Home | History | Annotate | Line # | Download | only in rumpkern
locks_up.c revision 1.9.12.1
      1  1.9.12.1     skrll /*	$NetBSD: locks_up.c,v 1.9.12.1 2016/03/19 11:30:37 skrll Exp $	*/
      2       1.1     pooka 
      3       1.1     pooka /*
      4       1.1     pooka  * Copyright (c) 2010 Antti Kantee.  All Rights Reserved.
      5       1.1     pooka  *
      6       1.1     pooka  * Redistribution and use in source and binary forms, with or without
      7       1.1     pooka  * modification, are permitted provided that the following conditions
      8       1.1     pooka  * are met:
      9       1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     10       1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     11       1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     12       1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     13       1.1     pooka  *    documentation and/or other materials provided with the distribution.
     14       1.1     pooka  *
     15       1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     16       1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     17       1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     18       1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     19       1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     20       1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     21       1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22       1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     23       1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     24       1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     25       1.1     pooka  * SUCH DAMAGE.
     26       1.1     pooka  */
     27       1.1     pooka 
     28       1.1     pooka /*
     29       1.1     pooka  * Virtual uniprocessor rump kernel version of locks.  Since the entire
     30       1.1     pooka  * kernel is running on only one CPU in the system, there is no need
     31       1.1     pooka  * to perform slow cache-coherent MP locking operations.  This speeds
     32       1.1     pooka  * up things quite dramatically and is a good example of that two
     33       1.1     pooka  * disjoint kernels running simultaneously in an MP system can be
     34       1.1     pooka  * massively faster than one with fine-grained locking.
     35       1.1     pooka  */
     36       1.1     pooka 
     37       1.1     pooka #include <sys/cdefs.h>
     38  1.9.12.1     skrll __KERNEL_RCSID(0, "$NetBSD: locks_up.c,v 1.9.12.1 2016/03/19 11:30:37 skrll Exp $");
     39       1.1     pooka 
     40       1.1     pooka #include <sys/param.h>
     41       1.1     pooka #include <sys/kernel.h>
     42       1.1     pooka #include <sys/kmem.h>
     43       1.1     pooka #include <sys/mutex.h>
     44       1.1     pooka #include <sys/rwlock.h>
     45       1.1     pooka 
     46  1.9.12.1     skrll #include <rump-sys/kern.h>
     47       1.1     pooka 
     48  1.9.12.1     skrll #include <rump/rumpuser.h>
     49       1.1     pooka 
     50       1.1     pooka struct upmtx {
     51       1.1     pooka 	struct lwp *upm_owner;
     52       1.1     pooka 	int upm_wanted;
     53       1.1     pooka 	struct rumpuser_cv *upm_rucv;
     54       1.1     pooka };
     55       1.1     pooka #define UPMTX(mtx) struct upmtx *upm = *(struct upmtx **)mtx
     56       1.1     pooka 
     57       1.1     pooka static inline void
     58       1.1     pooka checkncpu(void)
     59       1.1     pooka {
     60       1.1     pooka 
     61       1.1     pooka 	if (__predict_false(ncpu != 1))
     62       1.1     pooka 		panic("UP lock implementation requires RUMP_NCPU == 1");
     63       1.1     pooka }
     64       1.1     pooka 
     65       1.1     pooka void
     66       1.1     pooka mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
     67       1.1     pooka {
     68       1.1     pooka 	struct upmtx *upm;
     69       1.1     pooka 
     70       1.1     pooka 	CTASSERT(sizeof(kmutex_t) >= sizeof(void *));
     71       1.1     pooka 	checkncpu();
     72       1.1     pooka 
     73       1.1     pooka 	/*
     74       1.7     pooka 	 * In uniprocessor locking we don't need to differentiate
     75       1.7     pooka 	 * between spin mutexes and adaptive ones.  We could
     76       1.7     pooka 	 * replace mutex_enter() with a NOP for spin mutexes, but
     77       1.7     pooka 	 * not bothering with that for now.
     78       1.7     pooka 	 */
     79       1.7     pooka 
     80       1.7     pooka 	/*
     81       1.1     pooka 	 * XXX: pool_cache would be nice, but not easily possible,
     82       1.1     pooka 	 * as pool cache init wants to call mutex_init() ...
