock, NULL,\
79 (uintptr_t)__builtin_return_address(0), shar)
80 #define UNLOCKED(lock, shar) \
81 lockdebug_unlocked(__func__, __LINE__, lock, \
82 (uintptr_t)__builtin_return_address(0), shar)
83 #define BARRIER(lock, slp) \
84 lockdebug_barrier(__func__, __LINE__, lock, slp)
85 #else
86 #define ALLOCK(a, b, c) do {} while (0)
87 #define FREELOCK(a) do {} while (0)
88 #define WANTLOCK(a, b) do {} while (0)
89 #define LOCKED(a, b) do {} while (0)
90 #define UNLOCKED(a, b) do {} while (0)
91 #define BARRIER(a, b) do {} while (0)
92 #endif
93
94 /*
95 * We map locks to pthread routines. The difference between kernel
96 * and rumpuser routines is that while the kernel uses static
97 * storage, rumpuser allocates the object from the heap. This
98 * indirection is necessary because we don't know the size of
99 * pthread objects here. It is also beneficial, since we can
100 * be easily compatible with the kernel ABI because all kernel
101 * objects regardless of machine architecture are always at least
102 * the size of a pointer. The downside, of course, is a performance
103 * penalty.
104 */
105
106 #define RUMPMTX(mtx) (*(struct rumpuser_mtx *const *)(mtx))
107
108 void
109 _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
110 uintptr_t return_address)
111 {
112 int ruflags = RUMPUSER_MTX_KMUTEX;
113 int isspin;
114
115 CTASSERT(sizeof(kmutex_t) >= sizeof(void *));
116
117 /*
118 * Try to figure out if the caller wanted a spin mutex or
119 * not with this easy set of conditionals. The difference
120 * between a spin mutex and an adaptive mutex for a rump
121 * kernel is that the hypervisor does not relinquish the
122 * rump kernel CPU context for a spin mutex. The
123 * hypervisor itself may block even when "spinning".
124 */
125 if (type == MUTEX_SPIN) {
126 isspin = 1;
127 } else if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
128 ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
129 ipl == IPL_SOFTSERIAL) {
130 isspin = 0;
131 } else {
132 isspin = 1;
133 }
134
135 if (isspin)
136 ruflags |= RUMPUSER_MTX_SPIN;
137 rumpuser_mutex_init((struct rumpuser_mtx **)mtx, ruflags);
138 if (isspin)
139 ALLOCK(mtx, &mutex_spin_lockops, return_address);
140 else
141 ALLOCK(mtx, &mutex_adaptive_lockops, return_address);
142 }
143
144 void
145 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
146 {
147
148 _mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
149 }
150
151 void
152 mutex_destroy(kmutex_t *mtx)
153 {
154
155 FREELOCK(mtx);
156 rumpuser_mutex_destroy(RUMPMTX(mtx));
157 }
158
159 void
160 mutex_enter(kmutex_t *mtx)
161 {
162
163 WANTLOCK(mtx, 0);
164 if (!rumpuser_mutex_spin_p(RUMPMTX(mtx)))
165 BARRIER(mtx, 1);
166 rumpuser_mutex_enter(RUMPMTX(mtx));
167 LOCKED(mtx, false);
168 }
169
170 void
171 mutex_spin_enter(kmutex_t *mtx)
172 {
173
174 KASSERT(rumpuser_mutex_spin_p(RUMPMTX(mtx)));
175 WANTLOCK(mtx, 0);
176 rumpuser_mutex_enter_nowrap(RUMPMTX(mtx));
177 LOCKED(mtx, false);
178 }
179
180 int
181 mutex_tryenter(kmutex_t *mtx)
182 {
183 int error;
184
185 error = rumpuser_mutex_tryenter(RUMPMTX(mtx));
186 if (error == 0) {
187 WANTLOCK(mtx, 0);
188 LOCKED(mtx, false);
189 }
190 return error == 0;
191 }
192
193 void
194 mutex_exit(kmutex_t *mtx)
195 {
196
197 #ifndef LOCKDEBUG
198 KASSERT(mutex_owned(mtx));
199 #endif
200 UNLOCKED(mtx, false);
201 rumpuser_mutex_exit(RUMPMTX(mtx));
202 }
203 __strong_alias(mutex_spin_exit,mutex_exit);
