scheduler.c revision 1.23 1 1.23 pooka /* $NetBSD: scheduler.c,v 1.23 2010/12/01 20:29:56 pooka Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.15 pooka * Copyright (c) 2010 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.1 pooka * Redistribution and use in source and binary forms, with or without
7 1.1 pooka * modification, are permitted provided that the following conditions
8 1.1 pooka * are met:
9 1.1 pooka * 1. Redistributions of source code must retain the above copyright
10 1.1 pooka * notice, this list of conditions and the following disclaimer.
11 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 pooka * notice, this list of conditions and the following disclaimer in the
13 1.1 pooka * documentation and/or other materials provided with the distribution.
14 1.1 pooka *
15 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 1.1 pooka * SUCH DAMAGE.
26 1.1 pooka */
27 1.1 pooka
28 1.1 pooka #include <sys/cdefs.h>
29 1.23 pooka __KERNEL_RCSID(0, "$NetBSD: scheduler.c,v 1.23 2010/12/01 20:29:56 pooka Exp $");
30 1.1 pooka
31 1.1 pooka #include <sys/param.h>
32 1.16 pooka #include <sys/atomic.h>
33 1.1 pooka #include <sys/cpu.h>
34 1.2 pooka #include <sys/kmem.h>
35 1.1 pooka #include <sys/mutex.h>
36 1.8 pooka #include <sys/namei.h>
37 1.1 pooka #include <sys/queue.h>
38 1.1 pooka #include <sys/select.h>
39 1.10 pooka #include <sys/systm.h>
40 1.1 pooka
41 1.1 pooka #include <rump/rumpuser.h>
42 1.1 pooka
43 1.1 pooka #include "rump_private.h"
44 1.1 pooka
45 1.8 pooka static struct cpu_info rump_cpus[MAXCPUS];
46 1.1 pooka static struct rumpcpu {
47 1.15 pooka /* needed in fastpath */
48 1.1 pooka struct cpu_info *rcpu_ci;
49 1.15 pooka void *rcpu_prevlwp;
50 1.15 pooka
51 1.15 pooka /* needed in slowpath */
52 1.15 pooka struct rumpuser_mtx *rcpu_mtx;
53 1.8 pooka struct rumpuser_cv *rcpu_cv;
54 1.15 pooka int rcpu_wanted;
55 1.15 pooka
56 1.15 pooka /* offset 20 (P=4) or 36 (P=8) here */
57 1.15 pooka
58 1.15 pooka /*
59 1.15 pooka * Some stats. Not really that necessary, but we should
60 1.15 pooka * have room. Note that these overflow quite fast, so need
61 1.15 pooka * to be collected often.
62 1.15 pooka */
63 1.15 pooka unsigned int rcpu_fastpath;
64 1.15 pooka unsigned int rcpu_slowpath;
65 1.15 pooka unsigned int rcpu_migrated;
66 1.15 pooka
67 1.15 pooka /* offset 32 (P=4) or 50 (P=8) */
68 1.15 pooka
69 1.15 pooka int rcpu_align[0] __aligned(CACHE_LINE_SIZE);
70 1.8 pooka } rcpu_storage[MAXCPUS];
71 1.1 pooka struct cpu_info *rump_cpu = &rump_cpus[0];
72 1.12 pooka int ncpu;
73 1.1 pooka
74 1.15 pooka #define RCPULWP_BUSY ((void *)-1)
75 1.15 pooka #define RCPULWP_WANTED ((void *)-2)
76 1.8 pooka
77 1.15 pooka static struct rumpuser_mtx *lwp0mtx;
78 1.15 pooka static struct rumpuser_cv *lwp0cv;
79 1.15 pooka static unsigned nextcpu;
80 1.14 pooka
81 1.19 pooka static bool lwp0isbusy = false;
82 1.3 pooka
83 1.15 pooka /*
84 1.15 pooka * Keep some stats.
85 1.15 pooka *
86 1.15 pooka * Keeping track of there is not really critical for speed, unless
87 1.15 pooka * stats happen to be on a different cache line (CACHE_LINE_SIZE is
88 1.15 pooka * really just a coarse estimate), so default for the performant case
89 1.15 pooka * (i.e. no stats).