     83       1.1     pooka 	 */
     84       1.3     pooka 	upm = rump_hypermalloc(sizeof(*upm), 0, true, "mutex_init");
     85       1.1     pooka 	memset(upm, 0, sizeof(*upm));
     86       1.1     pooka 	rumpuser_cv_init(&upm->upm_rucv);
     87       1.1     pooka 	memcpy(mtx, &upm, sizeof(void *));
     88       1.1     pooka }
     89       1.1     pooka 
     90       1.1     pooka void
     91       1.1     pooka mutex_destroy(kmutex_t *mtx)
     92       1.1     pooka {
     93       1.1     pooka 	UPMTX(mtx);
     94       1.1     pooka 
     95       1.1     pooka 	KASSERT(upm->upm_owner == NULL);
     96       1.1     pooka 	KASSERT(upm->upm_wanted == 0);
     97       1.1     pooka 	rumpuser_cv_destroy(upm->upm_rucv);
     98       1.4     pooka 	rump_hyperfree(upm, sizeof(*upm));
     99       1.1     pooka }
    100       1.1     pooka 
    101       1.1     pooka void
    102       1.1     pooka mutex_enter(kmutex_t *mtx)
    103       1.1     pooka {
    104       1.1     pooka 	UPMTX(mtx);
    105       1.1     pooka 
    106       1.1     pooka 	/* fastpath? */
    107       1.1     pooka 	if (mutex_tryenter(mtx))
    108       1.1     pooka 		return;
    109       1.1     pooka 
    110       1.1     pooka 	/*
    111       1.1     pooka 	 * No?  bummer, do it the slow and painful way then.
    112       1.1     pooka 	 */
    113       1.1     pooka 	upm->upm_wanted++;
    114       1.1     pooka 	while (!mutex_tryenter(mtx)) {
    115       1.1     pooka 		rump_schedlock_cv_wait(upm->upm_rucv);
    116       1.1     pooka 	}
    117       1.1     pooka 	upm->upm_wanted--;
    118       1.1     pooka 
    119       1.1     pooka 	KASSERT(upm->upm_wanted >= 0);
    120       1.1     pooka }
    121       1.1     pooka 
    122       1.1     pooka void
    123       1.1     pooka mutex_spin_enter(kmutex_t *mtx)
    124       1.1     pooka {
    125       1.1     pooka 
    126       1.1     pooka 	mutex_enter(mtx);
    127       1.1     pooka }
    128       1.1     pooka 
    129       1.1     pooka int
    130       1.1     pooka mutex_tryenter(kmutex_t *mtx)
    131       1.1     pooka {
    132       1.1     pooka 	UPMTX(mtx);
    133       1.1     pooka 
    134       1.1     pooka 	if (upm->upm_owner)
    135       1.1     pooka 		return 0;
    136       1.1     pooka 
    137       1.1     pooka 	upm->upm_owner = curlwp;
    138       1.1     pooka 	return 1;
    139       1.1     pooka }
    140       1.1     pooka 
    141       1.1     pooka void
    142       1.1     pooka mutex_exit(kmutex_t *mtx)
    143       1.1     pooka {
    144       1.1     pooka 	UPMTX(mtx);
    145       1.1     pooka 
    146       1.1     pooka 	if (upm->upm_wanted) {
    147       1.1     pooka 		rumpuser_cv_signal(upm->upm_rucv); /* CPU is our interlock */
    148       1.1     pooka 	}
    149       1.1     pooka 	upm->upm_owner = NULL;
    150       1.1     pooka }
    151       1.1     pooka 
    152       1.1     pooka void
    153       1.1     pooka mutex_spin_exit(kmutex_t *mtx)
    154       1.1     pooka {
    155       1.1     pooka 
    156       1.1     pooka 	mutex_exit(mtx);
    157       1.1     pooka }
    158       1.1     pooka 
    159       1.1     pooka int
    160       1.1     pooka mutex_owned(kmutex_t *mtx)
    161       1.1     pooka {
    162       1.1     pooka 	UPMTX(mtx);
    163       1.1     pooka 
    164       1.1     pooka 	return upm->upm_owner == curlwp;
    165       1.1     pooka }
    166       1.1     pooka 
    167       1.5     pooka struct lwp *
    168       1.5     pooka mutex_owner(kmutex_t *mtx)
    169       1.5     pooka {
    170       1.6  stacktic 	UPMTX(mtx);
    171       1.5     pooka 
    172       1.5     pooka 	return upm->upm_owner;
    173       1.5     pooka }
    174       1.5     pooka 
    175       1.1     pooka struct uprw {
    176       1.1     pooka 	struct lwp *uprw_owner;
    177       1.1     pooka 	int uprw_readers;
    178       1.1     pooka 	uint16_t uprw_rwant;
