Home | History | Annotate | Line # | Download | only in rumpkern
      1  1.14  martin /*	$NetBSD: locks_up.c,v 1.14 2023/11/02 10:31:55 martin Exp $	*/
      2   1.1   pooka 
      3   1.1   pooka /*
      4   1.1   pooka  * Copyright (c) 2010 Antti Kantee.  All Rights Reserved.
      5   1.1   pooka  *
      6   1.1   pooka  * Redistribution and use in source and binary forms, with or without
      7   1.1   pooka  * modification, are permitted provided that the following conditions
      8   1.1   pooka  * are met:
      9   1.1   pooka  * 1. Redistributions of source code must retain the above copyright
     10   1.1   pooka  *    notice, this list of conditions and the following disclaimer.
     11   1.1   pooka  * 2. Redistributions in binary form must reproduce the above copyright
     12   1.1   pooka  *    notice, this list of conditions and the following disclaimer in the
     13   1.1   pooka  *    documentation and/or other materials provided with the distribution.
     14   1.1   pooka  *
     15   1.1   pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     16   1.1   pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     17   1.1   pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     18   1.1   pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     19   1.1   pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     20   1.1   pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     21   1.1   pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22   1.1   pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     23   1.1   pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     24   1.1   pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     25   1.1   pooka  * SUCH DAMAGE.
     26   1.1   pooka  */
     27   1.1   pooka 
     28   1.1   pooka /*
     29   1.1   pooka  * Virtual uniprocessor rump kernel version of locks.  Since the entire
     30   1.1   pooka  * kernel is running on only one CPU in the system, there is no need
     31   1.1   pooka  * to perform slow cache-coherent MP locking operations.  This speeds
     32   1.1   pooka  * up things quite dramatically and is a good example of that two
     33   1.1   pooka  * disjoint kernels running simultaneously in an MP system can be
     34   1.1   pooka  * massively faster than one with fine-grained locking.
     35   1.1   pooka  */
     36   1.1   pooka 
     37   1.1   pooka #include <sys/cdefs.h>
     38  1.14  martin __KERNEL_RCSID(0, "$NetBSD: locks_up.c,v 1.14 2023/11/02 10:31:55 martin Exp $");
     39   1.1   pooka 
     40   1.1   pooka #include <sys/param.h>
     41   1.1   pooka #include <sys/kernel.h>
     42   1.1   pooka #include <sys/kmem.h>
     43   1.1   pooka #include <sys/mutex.h>
     44   1.1   pooka #include <sys/rwlock.h>
     45   1.1   pooka 
     46  1.10   pooka #include <rump-sys/kern.h>
     47  1.10   pooka 
     48   1.1   pooka #include <rump/rumpuser.h>
     49   1.1   pooka 
     50   1.1   pooka struct upmtx {
     51   1.1   pooka 	struct lwp *upm_owner;
     52   1.1   pooka 	int upm_wanted;
     53   1.1   pooka 	struct rumpuser_cv *upm_rucv;
     54   1.1   pooka };
     55   1.1   pooka #define UPMTX(mtx) struct upmtx *upm = *(struct upmtx **)mtx
     56   1.1   pooka 
     57   1.1   pooka static inline void
     58   1.1   pooka checkncpu(void)
     59   1.1   pooka {
     60   1.1   pooka 
     61   1.1   pooka 	if (__predict_false(ncpu != 1))
     62   1.1   pooka 		panic("UP lock implementation requires RUMP_NCPU == 1");
     63   1.1   pooka }
     64   1.1   pooka 
     65   1.1   pooka void
     66   1.1   pooka mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
     67   1.1   pooka {
     68   1.1   pooka 	struct upmtx *upm;
     69   1.1   pooka 
     70   1.1   pooka 	CTASSERT(sizeof(kmutex_t) >= sizeof(void *));
     71   1.1   pooka 	checkncpu();
     72   1.1   pooka 
     73   1.1   pooka 	/*
     74   1.7   pooka 	 * In uniprocessor locking we don't need to differentiate
     75   1.7   pooka 	 * between spin mutexes and adaptive ones.  We could
     76   1.7   pooka 	 * replace mutex_enter() with a NOP for spin mutexes, but
     77   1.7   pooka 	 * not bothering with that for now.
     78   1.7   pooka 	 */
     79   1.7   pooka 
     80   1.7   pooka 	/*
     81   1.1   pooka 	 * XXX: pool_cache would be nice, but not easily possible,
     82   1.1   pooka 	 * as pool cache init wants to call mutex_init() ...
