Home | History | Annotate | Line # | Download | only in rumpkern
scheduler.c revision 1.21
      1  1.21  pooka /*      $NetBSD: scheduler.c,v 1.21 2010/10/29 15:32:24 pooka Exp $	*/
      2   1.1  pooka 
      3   1.1  pooka /*
      4  1.15  pooka  * Copyright (c) 2010 Antti Kantee.  All Rights Reserved.
      5   1.1  pooka  *
      6   1.1  pooka  * Redistribution and use in source and binary forms, with or without
      7   1.1  pooka  * modification, are permitted provided that the following conditions
      8   1.1  pooka  * are met:
      9   1.1  pooka  * 1. Redistributions of source code must retain the above copyright
     10   1.1  pooka  *    notice, this list of conditions and the following disclaimer.
     11   1.1  pooka  * 2. Redistributions in binary form must reproduce the above copyright
     12   1.1  pooka  *    notice, this list of conditions and the following disclaimer in the
     13   1.1  pooka  *    documentation and/or other materials provided with the distribution.
     14   1.1  pooka  *
     15   1.1  pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     16   1.1  pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     17   1.1  pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     18   1.1  pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     19   1.1  pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     20   1.1  pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     21   1.1  pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22   1.1  pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     23   1.1  pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     24   1.1  pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     25   1.1  pooka  * SUCH DAMAGE.
     26   1.1  pooka  */
     27   1.1  pooka 
     28   1.1  pooka #include <sys/cdefs.h>
     29  1.21  pooka __KERNEL_RCSID(0, "$NetBSD: scheduler.c,v 1.21 2010/10/29 15:32:24 pooka Exp $");
     30   1.1  pooka 
     31   1.1  pooka #include <sys/param.h>
     32  1.16  pooka #include <sys/atomic.h>
     33   1.1  pooka #include <sys/cpu.h>
     34   1.2  pooka #include <sys/kmem.h>
     35   1.1  pooka #include <sys/mutex.h>
     36   1.8  pooka #include <sys/namei.h>
     37   1.1  pooka #include <sys/queue.h>
     38   1.1  pooka #include <sys/select.h>
     39  1.10  pooka #include <sys/systm.h>
     40   1.1  pooka 
     41   1.1  pooka #include <rump/rumpuser.h>
     42   1.1  pooka 
     43   1.1  pooka #include "rump_private.h"
     44   1.1  pooka 
     45   1.8  pooka static struct cpu_info rump_cpus[MAXCPUS];
     46   1.1  pooka static struct rumpcpu {
     47  1.15  pooka 	/* needed in fastpath */
     48   1.1  pooka 	struct cpu_info *rcpu_ci;
     49  1.15  pooka 	void *rcpu_prevlwp;
     50  1.15  pooka 
     51  1.15  pooka 	/* needed in slowpath */
     52  1.15  pooka 	struct rumpuser_mtx *rcpu_mtx;
     53   1.8  pooka 	struct rumpuser_cv *rcpu_cv;
     54  1.15  pooka 	int rcpu_wanted;
     55  1.15  pooka 
     56  1.15  pooka 	/* offset 20 (P=4) or 36 (P=8) here */
     57  1.15  pooka 
     58  1.15  pooka 	/*
     59  1.15  pooka 	 * Some stats.  Not really that necessary, but we should
     60  1.15  pooka 	 * have room.  Note that these overflow quite fast, so need
     61  1.15  pooka 	 * to be collected often.
     62  1.15  pooka 	 */
     63  1.15  pooka 	unsigned int rcpu_fastpath;
     64  1.15  pooka 	unsigned int rcpu_slowpath;
     65  1.15  pooka 	unsigned int rcpu_migrated;
     66  1.15  pooka 
     67  1.15  pooka 	/* offset 32 (P=4) or 50 (P=8) */
     68  1.15  pooka 
     69  1.15  pooka 	int rcpu_align[0] __aligned(CACHE_LINE_SIZE);
     70   1.8  pooka } rcpu_storage[MAXCPUS];
     71   1.1  pooka struct cpu_info *rump_cpu = &rump_cpus[0];
     72  1.12  pooka int ncpu;
     73   1.1  pooka 
     74  1.15  pooka #define RCPULWP_BUSY	((void *)-1)
     75  1.15  pooka #define RCPULWP_WANTED	((void *)-2)
     76   1.8  pooka 
     77  1.15  pooka static struct rumpuser_mtx *lwp0mtx;
     78  1.15  pooka static struct rumpuser_cv *lwp0cv;
     79  1.15  pooka static unsigned nextcpu;
     80  1.14  pooka 
     81  1.19  pooka static bool lwp0isbusy = false;
     82   1.3  pooka 
     83  1.15  pooka /*
     84  1.15  pooka  * Keep some stats.