    179       1.1     pooka 	uint16_t uprw_wwant;
    180       1.1     pooka 	struct rumpuser_cv *uprw_rucv_reader;
    181       1.1     pooka 	struct rumpuser_cv *uprw_rucv_writer;
    182       1.1     pooka };
    183       1.1     pooka 
    184       1.1     pooka #define UPRW(rw) struct uprw *uprw = *(struct uprw **)rw
    185       1.1     pooka 
    186       1.1     pooka /* reader/writer locks */
    187       1.1     pooka 
    188       1.1     pooka void
    189       1.1     pooka rw_init(krwlock_t *rw)
    190       1.1     pooka {
    191       1.1     pooka 	struct uprw *uprw;
    192       1.1     pooka 
    193       1.1     pooka 	CTASSERT(sizeof(krwlock_t) >= sizeof(void *));
    194       1.1     pooka 	checkncpu();
    195       1.1     pooka 
    196       1.3     pooka 	uprw = rump_hypermalloc(sizeof(*uprw), 0, true, "rwinit");
    197       1.1     pooka 	memset(uprw, 0, sizeof(*uprw));
    198       1.1     pooka 	rumpuser_cv_init(&uprw->uprw_rucv_reader);
    199       1.1     pooka 	rumpuser_cv_init(&uprw->uprw_rucv_writer);
    200       1.1     pooka 	memcpy(rw, &uprw, sizeof(void *));
    201       1.1     pooka }
    202       1.1     pooka 
    203       1.1     pooka void
    204       1.1     pooka rw_destroy(krwlock_t *rw)
    205       1.1     pooka {
    206       1.1     pooka 	UPRW(rw);
    207       1.1     pooka 
    208       1.1     pooka 	rumpuser_cv_destroy(uprw->uprw_rucv_reader);
    209       1.1     pooka 	rumpuser_cv_destroy(uprw->uprw_rucv_writer);
    210       1.4     pooka 	rump_hyperfree(uprw, sizeof(*uprw));
    211       1.1     pooka }
    212       1.1     pooka 
    213       1.1     pooka /* take rwlock.  prefer writers over readers (see rw_tryenter and rw_exit) */
    214       1.1     pooka void
    215       1.1     pooka rw_enter(krwlock_t *rw, const krw_t op)
    216       1.1     pooka {
    217       1.1     pooka 	UPRW(rw);
    218       1.1     pooka 	struct rumpuser_cv *rucv;
    219       1.1     pooka 	uint16_t *wp;
    220       1.1     pooka 
    221       1.1     pooka 	if (rw_tryenter(rw, op))
    222       1.1     pooka 		return;
    223       1.1     pooka 
    224       1.1     pooka 	/* lagpath */
    225       1.1     pooka 	if (op == RW_READER) {
    226       1.1     pooka 		rucv = uprw->uprw_rucv_reader;
    227       1.1     pooka 		wp = &uprw->uprw_rwant;
    228       1.1     pooka 	} else {
    229       1.1     pooka 		rucv = uprw->uprw_rucv_writer;
    230       1.1     pooka 		wp = &uprw->uprw_wwant;
    231       1.1     pooka 	}
    232       1.1     pooka 
    233       1.1     pooka 	(*wp)++;
    234       1.1     pooka 	while (!rw_tryenter(rw, op)) {
    235       1.1     pooka 		rump_schedlock_cv_wait(rucv);
    236       1.1     pooka 	}
    237       1.1     pooka 	(*wp)--;
    238       1.1     pooka }
    239       1.1     pooka 
    240       1.1     pooka int
    241       1.1     pooka rw_tryenter(krwlock_t *rw, const krw_t op)
    242       1.1     pooka {
    243       1.1     pooka 	UPRW(rw);
    244       1.1     pooka 
    245       1.1     pooka 	switch (op) {
    246       1.1     pooka 	case RW_READER:
    247       1.1     pooka 		if (uprw->uprw_owner == NULL && uprw->uprw_wwant == 0) {
    248       1.1     pooka 			uprw->uprw_readers++;
    249       1.1     pooka 			return 1;
    250       1.1     pooka 		}
    251       1.1     pooka 		break;
    252       1.1     pooka 	case RW_WRITER:
    253       1.1     pooka 		if (uprw->uprw_owner == NULL && uprw->uprw_readers == 0) {
    254       1.1     pooka 			uprw->uprw_owner = curlwp;
    255       1.1     pooka 			return 1;
    256       1.1     pooka 		}
    257       1.1     pooka 		break;
    258       1.1     pooka 	}
    259       1.1     pooka 
    260       1.1     pooka 	return 0;
    261       1.1     pooka }
    262       1.1     pooka 
    263       1.1     pooka void
    264       1.1     pooka rw_exit(krwlock_t *rw)
    265       1.1     pooka {
    266       1.1     pooka 	UPRW(rw);
    267       1.1     pooka 