     83   1.1   pooka 	 */
     84   1.3   pooka 	upm = rump_hypermalloc(sizeof(*upm), 0, true, "mutex_init");
     85   1.1   pooka 	memset(upm, 0, sizeof(*upm));
     86   1.1   pooka 	rumpuser_cv_init(&upm->upm_rucv);
     87   1.1   pooka 	memcpy(mtx, &upm, sizeof(void *));
     88   1.1   pooka }
     89   1.1   pooka 
     90   1.1   pooka void
     91   1.1   pooka mutex_destroy(kmutex_t *mtx)
     92   1.1   pooka {
     93   1.1   pooka 	UPMTX(mtx);
     94   1.1   pooka 
     95   1.1   pooka 	KASSERT(upm->upm_owner == NULL);
     96   1.1   pooka 	KASSERT(upm->upm_wanted == 0);
     97   1.1   pooka 	rumpuser_cv_destroy(upm->upm_rucv);
     98   1.4   pooka 	rump_hyperfree(upm, sizeof(*upm));
     99   1.1   pooka }
    100   1.1   pooka 
    101   1.1   pooka void
    102   1.1   pooka mutex_enter(kmutex_t *mtx)
    103   1.1   pooka {
    104   1.1   pooka 	UPMTX(mtx);
    105   1.1   pooka 
    106   1.1   pooka 	/* fastpath? */
    107   1.1   pooka 	if (mutex_tryenter(mtx))
    108   1.1   pooka 		return;
    109   1.1   pooka 
    110   1.1   pooka 	/*
    111   1.1   pooka 	 * No?  bummer, do it the slow and painful way then.
    112   1.1   pooka 	 */
    113   1.1   pooka 	upm->upm_wanted++;
    114   1.1   pooka 	while (!mutex_tryenter(mtx)) {
    115   1.1   pooka 		rump_schedlock_cv_wait(upm->upm_rucv);
    116   1.1   pooka 	}
    117   1.1   pooka 	upm->upm_wanted--;
    118   1.1   pooka 
    119   1.1   pooka 	KASSERT(upm->upm_wanted >= 0);
    120   1.1   pooka }
    121   1.1   pooka 
    122   1.1   pooka void
    123   1.1   pooka mutex_spin_enter(kmutex_t *mtx)
    124   1.1   pooka {
    125   1.1   pooka 
    126   1.1   pooka 	mutex_enter(mtx);
    127   1.1   pooka }
    128   1.1   pooka 
    129   1.1   pooka int
    130   1.1   pooka mutex_tryenter(kmutex_t *mtx)
    131   1.1   pooka {
    132   1.1   pooka 	UPMTX(mtx);
    133   1.1   pooka 
    134   1.1   pooka 	if (upm->upm_owner)
    135   1.1   pooka 		return 0;
    136   1.1   pooka 
    137   1.1   pooka 	upm->upm_owner = curlwp;
    138   1.1   pooka 	return 1;
    139   1.1   pooka }
    140   1.1   pooka 
    141   1.1   pooka void
    142   1.1   pooka mutex_exit(kmutex_t *mtx)
    143   1.1   pooka {
    144   1.1   pooka 	UPMTX(mtx);
    145   1.1   pooka 
    146   1.1   pooka 	if (upm->upm_wanted) {
    147   1.1   pooka 		rumpuser_cv_signal(upm->upm_rucv); /* CPU is our interlock */
    148   1.1   pooka 	}
    149   1.1   pooka 	upm->upm_owner = NULL;
    150   1.1   pooka }
    151   1.1   pooka 
    152   1.1   pooka void
    153   1.1   pooka mutex_spin_exit(kmutex_t *mtx)
    154   1.1   pooka {
    155   1.1   pooka 
    156   1.1   pooka 	mutex_exit(mtx);
    157   1.1   pooka }
    158   1.1   pooka 
    159   1.1   pooka int
    160   1.1   pooka mutex_owned(kmutex_t *mtx)
    161   1.1   pooka {
    162   1.1   pooka 	UPMTX(mtx);
    163   1.1   pooka 
    164   1.1   pooka 	return upm->upm_owner == curlwp;
    165   1.1   pooka }
    166   1.1   pooka 
    167   1.1   pooka struct uprw {
    168   1.1   pooka 	struct lwp *uprw_owner;
    169   1.1   pooka 	int uprw_readers;
    170   1.1   pooka 	uint16_t uprw_rwant;
    171   1.1   pooka 	uint16_t uprw_wwant;
    172   1.1   pooka 	struct rumpuser_cv *uprw_rucv_reader;
    173   1.1   pooka 	struct rumpuser_cv *uprw_rucv_writer;
    174   1.1   pooka };
    175   1.1   pooka 
    176   1.1   pooka #define UPRW(rw) struct uprw *uprw = *(struct uprw **)rw
