scheduler.c revision 1.14 1 1.14 pooka /* $NetBSD: scheduler.c,v 1.14 2010/05/18 14:58:42 pooka Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.1 pooka * Copyright (c) 2009 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.1 pooka * Development of this software was supported by
7 1.1 pooka * The Finnish Cultural Foundation.
8 1.1 pooka *
9 1.1 pooka * Redistribution and use in source and binary forms, with or without
10 1.1 pooka * modification, are permitted provided that the following conditions
11 1.1 pooka * are met:
12 1.1 pooka * 1. Redistributions of source code must retain the above copyright
13 1.1 pooka * notice, this list of conditions and the following disclaimer.
14 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 pooka * notice, this list of conditions and the following disclaimer in the
16 1.1 pooka * documentation and/or other materials provided with the distribution.
17 1.1 pooka *
18 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
19 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.1 pooka * SUCH DAMAGE.
29 1.1 pooka */
30 1.1 pooka
31 1.1 pooka #include <sys/cdefs.h>
32 1.14 pooka __KERNEL_RCSID(0, "$NetBSD: scheduler.c,v 1.14 2010/05/18 14:58:42 pooka Exp $");
33 1.1 pooka
34 1.1 pooka #include <sys/param.h>
35 1.1 pooka #include <sys/cpu.h>
36 1.2 pooka #include <sys/kmem.h>
37 1.1 pooka #include <sys/mutex.h>
38 1.8 pooka #include <sys/namei.h>
39 1.1 pooka #include <sys/queue.h>
40 1.1 pooka #include <sys/select.h>
41 1.10 pooka #include <sys/systm.h>
42 1.1 pooka
43 1.1 pooka #include <rump/rumpuser.h>
44 1.1 pooka
45 1.1 pooka #include "rump_private.h"
46 1.1 pooka
47 1.1 pooka /* should go for MAXCPUS at some point */
48 1.8 pooka static struct cpu_info rump_cpus[MAXCPUS];
49 1.1 pooka static struct rumpcpu {
50 1.1 pooka struct cpu_info *rcpu_ci;
51 1.8 pooka int rcpu_flags;
52 1.8 pooka struct rumpuser_cv *rcpu_cv;
53 1.8 pooka LIST_ENTRY(rumpcpu) rcpu_entries;
54 1.8 pooka } rcpu_storage[MAXCPUS];
55 1.1 pooka struct cpu_info *rump_cpu = &rump_cpus[0];
56 1.12 pooka int ncpu;
57 1.1 pooka
58 1.8 pooka #define RCPU_WANTED 0x01 /* someone wants this specific CPU */
59 1.8 pooka #define RCPU_BUSY 0x02 /* CPU is busy */
60 1.8 pooka #define RCPU_FREELIST 0x04 /* CPU is on freelist */
61 1.8 pooka
62 1.8 pooka static LIST_HEAD(,rumpcpu) cpu_freelist = LIST_HEAD_INITIALIZER(cpu_freelist);
63 1.14 pooka
64 1.1 pooka static struct rumpuser_mtx *schedmtx;
65 1.3 pooka static struct rumpuser_cv *schedcv, *lwp0cv;
66 1.3 pooka
67 1.3 pooka static bool lwp0busy = false;
68 1.1 pooka
69 1.1 pooka struct cpu_info *
70 1.1 pooka cpu_lookup(u_int index)
71 1.1 pooka {
72 1.1 pooka
73 1.1 pooka return &rump_cpus[index];
74 1.1 pooka }
75 1.1 pooka
76 1.12 pooka /* this could/should be mi_attach_cpu? */
77 1.12 pooka void
78 1.12 pooka rump_cpus_bootstrap(int num)
79 1.12 pooka {
80 1.12 pooka struct rumpcpu *rcpu;
81 1.12 pooka struct cpu_info *ci;
82 1.12 pooka int i;
83 1.12 pooka
84 1.13 pooka if (num > MAXCPUS) {
85 1.13 pooka aprint_verbose("CPU limit: %d wanted, %d (MAXCPUS) available\n",
86 1.13 pooka num, MAXCPUS);
87 1.13 pooka num = MAXCPUS;
88 1.13 pooka }
89 1.13 pooka
90 1.12 pooka for (i = 0; i < num; i++) {
91 1.12 pooka rcpu = &rcpu_storage[i];
92 1.12 pooka ci = &rump_cpus[i];
93 1.12 pooka ci->ci_index = i;
94 1.12 pooka rump_cpu_attach(ci);
95 1.12 pooka ncpu++;
96 1.12 pooka }
97 1.12 pooka }
98 1.12 pooka
99 1.1 pooka void
100 1.1 pooka rump_scheduler_init()
101 1.1 pooka {
102 1.1 pooka struct rumpcpu *rcpu;
103 1.1 pooka struct cpu_info *ci;
104 1.1 pooka int i;
105 1.1 pooka
106 1.1 pooka rumpuser_mutex_init(&schedmtx);
107 1.1 pooka rumpuser_cv_init(&schedcv);
108 1.3 pooka rumpuser_cv_init(&lwp0cv);
109 1.1 pooka for (i = 0; i < ncpu; i++) {
110 1.1 pooka rcpu = &rcpu_storage[i];
111 1.1 pooka ci = &rump_cpus[i];
112 1.12 pooka rcpu->rcpu_ci = ci;
113 1.4 pooka ci->ci_schedstate.spc_mutex =
114 1.4 pooka mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
115 1.9 pooka ci->ci_schedstate.spc_flags = SPCF_RUNNING;
116 1.8 pooka LIST_INSERT_HEAD(&cpu_freelist, rcpu, rcpu_entries);
117 1.8 pooka rcpu->rcpu_flags = RCPU_FREELIST;
118 1.8 pooka rumpuser_cv_init(&rcpu->rcpu_cv);
119 1.1 pooka }
120 1.1 pooka }
121 1.1 pooka
122 1.14 pooka /*
123 1.14 pooka * condvar ops using scheduler lock as the rumpuser interlock.