    268       1.1     pooka 	if (uprw->uprw_readers > 0) {
    269       1.1     pooka 		uprw->uprw_readers--;
    270       1.1     pooka 	} else {
    271       1.1     pooka 		KASSERT(uprw->uprw_owner == curlwp);
    272       1.1     pooka 		uprw->uprw_owner = NULL;
    273       1.1     pooka 	}
    274       1.1     pooka 
    275       1.1     pooka 	if (uprw->uprw_wwant) {
    276       1.1     pooka 		rumpuser_cv_signal(uprw->uprw_rucv_writer);
    277       1.1     pooka 	} else if (uprw->uprw_rwant) {
    278       1.1     pooka 		rumpuser_cv_signal(uprw->uprw_rucv_reader);
    279       1.1     pooka 	}
    280       1.1     pooka }
    281       1.1     pooka 
    282       1.1     pooka int
    283       1.1     pooka rw_tryupgrade(krwlock_t *rw)
    284       1.1     pooka {
    285       1.1     pooka 	UPRW(rw);
    286       1.1     pooka 
    287       1.1     pooka 	if (uprw->uprw_readers == 1 && uprw->uprw_owner == NULL) {
    288       1.1     pooka 		uprw->uprw_readers = 0;
    289       1.1     pooka 		uprw->uprw_owner = curlwp;
    290       1.1     pooka 		return 1;
    291       1.1     pooka 	} else {
    292       1.1     pooka 		return 0;
    293       1.1     pooka 	}
    294       1.1     pooka }
    295       1.1     pooka 
    296       1.1     pooka int
    297       1.1     pooka rw_write_held(krwlock_t *rw)
    298       1.1     pooka {
    299       1.1     pooka 	UPRW(rw);
    300       1.1     pooka 
    301       1.1     pooka 	return uprw->uprw_owner == curlwp;
    302       1.1     pooka }
    303       1.1     pooka 
    304       1.1     pooka int
    305       1.1     pooka rw_read_held(krwlock_t *rw)
    306       1.1     pooka {
    307       1.1     pooka 	UPRW(rw);
    308       1.1     pooka 
    309       1.1     pooka 	return uprw->uprw_readers > 0;
    310       1.1     pooka }
    311       1.1     pooka 
    312       1.1     pooka int
    313       1.1     pooka rw_lock_held(krwlock_t *rw)
    314       1.1     pooka {
    315       1.1     pooka 	UPRW(rw);
    316       1.1     pooka 
    317       1.1     pooka 	return uprw->uprw_owner || uprw->uprw_readers;
    318       1.1     pooka }
    319       1.1     pooka 
    320       1.1     pooka 
    321       1.1     pooka /*
    322       1.1     pooka  * Condvars are almost the same as in the MP case except that we
    323       1.1     pooka  * use the scheduler mutex as the pthread interlock instead of the
    324       1.1     pooka  * mutex associated with the condvar.
    325       1.1     pooka  */
    326       1.1     pooka 
    327       1.1     pooka #define RUMPCV(cv) (*(struct rumpuser_cv **)(cv))
    328       1.1     pooka 
    329       1.1     pooka void
    330       1.1     pooka cv_init(kcondvar_t *cv, const char *msg)
    331       1.1     pooka {
    332       1.1     pooka 
    333       1.1     pooka 	CTASSERT(sizeof(kcondvar_t) >= sizeof(void *));
    334       1.1     pooka 	checkncpu();
    335       1.1     pooka 
    336       1.1     pooka 	rumpuser_cv_init((struct rumpuser_cv **)cv);
    337       1.1     pooka }
    338       1.1     pooka 
    339       1.1     pooka void
    340       1.1     pooka cv_destroy(kcondvar_t *cv)
    341       1.1     pooka {
    342       1.1     pooka 
    343       1.1     pooka 	rumpuser_cv_destroy(RUMPCV(cv));
    344       1.1     pooka }
    345       1.1     pooka 
    346       1.1     pooka void
    347       1.1     pooka cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    348       1.1     pooka {
    349       1.1     pooka #ifdef DIAGNOSTIC
    350       1.1     pooka 	UPMTX(mtx);
    351       1.1     pooka 	KASSERT(upm->upm_owner == curlwp);
    352       1.1     pooka 
    353       1.1     pooka 	if (rump_threads == 0)
    354       1.1     pooka 		panic("cv_wait without threads");
    355       1.1     pooka #endif
    356       1.1     pooka 
    357       1.1     pooka 	/*
    358       1.1     pooka 	 * NOTE: we must atomically release the *CPU* here, i.e.