     85  1.15  pooka  *
     86  1.15  pooka  * Keeping track of there is not really critical for speed, unless
     87  1.15  pooka  * stats happen to be on a different cache line (CACHE_LINE_SIZE is
     88  1.15  pooka  * really just a coarse estimate), so default for the performant case
     89  1.15  pooka  * (i.e. no stats).
     90  1.15  pooka  */
     91  1.15  pooka #ifdef RUMPSCHED_STATS
     92  1.15  pooka #define SCHED_FASTPATH(rcpu) rcpu->rcpu_fastpath++;
     93  1.15  pooka #define SCHED_SLOWPATH(rcpu) rcpu->rcpu_slowpath++;
     94  1.15  pooka #define SCHED_MIGRATED(rcpu) rcpu->rcpu_migrated++;
     95  1.15  pooka #else
     96  1.15  pooka #define SCHED_FASTPATH(rcpu)
     97  1.15  pooka #define SCHED_SLOWPATH(rcpu)
     98  1.15  pooka #define SCHED_MIGRATED(rcpu)
     99  1.15  pooka #endif
    100   1.1  pooka 
    101   1.1  pooka struct cpu_info *
    102   1.1  pooka cpu_lookup(u_int index)
    103   1.1  pooka {
    104   1.1  pooka 
    105   1.1  pooka 	return &rump_cpus[index];
    106   1.1  pooka }
    107   1.1  pooka 
    108  1.15  pooka static inline struct rumpcpu *
    109  1.15  pooka getnextcpu(void)
    110  1.15  pooka {
    111  1.15  pooka 	unsigned newcpu;
    112  1.15  pooka 
    113  1.15  pooka 	newcpu = atomic_inc_uint_nv(&nextcpu);
    114  1.15  pooka 	if (__predict_false(ncpu > UINT_MAX/2))
    115  1.15  pooka 		atomic_and_uint(&nextcpu, 0);
    116  1.15  pooka 	newcpu = newcpu % ncpu;
    117  1.15  pooka 
    118  1.15  pooka 	return &rcpu_storage[newcpu];
    119  1.15  pooka }
    120  1.15  pooka 
    121  1.12  pooka /* this could/should be mi_attach_cpu? */
    122  1.12  pooka void
    123  1.12  pooka rump_cpus_bootstrap(int num)
    124  1.12  pooka {
    125  1.12  pooka 	struct rumpcpu *rcpu;
    126  1.12  pooka 	struct cpu_info *ci;
    127  1.12  pooka 	int i;
    128  1.12  pooka 
    129  1.13  pooka 	if (num > MAXCPUS) {
    130  1.13  pooka 		aprint_verbose("CPU limit: %d wanted, %d (MAXCPUS) available\n",
    131  1.13  pooka 		    num, MAXCPUS);
    132  1.13  pooka 		num = MAXCPUS;
    133  1.13  pooka 	}
    134  1.13  pooka 
    135  1.12  pooka 	for (i = 0; i < num; i++) {
    136  1.12  pooka 		rcpu = &rcpu_storage[i];
    137  1.12  pooka 		ci = &rump_cpus[i];
    138  1.12  pooka 		ci->ci_index = i;
    139  1.12  pooka 	}
    140  1.20  pooka 
    141  1.20  pooka 	/* attach first cpu for bootstrap */
    142  1.20  pooka 	rump_cpu_attach(&rump_cpus[0]);
    143  1.20  pooka 	ncpu = 1;
    144  1.12  pooka }
    145  1.12  pooka 
    146   1.1  pooka void
    147  1.20  pooka rump_scheduler_init(int numcpu)
    148   1.1  pooka {
    149   1.1  pooka 	struct rumpcpu *rcpu;
    150   1.1  pooka 	struct cpu_info *ci;
    151   1.1  pooka 	int i;
    152   1.1  pooka 
    153  1.15  pooka 	rumpuser_mutex_init(&lwp0mtx);
    154   1.3  pooka 	rumpuser_cv_init(&lwp0cv);
    155  1.20  pooka 	for (i = 0; i < numcpu; i++) {
    156   1.1  pooka 		rcpu = &rcpu_storage[i];
    157   1.1  pooka 		ci = &rump_cpus[i];
    158  1.12  pooka 		rcpu->rcpu_ci = ci;