124 1.14 pooka */
125 1.14 pooka void
126 1.14 pooka rump_schedlock_cv_wait(struct rumpuser_cv *cv)
127 1.14 pooka {
128 1.14 pooka
129 1.14 pooka rumpuser_cv_wait(cv, schedmtx);
130 1.14 pooka }
131 1.14 pooka
132 1.14 pooka int
133 1.14 pooka rump_schedlock_cv_timedwait(struct rumpuser_cv *cv, const struct timespec *ts)
134 1.14 pooka {
135 1.14 pooka
136 1.14 pooka return rumpuser_cv_timedwait(cv, schedmtx, ts->tv_sec, ts->tv_nsec);
137 1.14 pooka }
138 1.14 pooka
139 1.1 pooka void
140 1.1 pooka rump_schedule()
141 1.1 pooka {
142 1.3 pooka struct lwp *l;
143 1.2 pooka
144 1.2 pooka /*
145 1.2 pooka * If there is no dedicated lwp, allocate a temp one and
146 1.3 pooka * set it to be free'd upon unschedule(). Use lwp0 context
147 1.3 pooka * for reserving the necessary resources.
148 1.2 pooka */
149 1.3 pooka l = rumpuser_get_curlwp();
150 1.2 pooka if (l == NULL) {
151 1.3 pooka /* busy lwp0 */
152 1.3 pooka rumpuser_mutex_enter_nowrap(schedmtx);
153 1.3 pooka while (lwp0busy)
154 1.3 pooka rumpuser_cv_wait_nowrap(lwp0cv, schedmtx);
155 1.3 pooka lwp0busy = true;
156 1.3 pooka rumpuser_mutex_exit(schedmtx);
157 1.3 pooka
158 1.3 pooka /* schedule cpu and use lwp0 */
159 1.4 pooka rump_schedule_cpu(&lwp0);
160 1.3 pooka rumpuser_set_curlwp(&lwp0);
161 1.2 pooka l = rump_lwp_alloc(0, rump_nextlid());
162 1.3 pooka
163 1.3 pooka /* release lwp0 */
164 1.3 pooka rump_lwp_switch(l);
165 1.3 pooka rumpuser_mutex_enter_nowrap(schedmtx);
166 1.3 pooka lwp0busy = false;
167 1.3 pooka rumpuser_cv_signal(lwp0cv);
168 1.3 pooka rumpuser_mutex_exit(schedmtx);
169 1.3 pooka
170 1.3 pooka /* mark new lwp as dead-on-exit */
171 1.2 pooka rump_lwp_release(l);
172 1.3 pooka } else {
173 1.4 pooka rump_schedule_cpu(l);
174 1.2 pooka }
175 1.2 pooka }
176 1.2 pooka
177 1.4 pooka void
178 1.4 pooka rump_schedule_cpu(struct lwp *l)
179 1.2 pooka {
180 1.14 pooka
181 1.14 pooka rump_schedule_cpu_interlock(l, NULL);
182 1.14 pooka }
183 1.14 pooka
184 1.14 pooka void
185 1.14 pooka rump_schedule_cpu_interlock(struct lwp *l, void *interlock)
186 1.14 pooka {
187 1.1 pooka struct rumpcpu *rcpu;
188 1.14 pooka bool schedlock = interlock == schedmtx;
189 1.14 pooka
190 1.14 pooka if (!schedlock)
191 1.14 pooka rumpuser_mutex_enter_nowrap(schedmtx);
192 1.1 pooka
193 1.8 pooka if (l->l_pflag & LP_BOUND) {
194 1.8 pooka KASSERT(l->l_cpu != NULL);
195 1.8 pooka rcpu = &rcpu_storage[l->l_cpu-&rump_cpus[0]];
196 1.8 pooka if (rcpu->rcpu_flags & RCPU_BUSY) {
197 1.8 pooka KASSERT((rcpu->rcpu_flags & RCPU_FREELIST) == 0);
198 1.8 pooka while (rcpu->rcpu_flags & RCPU_BUSY) {
199 1.8 pooka rcpu->rcpu_flags |= RCPU_WANTED;
200 1.8 pooka rumpuser_cv_wait_nowrap(rcpu->rcpu_cv,
201 1.8 pooka schedmtx);
202 1.8 pooka }
203 1.8 pooka rcpu->rcpu_flags &= ~RCPU_WANTED;
204 1.8 pooka } else {