    359       1.1     pooka 	 * nothing between mutex_exit and entering rumpuser condwait
    360       1.1     pooka 	 * may preempt us from the virtual CPU.
    361       1.1     pooka 	 */
    362       1.1     pooka 	mutex_exit(mtx);
    363       1.1     pooka 	rump_schedlock_cv_wait(RUMPCV(cv));
    364       1.1     pooka 	mutex_enter(mtx);
    365       1.1     pooka }
    366       1.1     pooka 
    367       1.1     pooka int
    368       1.1     pooka cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    369       1.1     pooka {
    370       1.1     pooka 
    371       1.1     pooka 	cv_wait(cv, mtx);
    372       1.1     pooka 	return 0;
    373       1.1     pooka }
    374       1.1     pooka 
    375       1.1     pooka int
    376       1.1     pooka cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int ticks)
    377       1.1     pooka {
    378       1.8     pooka 	struct timespec ts;
    379       1.1     pooka 
    380       1.1     pooka #ifdef DIAGNOSTIC
    381       1.1     pooka 	UPMTX(mtx);
    382       1.1     pooka 	KASSERT(upm->upm_owner == curlwp);
    383       1.1     pooka #endif
    384       1.1     pooka 
    385       1.8     pooka 	ts.tv_sec = ticks / hz;
    386       1.8     pooka 	ts.tv_nsec = (ticks % hz) * (1000000000/hz);
    387       1.1     pooka 
    388       1.1     pooka 	if (ticks == 0) {
    389       1.1     pooka 		cv_wait(cv, mtx);
    390       1.1     pooka 		return 0;
    391       1.1     pooka 	} else {
    392       1.1     pooka 		int rv;
    393       1.1     pooka 		mutex_exit(mtx);
    394       1.1     pooka 		rv = rump_schedlock_cv_timedwait(RUMPCV(cv), &ts);
    395       1.1     pooka 		mutex_enter(mtx);
    396       1.1     pooka 		if (rv)
    397       1.1     pooka 			return EWOULDBLOCK;
    398       1.1     pooka 		else
    399       1.1     pooka 			return 0;
    400       1.1     pooka 	}
    401       1.1     pooka }
    402       1.1     pooka 
    403       1.1     pooka int
    404       1.1     pooka cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int ticks)
    405       1.1     pooka {
    406       1.1     pooka 
    407       1.1     pooka 	return cv_timedwait(cv, mtx, ticks);
    408       1.1     pooka }
    409       1.1     pooka 
    410       1.1     pooka void
    411       1.1     pooka cv_signal(kcondvar_t *cv)
    412       1.1     pooka {
    413       1.1     pooka 
    414       1.1     pooka 	/* CPU == interlock */
    415       1.1     pooka 	rumpuser_cv_signal(RUMPCV(cv));
    416       1.1     pooka }
    417       1.1     pooka 
    418       1.1     pooka void
    419       1.1     pooka cv_broadcast(kcondvar_t *cv)
    420       1.1     pooka {
    421       1.1     pooka 
    422       1.1     pooka 	/* CPU == interlock */
    423       1.1     pooka 	rumpuser_cv_broadcast(RUMPCV(cv));
    424       1.1     pooka }
    425       1.1     pooka 
    426       1.1     pooka bool
    427       1.1     pooka cv_has_waiters(kcondvar_t *cv)
    428       1.1     pooka {
    429       1.9     pooka 	int n;
    430       1.1     pooka 
    431       1.9     pooka 	rumpuser_cv_has_waiters(RUMPCV(cv), &n);
    432       1.9     pooka 
    433       1.9     pooka 	return n > 0;
    434       1.1     pooka }
    435       1.1     pooka 
    436       1.1     pooka /* this is not much of an attempt, but ... */
    437       1.1     pooka bool
    438       1.1     pooka cv_is_valid(kcondvar_t *cv)
    439       1.1     pooka {
    440       1.1     pooka 
    441       1.1     pooka 	return RUMPCV(cv) != NULL;
    442       1.1     pooka }
    443