    177   1.1   pooka 
    178   1.1   pooka /* reader/writer locks */
    179   1.1   pooka 
    180   1.1   pooka void
    181   1.1   pooka rw_init(krwlock_t *rw)
    182   1.1   pooka {
    183   1.1   pooka 	struct uprw *uprw;
    184   1.1   pooka 
    185   1.1   pooka 	CTASSERT(sizeof(krwlock_t) >= sizeof(void *));
    186   1.1   pooka 	checkncpu();
    187   1.1   pooka 
    188   1.3   pooka 	uprw = rump_hypermalloc(sizeof(*uprw), 0, true, "rwinit");
    189   1.1   pooka 	memset(uprw, 0, sizeof(*uprw));
    190   1.1   pooka 	rumpuser_cv_init(&uprw->uprw_rucv_reader);
    191   1.1   pooka 	rumpuser_cv_init(&uprw->uprw_rucv_writer);
    192   1.1   pooka 	memcpy(rw, &uprw, sizeof(void *));
    193   1.1   pooka }
    194   1.1   pooka 
    195   1.1   pooka void
    196   1.1   pooka rw_destroy(krwlock_t *rw)
    197   1.1   pooka {
    198   1.1   pooka 	UPRW(rw);
    199   1.1   pooka 
    200   1.1   pooka 	rumpuser_cv_destroy(uprw->uprw_rucv_reader);
    201   1.1   pooka 	rumpuser_cv_destroy(uprw->uprw_rucv_writer);
    202   1.4   pooka 	rump_hyperfree(uprw, sizeof(*uprw));
    203   1.1   pooka }
    204   1.1   pooka 
    205   1.1   pooka /* take rwlock.  prefer writers over readers (see rw_tryenter and rw_exit) */
    206   1.1   pooka void
    207   1.1   pooka rw_enter(krwlock_t *rw, const krw_t op)
    208   1.1   pooka {
    209   1.1   pooka 	UPRW(rw);
    210   1.1   pooka 	struct rumpuser_cv *rucv;
    211   1.1   pooka 	uint16_t *wp;
    212   1.1   pooka 
    213   1.1   pooka 	if (rw_tryenter(rw, op))
    214   1.1   pooka 		return;
    215   1.1   pooka 
    216   1.1   pooka 	/* lagpath */
    217   1.1   pooka 	if (op == RW_READER) {
    218   1.1   pooka 		rucv = uprw->uprw_rucv_reader;
    219   1.1   pooka 		wp = &uprw->uprw_rwant;
    220   1.1   pooka 	} else {
    221   1.1   pooka 		rucv = uprw->uprw_rucv_writer;
    222   1.1   pooka 		wp = &uprw->uprw_wwant;
    223   1.1   pooka 	}
    224   1.1   pooka 
    225   1.1   pooka 	(*wp)++;
    226   1.1   pooka 	while (!rw_tryenter(rw, op)) {
    227   1.1   pooka 		rump_schedlock_cv_wait(rucv);
    228   1.1   pooka 	}
    229   1.1   pooka 	(*wp)--;
    230   1.1   pooka }
    231   1.1   pooka 
    232   1.1   pooka int
    233   1.1   pooka rw_tryenter(krwlock_t *rw, const krw_t op)
    234   1.1   pooka {
    235   1.1   pooka 	UPRW(rw);
    236   1.1   pooka 
    237   1.1   pooka 	switch (op) {
    238   1.1   pooka 	case RW_READER:
    239   1.1   pooka 		if (uprw->uprw_owner == NULL && uprw->uprw_wwant == 0) {
    240   1.1   pooka 			uprw->uprw_readers++;
    241   1.1   pooka 			return 1;
    242   1.1   pooka 		}
    243   1.1   pooka 		break;
    244   1.1   pooka 	case RW_WRITER:
    245   1.1   pooka 		if (uprw->uprw_owner == NULL && uprw->uprw_readers == 0) {
    246   1.1   pooka 			uprw->uprw_owner = curlwp;
    247   1.1   pooka 			return 1;
    248   1.1   pooka 		}
    249   1.1   pooka 		break;
    250   1.1   pooka 	}
    251   1.1   pooka 
    252   1.1   pooka 	return 0;
    253   1.1   pooka }
    254   1.1   pooka 
    255   1.1   pooka void
    256   1.1   pooka rw_exit(krwlock_t *rw)
    257   1.1   pooka {
    258   1.1   pooka 	UPRW(rw);
    259   1.1   pooka 
    260   1.1   pooka 	if (uprw->uprw_readers > 0) {
    261   1.1   pooka 		uprw->uprw_readers--;
    262   1.1   pooka 	} else {
    263   1.1   pooka 		KASSERT(uprw->uprw_owner == curlwp);
    264   1.1   pooka 		uprw->uprw_owner = NULL;