    159   1.4  pooka 		ci->ci_schedstate.spc_mutex =
    160   1.4  pooka 		    mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    161   1.9  pooka 		ci->ci_schedstate.spc_flags = SPCF_RUNNING;
    162  1.15  pooka 		rcpu->rcpu_wanted = 0;
    163   1.8  pooka 		rumpuser_cv_init(&rcpu->rcpu_cv);
    164  1.15  pooka 		rumpuser_mutex_init(&rcpu->rcpu_mtx);
    165   1.1  pooka 	}
    166   1.1  pooka }
    167   1.1  pooka 
    168  1.14  pooka /*
    169  1.14  pooka  * condvar ops using scheduler lock as the rumpuser interlock.
    170  1.14  pooka  */
    171  1.14  pooka void
    172  1.14  pooka rump_schedlock_cv_wait(struct rumpuser_cv *cv)
    173  1.14  pooka {
    174  1.15  pooka 	struct lwp *l = curlwp;
    175  1.15  pooka 	struct rumpcpu *rcpu = &rcpu_storage[l->l_cpu-&rump_cpus[0]];
    176  1.14  pooka 
    177  1.15  pooka 	/* mutex will be taken and released in cpu schedule/unschedule */
    178  1.15  pooka 	rumpuser_cv_wait(cv, rcpu->rcpu_mtx);
    179  1.14  pooka }
    180  1.14  pooka 
    181  1.14  pooka int
    182  1.14  pooka rump_schedlock_cv_timedwait(struct rumpuser_cv *cv, const struct timespec *ts)
    183  1.14  pooka {
    184  1.15  pooka 	struct lwp *l = curlwp;
    185  1.15  pooka 	struct rumpcpu *rcpu = &rcpu_storage[l->l_cpu-&rump_cpus[0]];
    186  1.14  pooka 
    187  1.15  pooka 	/* mutex will be taken and released in cpu schedule/unschedule */
    188  1.15  pooka 	return rumpuser_cv_timedwait(cv, rcpu->rcpu_mtx,
    189  1.15  pooka 	    ts->tv_sec, ts->tv_nsec);
    190  1.14  pooka }
    191  1.14  pooka 
    192  1.19  pooka static void
    193  1.19  pooka lwp0busy(void)
    194  1.19  pooka {
    195  1.19  pooka 
    196  1.19  pooka 	/* busy lwp0 */
    197  1.19  pooka 	KASSERT(curlwp == NULL || curlwp->l_cpu == NULL);
    198  1.19  pooka 	rumpuser_mutex_enter_nowrap(lwp0mtx);
    199  1.19  pooka 	while (lwp0isbusy)
    200  1.19  pooka 		rumpuser_cv_wait_nowrap(lwp0cv, lwp0mtx);
    201  1.19  pooka 	lwp0isbusy = true;
    202  1.19  pooka 	rumpuser_mutex_exit(lwp0mtx);
    203  1.19  pooka }
    204  1.19  pooka 
    205  1.19  pooka static void
    206  1.19  pooka lwp0rele(void)
    207  1.19  pooka {
    208  1.19  pooka 
    209  1.19  pooka 	rumpuser_mutex_enter_nowrap(lwp0mtx);
    210  1.19  pooka 	KASSERT(lwp0isbusy == true);
    211  1.19  pooka 	lwp0isbusy = false;
    212  1.19  pooka 	rumpuser_cv_signal(lwp0cv);
    213  1.19  pooka 	rumpuser_mutex_exit(lwp0mtx);
    214  1.19  pooka }
    215  1.19  pooka 
    216   1.1  pooka void
    217   1.1  pooka rump_schedule()
    218   1.1  pooka {
    219   1.3  pooka 	struct lwp *l;
    220   1.2  pooka 
    221   1.2  pooka 	/*
    222   1.2  pooka 	 * If there is no dedicated lwp, allocate a temp one and
    223   1.3  pooka 	 * set it to be free'd upon unschedule().  Use lwp0 context
    224  1.15  pooka 	 * for reserving the necessary resources.  Don't optimize
    225  1.15  pooka 	 * for this case -- anyone who cares about performance will
    226  1.15  pooka 	 * start a real thread.