90 1.15 pooka */
91 1.15 pooka #ifdef RUMPSCHED_STATS
92 1.15 pooka #define SCHED_FASTPATH(rcpu) rcpu->rcpu_fastpath++;
93 1.15 pooka #define SCHED_SLOWPATH(rcpu) rcpu->rcpu_slowpath++;
94 1.15 pooka #define SCHED_MIGRATED(rcpu) rcpu->rcpu_migrated++;
95 1.15 pooka #else
96 1.15 pooka #define SCHED_FASTPATH(rcpu)
97 1.15 pooka #define SCHED_SLOWPATH(rcpu)
98 1.15 pooka #define SCHED_MIGRATED(rcpu)
99 1.15 pooka #endif
100 1.1 pooka
101 1.1 pooka struct cpu_info *
102 1.1 pooka cpu_lookup(u_int index)
103 1.1 pooka {
104 1.1 pooka
105 1.1 pooka return &rump_cpus[index];
106 1.1 pooka }
107 1.1 pooka
108 1.15 pooka static inline struct rumpcpu *
109 1.15 pooka getnextcpu(void)
110 1.15 pooka {
111 1.15 pooka unsigned newcpu;
112 1.15 pooka
113 1.15 pooka newcpu = atomic_inc_uint_nv(&nextcpu);
114 1.15 pooka if (__predict_false(ncpu > UINT_MAX/2))
115 1.15 pooka atomic_and_uint(&nextcpu, 0);
116 1.15 pooka newcpu = newcpu % ncpu;
117 1.15 pooka
118 1.15 pooka return &rcpu_storage[newcpu];
119 1.15 pooka }
120 1.15 pooka
121 1.12 pooka /* this could/should be mi_attach_cpu? */
122 1.12 pooka void
123 1.22 pooka rump_cpus_bootstrap(int *nump)
124 1.12 pooka {
125 1.12 pooka struct rumpcpu *rcpu;
126 1.12 pooka struct cpu_info *ci;
127 1.22 pooka int num = *nump;
128 1.12 pooka int i;
129 1.12 pooka
130 1.13 pooka if (num > MAXCPUS) {
131 1.22 pooka aprint_verbose("CPU limit: %d wanted, %d (MAXCPUS) "
132 1.22 pooka "available (adjusted)\n", num, MAXCPUS);
133 1.13 pooka num = MAXCPUS;
134 1.13 pooka }
135 1.13 pooka
136 1.12 pooka for (i = 0; i < num; i++) {
137 1.12 pooka rcpu = &rcpu_storage[i];
138 1.12 pooka ci = &rump_cpus[i];
139 1.12 pooka ci->ci_index = i;
140 1.12 pooka }
141 1.20 pooka
142 1.20 pooka /* attach first cpu for bootstrap */
143 1.20 pooka rump_cpu_attach(&rump_cpus[0]);
144 1.20 pooka ncpu = 1;
145 1.22 pooka *nump = num;
146 1.12 pooka }
147 1.12 pooka
148 1.1 pooka void
149 1.20 pooka rump_scheduler_init(int numcpu)
150 1.1 pooka {
151 1.1 pooka struct rumpcpu *rcpu;
152 1.1 pooka struct cpu_info *ci;
153 1.1 pooka int i;
154 1.1 pooka
155 1.15 pooka rumpuser_mutex_init(&lwp0mtx);
156 1.3 pooka rumpuser_cv_init(&lwp0cv);
157 1.20 pooka for (i = 0; i < numcpu; i++) {
158 1.1 pooka rcpu = &rcpu_storage[i];
159 1.1 pooka ci = &rump_cpus[i];
160 1.12 pooka rcpu->rcpu_ci = ci;
161 1.4 pooka ci->ci_schedstate.spc_mutex =
162 1.4 pooka mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
163 1.9 pooka ci->ci_schedstate.spc_flags = SPCF_RUNNING;
164 1.15 pooka rcpu->rcpu_wanted = 0;
165 1.8 pooka rumpuser_cv_init(&rcpu->rcpu_cv);
166 1.15 pooka rumpuser_mutex_init(&rcpu->rcpu_mtx);
167 1.1 pooka }
168 1.1 pooka }
169 1.1 pooka
170 1.14 pooka /*
171 1.14 pooka * condvar ops using scheduler lock as the rumpuser interlock.