    265   1.1   pooka 	}
    266   1.1   pooka 
    267   1.1   pooka 	if (uprw->uprw_wwant) {
    268   1.1   pooka 		rumpuser_cv_signal(uprw->uprw_rucv_writer);
    269   1.1   pooka 	} else if (uprw->uprw_rwant) {
    270   1.1   pooka 		rumpuser_cv_signal(uprw->uprw_rucv_reader);
    271   1.1   pooka 	}
    272   1.1   pooka }
    273   1.1   pooka 
    274   1.1   pooka int
    275   1.1   pooka rw_tryupgrade(krwlock_t *rw)
    276   1.1   pooka {
    277   1.1   pooka 	UPRW(rw);
    278   1.1   pooka 
    279   1.1   pooka 	if (uprw->uprw_readers == 1 && uprw->uprw_owner == NULL) {
    280   1.1   pooka 		uprw->uprw_readers = 0;
    281   1.1   pooka 		uprw->uprw_owner = curlwp;
    282   1.1   pooka 		return 1;
    283   1.1   pooka 	} else {
    284   1.1   pooka 		return 0;
    285   1.1   pooka 	}
    286   1.1   pooka }
    287   1.1   pooka 
    288   1.1   pooka int
    289   1.1   pooka rw_write_held(krwlock_t *rw)
    290   1.1   pooka {
    291   1.1   pooka 	UPRW(rw);
    292   1.1   pooka 
    293   1.1   pooka 	return uprw->uprw_owner == curlwp;
    294   1.1   pooka }
    295   1.1   pooka 
    296   1.1   pooka int
    297   1.1   pooka rw_read_held(krwlock_t *rw)
    298   1.1   pooka {
    299   1.1   pooka 	UPRW(rw);
    300   1.1   pooka 
    301   1.1   pooka 	return uprw->uprw_readers > 0;
    302   1.1   pooka }
    303   1.1   pooka 
    304   1.1   pooka int
    305   1.1   pooka rw_lock_held(krwlock_t *rw)
    306   1.1   pooka {
    307   1.1   pooka 	UPRW(rw);
    308   1.1   pooka 
    309   1.1   pooka 	return uprw->uprw_owner || uprw->uprw_readers;
    310   1.1   pooka }
    311   1.1   pooka 
    312  1.11      ad krw_t
    313  1.11      ad rw_lock_op(krwlock_t *rw)
    314  1.11      ad {
    315  1.11      ad 
    316  1.11      ad 	return rw_write_held(rw) ? RW_WRITER : RW_READER;
    317  1.11      ad }
    318   1.1   pooka 
    319   1.1   pooka /*
    320   1.1   pooka  * Condvars are almost the same as in the MP case except that we
    321   1.1   pooka  * use the scheduler mutex as the pthread interlock instead of the
    322   1.1   pooka  * mutex associated with the condvar.
    323   1.1   pooka  */
    324   1.1   pooka 
    325   1.1   pooka #define RUMPCV(cv) (*(struct rumpuser_cv **)(cv))
    326   1.1   pooka 
    327   1.1   pooka void
    328   1.1   pooka cv_init(kcondvar_t *cv, const char *msg)
    329   1.1   pooka {
    330   1.1   pooka 
    331   1.1   pooka 	CTASSERT(sizeof(kcondvar_t) >= sizeof(void *));
    332   1.1   pooka 	checkncpu();
    333   1.1   pooka 
    334   1.1   pooka 	rumpuser_cv_init((struct rumpuser_cv **)cv);
    335   1.1   pooka }
    336   1.1   pooka 
    337   1.1   pooka void
    338   1.1   pooka cv_destroy(kcondvar_t *cv)
    339   1.1   pooka {
    340   1.1   pooka 
    341   1.1   pooka 	rumpuser_cv_destroy(RUMPCV(cv));
    342   1.1   pooka }
    343   1.1   pooka 
    344   1.1   pooka void
    345   1.1   pooka cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    346   1.1   pooka {
    347   1.1   pooka #ifdef DIAGNOSTIC
    348   1.1   pooka 	UPMTX(mtx);
    349   1.1   pooka 	KASSERT(upm->upm_owner == curlwp);
    350   1.1   pooka 
    351   1.1   pooka 	if (rump_threads == 0)
    352   1.1   pooka 		panic("cv_wait without threads");
    353   1.1   pooka #endif
    354   1.1   pooka 
    355   1.1   pooka 	/*
    356   1.1   pooka 	 * NOTE: we must atomically release the *CPU* here, i.e.