204
205 int
206 mutex_ownable(const kmutex_t *mtx)
207 {
208
209 #ifdef LOCKDEBUG
210 WANTLOCK(mtx, -1);
211 #endif
212 return 1;
213 }
214
215 int
216 mutex_owned(const kmutex_t *mtx)
217 {
218 struct lwp *l;
219
220 rumpuser_mutex_owner(RUMPMTX(mtx), &l);
221 return l == curlwp;
222 }
223
224 #define RUMPRW(rw) (*(struct rumpuser_rw **)(rw))
225
226 /* reader/writer locks */
227
228 static enum rumprwlock
229 krw2rumprw(const krw_t op)
230 {
231
232 switch (op) {
233 case RW_READER:
234 return RUMPUSER_RW_READER;
235 case RW_WRITER:
236 return RUMPUSER_RW_WRITER;
237 default:
238 panic("unknown rwlock type");
239 }
240 }
241
242 void
243 _rw_init(krwlock_t *rw, uintptr_t return_address)
244 {
245
246 CTASSERT(sizeof(krwlock_t) >= sizeof(void *));
247
248 rumpuser_rw_init((struct rumpuser_rw **)rw);
249 ALLOCK(rw, &rw_lockops, return_address);
250 }
251
252 void
253 rw_init(krwlock_t *rw)
254 {
255
256 _rw_init(rw, (uintptr_t)__builtin_return_address(0));
257 }
258
259 void
260 rw_destroy(krwlock_t *rw)
261 {
262
263 FREELOCK(rw);
264 rumpuser_rw_destroy(RUMPRW(rw));
265 }
266
267 void
268 rw_enter(krwlock_t *rw, const krw_t op)
269 {
270
271 WANTLOCK(rw, op == RW_READER);
272 BARRIER(rw, 1);
273 rumpuser_rw_enter(krw2rumprw(op), RUMPRW(rw));
274 LOCKED(rw, op == RW_READER);
275 }
276
277 int
278 rw_tryenter(krwlock_t *rw, const krw_t op)
279 {
280 int error;
281
282 error = rumpuser_rw_tryenter(krw2rumprw(op), RUMPRW(rw));
283 if (error == 0) {
284 WANTLOCK(rw, op == RW_READER);
285 LOCKED(rw, op == RW_READER);
286 }
287 return error == 0;
288 }
289
290 void
291 rw_exit(krwlock_t *rw)
292 {
293
294 #ifdef LOCKDEBUG
295 bool shared = !rw_write_held(rw);
296
297 if (shared)
298 KASSERT(rw_read_held(rw));
299 UNLOCKED(rw, shared);
300 #endif
301 rumpuser_rw_exit(RUMPRW(rw));
302 }
303
304 int
305 rw_tryupgrade(krwlock_t *rw)
306 {
307 int rv;
308
309 rv = rumpuser_rw_tryupgrade(RUMPRW(rw));
310 if (rv == 0) {
311 UNLOCKED(rw, 1);
312 WANTLOCK(rw, 0);
313 LOCKED(rw, 0);
314 }
315 return rv == 0;
316 }
317
318 void
319 rw_downgrade(krwlock_t *rw)
320 {
321
322 rumpuser_rw_downgrade(RUMPRW(rw));
323 UNLOCKED(rw, 0);
324 WANTLOCK(rw, 1);
325 LOCKED(rw, 1);
326 }
327
328 int
329 rw_read_held(krwlock_t *rw)
330 {
331 int rv;
332
333 rumpuser_rw_held(RUMPUSER_RW_READER, RUMPRW(rw), &rv);
334 return rv;
335 }
336
337 int
338 rw_write_held(krwlock_t *rw)
339 {
340 int rv;
341
342 rumpuser_rw_held(RUMPUSER_RW_WRITER, RUMPRW(rw), &rv);
343 return rv;
344 }
345
346 int
347 rw_lock_held(krwlock_t *rw)
348 {
349
350 return rw_read_held(rw) || rw_write_held(rw);
351 }
352
353 krw_t
354 rw_lock_op(krwlock_t *rw)
355 {
356
357 return rw_write_held(rw) ? RW_WRITER : RW_READER;
358 }
359
360 /* curriculum vitaes */
361
362 #define RUMPCV(cv) (*(struct rumpuser_cv **)(cv))
363
364 void
365 cv_init(kcondvar_t *cv, const char *msg)
366 {
367
368 CTASSERT(sizeof(kcondvar_t) >= sizeof(void *));
369
370 rumpuser_cv_init((struct rumpuser_cv **)cv);
371 }
372
373 void
374 cv_destroy(kcondvar_t *cv)
375 {
376
377 rumpuser_cv_destroy(RUMPCV(cv));
378 }
379
380 static int
381 docvwait(kcondvar_t *cv, kmutex_t *mtx, struct timespec *ts)
382 {
383 struct lwp *l = curlwp;
384 int rv;
385
386 if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
387 /*
388 * yield() here, someone might want the cpu
389 * to set a condition. otherwise we'll just
390 * loop forever.