    227   1.2  pooka 	 */
    228  1.19  pooka 	if (__predict_true((l = rumpuser_get_curlwp()) != NULL)) {
    229  1.19  pooka 		rump_schedule_cpu(l);
    230  1.19  pooka 		LWP_CACHE_CREDS(l, l->l_proc);
    231  1.19  pooka 	} else {
    232  1.19  pooka 		lwp0busy();
    233   1.3  pooka 
    234   1.3  pooka 		/* schedule cpu and use lwp0 */
    235   1.4  pooka 		rump_schedule_cpu(&lwp0);
    236   1.3  pooka 		rumpuser_set_curlwp(&lwp0);
    237   1.3  pooka 
    238  1.19  pooka 		/* allocate thread, switch to it, and release lwp0 */
    239  1.21  pooka 		l = rump__lwproc_alloclwp(initproc);
    240  1.19  pooka 		rump_lwproc_switch(l);
    241  1.19  pooka 		lwp0rele();
    242   1.3  pooka 
    243  1.19  pooka 		/*
    244  1.19  pooka 		 * mark new thread dead-on-unschedule.  this
    245  1.19  pooka 		 * means that we'll be running with l_refcnt == 0.
    246  1.19  pooka 		 * relax, it's fine.
    247  1.19  pooka 		 */
    248  1.19  pooka 		rump_lwproc_releaselwp();
    249   1.2  pooka 	}
    250   1.2  pooka }
    251   1.2  pooka 
    252   1.4  pooka void
    253   1.4  pooka rump_schedule_cpu(struct lwp *l)
    254   1.2  pooka {
    255  1.14  pooka 
    256  1.14  pooka 	rump_schedule_cpu_interlock(l, NULL);
    257  1.14  pooka }
    258  1.14  pooka 
    259  1.15  pooka /*
    260  1.15  pooka  * Schedule a CPU.  This optimizes for the case where we schedule
    261  1.15  pooka  * the same thread often, and we have nCPU >= nFrequently-Running-Thread
    262  1.15  pooka  * (where CPU is virtual rump cpu, not host CPU).
    263  1.15  pooka  */
    264  1.14  pooka void
    265  1.14  pooka rump_schedule_cpu_interlock(struct lwp *l, void *interlock)
    266  1.14  pooka {
    267   1.1  pooka 	struct rumpcpu *rcpu;
    268  1.15  pooka 	void *old;
    269  1.15  pooka 	bool domigrate;
    270  1.15  pooka 	bool bound = l->l_pflag & LP_BOUND;
    271  1.15  pooka 
    272  1.15  pooka 	/*
    273  1.15  pooka 	 * First, try fastpath: if we were the previous user of the
    274  1.15  pooka 	 * CPU, everything is in order cachewise and we can just
    275  1.15  pooka 	 * proceed to use it.
    276  1.15  pooka 	 *
    277  1.15  pooka 	 * If we are a different thread (i.e. CAS fails), we must go
    278  1.15  pooka 	 * through a memory barrier to ensure we get a truthful
    279  1.15  pooka 	 * view of the world.