205 1.8 pooka KASSERT(rcpu->rcpu_flags & (RCPU_FREELIST|RCPU_WANTED));
206 1.8 pooka }
207 1.8 pooka if (rcpu->rcpu_flags & RCPU_FREELIST) {
208 1.8 pooka LIST_REMOVE(rcpu, rcpu_entries);
209 1.8 pooka rcpu->rcpu_flags &= ~RCPU_FREELIST;
210 1.8 pooka }
211 1.8 pooka } else {
212 1.8 pooka while ((rcpu = LIST_FIRST(&cpu_freelist)) == NULL) {
213 1.8 pooka rumpuser_cv_wait_nowrap(schedcv, schedmtx);
214 1.8 pooka }
215 1.8 pooka KASSERT(rcpu->rcpu_flags & RCPU_FREELIST);
216 1.8 pooka LIST_REMOVE(rcpu, rcpu_entries);
217 1.8 pooka rcpu->rcpu_flags &= ~RCPU_FREELIST;
218 1.8 pooka KASSERT(l->l_cpu == NULL);
219 1.8 pooka l->l_cpu = rcpu->rcpu_ci;
220 1.8 pooka }
221 1.8 pooka rcpu->rcpu_flags |= RCPU_BUSY;
222 1.1 pooka rumpuser_mutex_exit(schedmtx);
223 1.4 pooka l->l_mutex = rcpu->rcpu_ci->ci_schedstate.spc_mutex;
224 1.1 pooka }
225 1.1 pooka
226 1.1 pooka void
227 1.1 pooka rump_unschedule()
228 1.1 pooka {
229 1.2 pooka struct lwp *l;
230 1.2 pooka
231 1.2 pooka l = rumpuser_get_curlwp();
232 1.4 pooka KASSERT(l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex);
233 1.2 pooka rump_unschedule_cpu(l);
234 1.4 pooka l->l_mutex = NULL;
235 1.6 pooka
236 1.6 pooka /*
237 1.6 pooka * If we're using a temp lwp, need to take lwp0 for rump_lwp_free().
238 1.6 pooka * (we could maybe cache idle lwp's to avoid constant bouncing)
239 1.6 pooka */
240 1.2 pooka if (l->l_flag & LW_WEXIT) {
241 1.2 pooka rumpuser_set_curlwp(NULL);
242 1.6 pooka
243 1.6 pooka /* busy lwp0 */
244 1.6 pooka rumpuser_mutex_enter_nowrap(schedmtx);
245 1.6 pooka while (lwp0busy)
246 1.6 pooka rumpuser_cv_wait_nowrap(lwp0cv, schedmtx);
247 1.6 pooka lwp0busy = true;
248 1.6 pooka rumpuser_mutex_exit(schedmtx);
249 1.6 pooka
250 1.6 pooka rump_schedule_cpu(&lwp0);
251 1.6 pooka rumpuser_set_curlwp(&lwp0);
252 1.6 pooka rump_lwp_free(l);
253 1.6 pooka rump_unschedule_cpu(&lwp0);
254 1.6 pooka rumpuser_set_curlwp(NULL);
255 1.6 pooka
256 1.6 pooka rumpuser_mutex_enter_nowrap(schedmtx);
257 1.6 pooka lwp0busy = false;
258 1.6 pooka rumpuser_cv_signal(lwp0cv);
259 1.6 pooka rumpuser_mutex_exit(schedmtx);
260 1.2 pooka }
261 1.2 pooka }
262 1.2 pooka
263 1.2 pooka void
264 1.2 pooka rump_unschedule_cpu(struct lwp *l)
265 1.2 pooka {
266 1.8 pooka
267 1.14 pooka rump_unschedule_cpu_interlock(l, NULL);
268 1.14 pooka }
269 1.14 pooka
270 1.14 pooka void
271 1.14 pooka rump_unschedule_cpu_interlock(struct lwp *l, void *interlock)
272 1.14 pooka {
273 1.14 pooka
274 1.8 pooka if ((l->l_pflag & LP_INTR) == 0)
275 1.8 pooka rump_softint_run(l->l_cpu);
276 1.14 pooka rump_unschedule_cpu1(l, interlock);
277 1.8 pooka }
278 1.8 pooka
279 1.8 pooka void
280 1.14 pooka rump_unschedule_cpu1(struct lwp *l, void *interlock)
281 1.8 pooka {
282 1.1 pooka struct rumpcpu *rcpu;
283 1.1 pooka struct cpu_info *ci;
284 1.14 pooka bool schedlock = interlock == schedmtx;