    357   1.1   pooka 	 * nothing between mutex_exit and entering rumpuser condwait
    358   1.1   pooka 	 * may preempt us from the virtual CPU.
    359   1.1   pooka 	 */
    360   1.1   pooka 	mutex_exit(mtx);
    361   1.1   pooka 	rump_schedlock_cv_wait(RUMPCV(cv));
    362   1.1   pooka 	mutex_enter(mtx);
    363   1.1   pooka }
    364   1.1   pooka 
    365   1.1   pooka int
    366   1.1   pooka cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    367   1.1   pooka {
    368   1.1   pooka 
    369   1.1   pooka 	cv_wait(cv, mtx);
    370   1.1   pooka 	return 0;
    371   1.1   pooka }
    372   1.1   pooka 
    373   1.1   pooka int
    374   1.1   pooka cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int ticks)
    375   1.1   pooka {
    376   1.8   pooka 	struct timespec ts;
    377   1.1   pooka 
    378   1.1   pooka #ifdef DIAGNOSTIC
    379   1.1   pooka 	UPMTX(mtx);
    380   1.1   pooka 	KASSERT(upm->upm_owner == curlwp);
    381   1.1   pooka #endif
    382   1.1   pooka 
    383   1.8   pooka 	ts.tv_sec = ticks / hz;
    384   1.8   pooka 	ts.tv_nsec = (ticks % hz) * (1000000000/hz);
    385   1.1   pooka 
    386   1.1   pooka 	if (ticks == 0) {
    387   1.1   pooka 		cv_wait(cv, mtx);
    388   1.1   pooka 		return 0;
    389   1.1   pooka 	} else {
    390   1.1   pooka 		int rv;
    391   1.1   pooka 		mutex_exit(mtx);
    392   1.1   pooka 		rv = rump_schedlock_cv_timedwait(RUMPCV(cv), &ts);
    393   1.1   pooka 		mutex_enter(mtx);
    394   1.1   pooka 		if (rv)
    395   1.1   pooka 			return EWOULDBLOCK;
    396   1.1   pooka 		else
    397   1.1   pooka 			return 0;
    398   1.1   pooka 	}
    399   1.1   pooka }
    400   1.1   pooka 
    401   1.1   pooka int
    402   1.1   pooka cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int ticks)
    403   1.1   pooka {
    404   1.1   pooka 
    405   1.1   pooka 	return cv_timedwait(cv, mtx, ticks);
    406   1.1   pooka }
    407   1.1   pooka 
    408   1.1   pooka void
    409   1.1   pooka cv_signal(kcondvar_t *cv)
    410   1.1   pooka {
    411   1.1   pooka 
    412   1.1   pooka 	/* CPU == interlock */
    413   1.1   pooka 	rumpuser_cv_signal(RUMPCV(cv));
    414   1.1   pooka }
    415   1.1   pooka 
    416   1.1   pooka void
    417   1.1   pooka cv_broadcast(kcondvar_t *cv)
    418   1.1   pooka {
    419   1.1   pooka 
    420   1.1   pooka 	/* CPU == interlock */
    421   1.1   pooka 	rumpuser_cv_broadcast(RUMPCV(cv));
    422   1.1   pooka }
    423   1.1   pooka 
    424   1.1   pooka bool
    425   1.1   pooka cv_has_waiters(kcondvar_t *cv)
    426   1.1   pooka {
    427   1.9   pooka 	int n;
    428   1.1   pooka 
    429   1.9   pooka 	rumpuser_cv_has_waiters(RUMPCV(cv), &n);
    430   1.9   pooka 
    431   1.9   pooka 	return n > 0;
    432   1.1   pooka }
    433   1.1   pooka 
    434   1.1   pooka /* this is not much of an attempt, but ... */
    435   1.1   pooka bool
    436   1.1   pooka cv_is_valid(kcondvar_t *cv)
    437   1.1   pooka {
    438   1.1   pooka 
    439   1.1   pooka 	return RUMPCV(cv) != NULL;
    440   1.1   pooka }
    441