    280  1.15  pooka 	 */
    281  1.14  pooka 
    282  1.17  pooka 	KASSERT(l->l_target_cpu != NULL);
    283  1.15  pooka 	rcpu = &rcpu_storage[l->l_target_cpu-&rump_cpus[0]];
    284  1.15  pooka 	if (atomic_cas_ptr(&rcpu->rcpu_prevlwp, l, RCPULWP_BUSY) == l) {
    285  1.15  pooka 		if (__predict_true(interlock == rcpu->rcpu_mtx))
    286  1.15  pooka 			rumpuser_mutex_exit(rcpu->rcpu_mtx);
    287  1.15  pooka 		SCHED_FASTPATH(rcpu);
    288  1.15  pooka 		/* jones, you're the man */
    289  1.15  pooka 		goto fastlane;
    290  1.15  pooka 	}
    291   1.1  pooka 
    292  1.15  pooka 	/*
    293  1.15  pooka 	 * Else, it's the slowpath for us.  First, determine if we
    294  1.15  pooka 	 * can migrate.
    295  1.15  pooka 	 */
    296  1.15  pooka 	if (ncpu == 1)
    297  1.15  pooka 		domigrate = false;
    298  1.15  pooka 	else
    299  1.15  pooka 		domigrate = true;
    300  1.15  pooka 
    301  1.15  pooka 	/* Take lock.  This acts as a load barrier too. */
    302  1.15  pooka 	if (__predict_true(interlock != rcpu->rcpu_mtx))
    303  1.15  pooka 		rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    304  1.15  pooka 
    305  1.15  pooka 	for (;;) {
    306  1.15  pooka 		SCHED_SLOWPATH(rcpu);
    307  1.15  pooka 		old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, RCPULWP_WANTED);
    308  1.15  pooka 
    309  1.15  pooka 		/* CPU is free? */
    310  1.15  pooka 		if (old != RCPULWP_BUSY && old != RCPULWP_WANTED) {
    311  1.15  pooka 			if (atomic_cas_ptr(&rcpu->rcpu_prevlwp,
    312  1.15  pooka 			    RCPULWP_WANTED, RCPULWP_BUSY) == RCPULWP_WANTED) {
    313  1.15  pooka 				break;
    314   1.8  pooka 			}
    315   1.8  pooka 		}
    316  1.15  pooka 
    317  1.15  pooka 		/*
    318  1.15  pooka 		 * Do we want to migrate once?
    319  1.15  pooka 		 * This may need a slightly better algorithm, or we
    320  1.15  pooka 		 * might cache pingpong eternally for non-frequent
    321  1.15  pooka 		 * threads.
    322  1.15  pooka 		 */
    323  1.15  pooka 		if (domigrate && !bound) {
    324  1.15  pooka 			domigrate = false;
    325  1.15  pooka 			SCHED_MIGRATED(rcpu);
    326  1.15  pooka 			rumpuser_mutex_exit(rcpu->rcpu_mtx);
    327  1.15  pooka 			rcpu = getnextcpu();
    328  1.15  pooka 			rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    329  1.15  pooka 			continue;
    330   1.8  pooka 		}
    331  1.15  pooka 
    332  1.15  pooka 		/* Want CPU, wait until it's released an retry */
    333  1.15  pooka 		rcpu->rcpu_wanted++;
    334  1.15  pooka 		rumpuser_cv_wait_nowrap(rcpu->rcpu_cv, rcpu->rcpu_mtx);
    335  1.15  pooka 		rcpu->rcpu_wanted--;
    336   1.8  pooka 	}
    337  1.15  pooka 	rumpuser_mutex_exit(rcpu->rcpu_mtx);
    338  1.15  pooka 
    339  1.15  pooka  fastlane:
    340  1.15  pooka 	l->l_cpu = l->l_target_cpu = rcpu->rcpu_ci;
    341   1.4  pooka 	l->l_mutex = rcpu->rcpu_ci->ci_schedstate.spc_mutex;
    342  1.18  pooka 	l->l_ncsw++;
    343   1.1  pooka }
    344   1.1  pooka 
    345   1.1  pooka void
    346   1.1  pooka rump_unschedule()
    347   1.1  pooka {
    348   1.2  pooka 	struct lwp *l;
    349   1.2  pooka 
    350   1.2  pooka 	l = rumpuser_get_curlwp();
    351   1.4  pooka 	KASSERT(l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex);
    352   1.2  pooka 	rump_unschedule_cpu(l);
    353   1.4  pooka 	l->l_mutex = NULL;
    354   1.6  pooka 
    355   1.6  pooka 	/*
    356  1.19  pooka 	 * Check special conditions:
    357  1.19  pooka 	 *  1) do we need to free the lwp which just unscheduled?