285 1.1 pooka
286 1.1 pooka ci = l->l_cpu;
287 1.8 pooka if ((l->l_pflag & LP_BOUND) == 0) {
288 1.8 pooka l->l_cpu = NULL;
289 1.8 pooka }
290 1.1 pooka rcpu = &rcpu_storage[ci-&rump_cpus[0]];
291 1.1 pooka KASSERT(rcpu->rcpu_ci == ci);
292 1.8 pooka KASSERT(rcpu->rcpu_flags & RCPU_BUSY);
293 1.1 pooka
294 1.1 pooka rumpuser_mutex_enter_nowrap(schedmtx);
295 1.14 pooka
296 1.8 pooka if (rcpu->rcpu_flags & RCPU_WANTED) {
297 1.8 pooka /*
298 1.8 pooka * The assumption is that there will usually be max 1
299 1.8 pooka * thread waiting on the rcpu_cv, so broadcast is fine.
300 1.8 pooka * (and the current structure requires it because of
301 1.8 pooka * only a bitmask being used for wanting).
302 1.8 pooka */
303 1.8 pooka rumpuser_cv_broadcast(rcpu->rcpu_cv);
304 1.8 pooka } else {
305 1.8 pooka LIST_INSERT_HEAD(&cpu_freelist, rcpu, rcpu_entries);
306 1.8 pooka rcpu->rcpu_flags |= RCPU_FREELIST;
307 1.8 pooka rumpuser_cv_signal(schedcv);
308 1.8 pooka }
309 1.8 pooka rcpu->rcpu_flags &= ~RCPU_BUSY;
310 1.14 pooka
311 1.14 pooka if (!schedlock)
312 1.14 pooka rumpuser_mutex_exit(schedmtx);
313 1.1 pooka }
314 1.5 pooka
315 1.5 pooka /* Give up and retake CPU (perhaps a different one) */
316 1.5 pooka void
317 1.5 pooka yield()
318 1.5 pooka {
319 1.5 pooka struct lwp *l = curlwp;
320 1.5 pooka int nlocks;
321 1.5 pooka
322 1.5 pooka KERNEL_UNLOCK_ALL(l, &nlocks);
323 1.5 pooka rump_unschedule_cpu(l);
324 1.5 pooka rump_schedule_cpu(l);
325 1.5 pooka KERNEL_LOCK(nlocks, l);
326 1.5 pooka }
327 1.5 pooka
328 1.5 pooka void
329 1.5 pooka preempt()
330 1.5 pooka {
331 1.5 pooka
332 1.5 pooka yield();
333 1.5 pooka }
334 1.10 pooka
335 1.10 pooka bool
336 1.10 pooka kpreempt(uintptr_t where)
337 1.10 pooka {
338 1.10 pooka
339 1.10 pooka return false;
340 1.10 pooka }
341 1.10 pooka
342 1.10 pooka /*
343 1.10 pooka * There is no kernel thread preemption in rump currently. But call
344 1.10 pooka * the implementing macros anyway in case they grow some side-effects
345 1.10 pooka * down the road.
346 1.10 pooka */
347 1.10 pooka void
348 1.10 pooka kpreempt_disable(void)
349 1.10 pooka {
350 1.10 pooka
351 1.10 pooka KPREEMPT_DISABLE(curlwp);
352 1.10 pooka }
353 1.10 pooka
354 1.10 pooka void
355 1.10 pooka kpreempt_enable(void)
356 1.10 pooka {
357 1.10 pooka
358 1.10 pooka KPREEMPT_ENABLE(curlwp);
359 1.10 pooka }
360 1.10 pooka
361 1.10 pooka void
362 1.10 pooka suspendsched(void)
363 1.10 pooka {
364 1.10 pooka
365 1.10 pooka /*
366 1.10 pooka * Could wait until everyone is out and block further entries,
367 1.10 pooka * but skip that for now.
368 1.10 pooka */
369 1.10 pooka }
370 1.11 pooka
371 1.11 pooka void
372 1.11 pooka sched_nice(struct proc *p, int level)
373 1.11 pooka {
374 1.11 pooka
375 1.11 pooka /* nothing to do for now */
376 1.11 pooka }
377