391 */
392 yield();
393 return EINTR;
394 }
395
396 UNLOCKED(mtx, false);
397
398 l->l_sched.info = cv;
399 rv = 0;
400 if (ts) {
401 if (rumpuser_cv_timedwait(RUMPCV(cv), RUMPMTX(mtx),
402 ts->tv_sec, ts->tv_nsec))
403 rv = EWOULDBLOCK;
404 } else {
405 rumpuser_cv_wait(RUMPCV(cv), RUMPMTX(mtx));
406 }
407
408 LOCKED(mtx, false);
409
410 /*
411 * Check for QEXIT. if so, we need to wait here until we
412 * are allowed to exit.
413 */
414 if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
415 struct proc *p = l->l_proc;
416
417 mutex_exit(mtx); /* drop and retake later */
418
419 mutex_enter(p->p_lock);
420 while ((p->p_sflag & PS_RUMP_LWPEXIT) == 0) {
421 /* avoid recursion */
422 rumpuser_cv_wait(RUMPCV(&p->p_waitcv),
423 RUMPMTX(p->p_lock));
424 }
425 KASSERT(p->p_sflag & PS_RUMP_LWPEXIT);
426 mutex_exit(p->p_lock);
427
428 /* ok, we can exit and remove "reference" to l->l_sched.info */
429
430 mutex_enter(mtx);
431 rv = EINTR;
432 }
433 l->l_sched.info = NULL;
434
435 return rv;
436 }
437
438 void
439 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
440 {
441
442 if (__predict_false(rump_threads == 0))
443 panic("cv_wait without threads");
444 (void) docvwait(cv, mtx, NULL);
445 }
446
447 int
448 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
449 {
450
451 if (__predict_false(rump_threads == 0))
452 panic("cv_wait without threads");
453 return docvwait(cv, mtx, NULL);
454 }
455
456 int
457 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int ticks)
458 {
459 struct timespec ts;
460 extern int hz;
461 int rv;
462
463 if (ticks == 0) {
464 rv = cv_wait_sig(cv, mtx);
465 } else {
466 ts.tv_sec = ticks / hz;
467 ts.tv_nsec = (ticks % hz) * (1000000000/hz);
468 rv = docvwait(cv, mtx, &ts);
469 }
470
471 return rv;
472 }
473 __strong_alias(cv_timedwait_sig,cv_timedwait);
474
475 void
476 cv_signal(kcondvar_t *cv)
477 {
478
479 rumpuser_cv_signal(RUMPCV(cv));
480 }
481
482 void
483 cv_broadcast(kcondvar_t *cv)
484 {
485
486 rumpuser_cv_broadcast(RUMPCV(cv));
487 }
488
489 bool
490 cv_has_waiters(kcondvar_t *cv)
491 {
492 int rv;
493
494 rumpuser_cv_has_waiters(RUMPCV(cv), &rv);
495 return rv != 0;
496 }
497
498 /* this is not much of an attempt, but ... */
499 bool
500 cv_is_valid(kcondvar_t *cv)
501 {
502
503 return RUMPCV(cv) != NULL;
504 }
505