    358  1.19  pooka 	 *     (locking order: lwp0, cpu)
    359  1.19  pooka 	 *  2) do we want to clear curlwp for the current host thread
    360   1.6  pooka 	 */
    361  1.19  pooka 	if (__predict_false(l->l_flag & LW_WEXIT)) {
    362  1.19  pooka 		lwp0busy();
    363  1.19  pooka 
    364  1.19  pooka 		/* Now that we have lwp0, we can schedule a CPU again */
    365  1.19  pooka 		rump_schedule_cpu(l);
    366   1.6  pooka 
    367  1.19  pooka 		/* switch to lwp0.  this frees the old thread */
    368  1.19  pooka 		KASSERT(l->l_flag & LW_WEXIT);
    369  1.19  pooka 		rump_lwproc_switch(&lwp0);
    370   1.6  pooka 
    371  1.19  pooka 		/* release lwp0 */
    372   1.6  pooka 		rump_unschedule_cpu(&lwp0);
    373  1.19  pooka 		lwp0.l_mutex = NULL;
    374  1.19  pooka 		lwp0.l_pflag &= ~LP_RUNNING;
    375  1.19  pooka 		lwp0rele();
    376   1.6  pooka 		rumpuser_set_curlwp(NULL);
    377   1.6  pooka 
    378  1.19  pooka 	} else if (__predict_false(l->l_flag & LW_RUMP_CLEAR)) {
    379  1.19  pooka 		rumpuser_set_curlwp(NULL);
    380  1.19  pooka 		l->l_flag &= ~LW_RUMP_CLEAR;
    381   1.2  pooka 	}
    382   1.2  pooka }
    383   1.2  pooka 
    384   1.2  pooka void
    385   1.2  pooka rump_unschedule_cpu(struct lwp *l)
    386   1.2  pooka {
    387   1.8  pooka 
    388  1.14  pooka 	rump_unschedule_cpu_interlock(l, NULL);
    389  1.14  pooka }
    390  1.14  pooka 
    391  1.14  pooka void
    392  1.14  pooka rump_unschedule_cpu_interlock(struct lwp *l, void *interlock)
    393  1.14  pooka {
    394  1.14  pooka 
    395   1.8  pooka 	if ((l->l_pflag & LP_INTR) == 0)
    396   1.8  pooka 		rump_softint_run(l->l_cpu);
    397  1.14  pooka 	rump_unschedule_cpu1(l, interlock);
    398   1.8  pooka }
    399   1.8  pooka 
    400   1.8  pooka void
    401  1.14  pooka rump_unschedule_cpu1(struct lwp *l, void *interlock)
    402   1.8  pooka {
    403   1.1  pooka 	struct rumpcpu *rcpu;
    404   1.1  pooka 	struct cpu_info *ci;
    405  1.15  pooka 	void *old;
    406   1.1  pooka 
    407   1.1  pooka 	ci = l->l_cpu;
    408  1.15  pooka 	l->l_cpu = NULL;
    409   1.1  pooka 	rcpu = &rcpu_storage[ci-&rump_cpus[0]];
    410  1.15  pooka 
    411   1.1  pooka 	KASSERT(rcpu->rcpu_ci == ci);
    412   1.1  pooka 
    413  1.15  pooka 	/*
    414  1.15  pooka 	 * Make sure all stores are seen before the CPU release.  This
    415  1.15  pooka 	 * is relevant only in the non-fastpath scheduling case, but
    416  1.15  pooka 	 * we don't know here if that's going to happen, so need to
    417  1.15  pooka 	 * expect the worst.
    418  1.15  pooka 	 */
    419  1.15  pooka 	membar_exit();
    420  1.15  pooka 
    421  1.15  pooka 	/* Release the CPU. */
    422  1.15  pooka 	old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, l);
    423  1.15  pooka 
    424  1.15  pooka 	/* No waiters?  No problems.  We're outta here. */
    425  1.15  pooka 	if (old == RCPULWP_BUSY) {
    426  1.15  pooka 		/* Was the scheduler interlock requested? */
    427  1.15  pooka 		if (__predict_false(interlock == rcpu->rcpu_mtx))
    428  1.15  pooka 			rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    429  1.15  pooka 		return;
    430  1.15  pooka 	}
    431  1.15  pooka 
    432  1.15  pooka 	KASSERT(old == RCPULWP_WANTED);
    433  1.15  pooka 
    434  1.15  pooka 	/*
    435  1.15  pooka 	 * Ok, things weren't so snappy.
    436  1.15  pooka 	 *
    437  1.15  pooka 	 * Snailpath: take lock and signal anyone waiting for this CPU.
    438  1.15  pooka 	 */
    439  1.14  pooka 
    440  1.15  pooka 	rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    441  1.15  pooka 	if (rcpu->rcpu_wanted)
    442   1.8  pooka 		rumpuser_cv_broadcast(rcpu->rcpu_cv);
    443  1.14  pooka 
    444  1.15  pooka 	if (__predict_true(interlock != rcpu->rcpu_mtx))
    445  1.15  pooka 		rumpuser_mutex_exit(rcpu->rcpu_mtx);
    446   1.1  pooka }
    447   1.5  pooka 
    448   1.5  pooka /* Give up and retake CPU (perhaps a different one) */
    449   1.5  pooka void
    450   1.5  pooka yield()
    451   1.5  pooka {
    452   1.5  pooka 	struct lwp *l = curlwp;
    453   1.5  pooka 	int nlocks;
    454   1.5  pooka 
    455   1.5  pooka 	KERNEL_UNLOCK_ALL(l, &nlocks);
    456   1.5  pooka 	rump_unschedule_cpu(l);
    457   1.5  pooka 	rump_schedule_cpu(l);
    458   1.5  pooka 	KERNEL_LOCK(nlocks, l);
    459   1.5  pooka }
    460   1.5  pooka 
    461   1.5  pooka void
    462   1.5  pooka preempt()
    463   1.5  pooka {
    464   1.5  pooka 
    465   1.5  pooka 	yield();
    466   1.5  pooka }
    467  1.10  pooka 
    468  1.10  pooka bool
    469  1.10  pooka kpreempt(uintptr_t where)
    470  1.10  pooka {
    471  1.10  pooka 
    472  1.10  pooka 	return false;
    473  1.10  pooka }
    474  1.10  pooka 
    475  1.10  pooka /*
    476  1.10  pooka  * There is no kernel thread preemption in rump currently.  But call
    477  1.10  pooka  * the implementing macros anyway in case they grow some side-effects
    478  1.10  pooka  * down the road.
    479  1.10  pooka  */
    480  1.10  pooka void
    481  1.10  pooka kpreempt_disable(void)
    482  1.10  pooka {
    483  1.10  pooka 
    484  1.10  pooka 	KPREEMPT_DISABLE(curlwp);
    485  1.10  pooka }
    486  1.10  pooka 
    487  1.10  pooka void
    488  1.10  pooka kpreempt_enable(void)
    489  1.10  pooka {
    490  1.10  pooka 
    491  1.10  pooka 	KPREEMPT_ENABLE(curlwp);
    492  1.10  pooka }
    493  1.10  pooka 
    494  1.10  pooka void
    495  1.10  pooka suspendsched(void)
    496  1.10  pooka {
    497  1.10  pooka 
    498  1.10  pooka 	/*
    499  1.10  pooka 	 * Could wait until everyone is out and block further entries,
    500  1.10  pooka 	 * but skip that for now.
    501  1.10  pooka 	 */
    502  1.10  pooka }
    503  1.11  pooka 
    504  1.11  pooka void
    505  1.11  pooka sched_nice(struct proc *p, int level)
    506  1.11  pooka {
    507  1.11  pooka 
    508  1.11  pooka 	/* nothing to do for now */
    509  1.11  pooka }
    510