172 1.14 pooka */
173 1.14 pooka void
174 1.14 pooka rump_schedlock_cv_wait(struct rumpuser_cv *cv)
175 1.14 pooka {
176 1.15 pooka struct lwp *l = curlwp;
177 1.15 pooka struct rumpcpu *rcpu = &rcpu_storage[l->l_cpu-&rump_cpus[0]];
178 1.14 pooka
179 1.15 pooka /* mutex will be taken and released in cpu schedule/unschedule */
180 1.15 pooka rumpuser_cv_wait(cv, rcpu->rcpu_mtx);
181 1.14 pooka }
182 1.14 pooka
183 1.14 pooka int
184 1.14 pooka rump_schedlock_cv_timedwait(struct rumpuser_cv *cv, const struct timespec *ts)
185 1.14 pooka {
186 1.15 pooka struct lwp *l = curlwp;
187 1.15 pooka struct rumpcpu *rcpu = &rcpu_storage[l->l_cpu-&rump_cpus[0]];
188 1.14 pooka
189 1.15 pooka /* mutex will be taken and released in cpu schedule/unschedule */
190 1.15 pooka return rumpuser_cv_timedwait(cv, rcpu->rcpu_mtx,
191 1.15 pooka ts->tv_sec, ts->tv_nsec);
192 1.14 pooka }
193 1.14 pooka
194 1.19 pooka static void
195 1.19 pooka lwp0busy(void)
196 1.19 pooka {
197 1.19 pooka
198 1.19 pooka /* busy lwp0 */
199 1.19 pooka KASSERT(curlwp == NULL || curlwp->l_cpu == NULL);
200 1.19 pooka rumpuser_mutex_enter_nowrap(lwp0mtx);
201 1.19 pooka while (lwp0isbusy)
202 1.19 pooka rumpuser_cv_wait_nowrap(lwp0cv, lwp0mtx);
203 1.19 pooka lwp0isbusy = true;
204 1.19 pooka rumpuser_mutex_exit(lwp0mtx);
205 1.19 pooka }
206 1.19 pooka
207 1.19 pooka static void
208 1.19 pooka lwp0rele(void)
209 1.19 pooka {
210 1.19 pooka
211 1.19 pooka rumpuser_mutex_enter_nowrap(lwp0mtx);
212 1.19 pooka KASSERT(lwp0isbusy == true);
213 1.19 pooka lwp0isbusy = false;
214 1.19 pooka rumpuser_cv_signal(lwp0cv);
215 1.19 pooka rumpuser_mutex_exit(lwp0mtx);
216 1.19 pooka }
217 1.19 pooka
218 1.1 pooka void
219 1.1 pooka rump_schedule()
220 1.1 pooka {
221 1.3 pooka struct lwp *l;
222 1.2 pooka
223 1.2 pooka /*
224 1.2 pooka * If there is no dedicated lwp, allocate a temp one and
225 1.3 pooka * set it to be free'd upon unschedule(). Use lwp0 context
226 1.15 pooka * for reserving the necessary resources. Don't optimize
227 1.15 pooka * for this case -- anyone who cares about performance will
228 1.15 pooka * start a real thread.
229 1.2 pooka */
230 1.19 pooka if (__predict_true((l = rumpuser_get_curlwp()) != NULL)) {
231 1.19 pooka rump_schedule_cpu(l);
232 1.19 pooka LWP_CACHE_CREDS(l, l->l_proc);
233 1.19 pooka } else {
234 1.19 pooka lwp0busy();
235 1.3 pooka
236 1.3 pooka /* schedule cpu and use lwp0 */
237 1.4 pooka rump_schedule_cpu(&lwp0);
238 1.3 pooka rumpuser_set_curlwp(&lwp0);
239 1.3 pooka
240 1.19 pooka /* allocate thread, switch to it, and release lwp0 */
241 1.21 pooka l = rump__lwproc_alloclwp(initproc);
242 1.19 pooka rump_lwproc_switch(l);
243 1.19 pooka lwp0rele();
244 1.3 pooka
245 1.19 pooka /*
246 1.19 pooka * mark new thread dead-on-unschedule. this
247 1.19 pooka * means that we'll be running with l_refcnt == 0.
248 1.19 pooka * relax, it's fine.
249 1.19 pooka */
250 1.19 pooka rump_lwproc_releaselwp();
251 1.2 pooka }
252 1.2 pooka }
253 1.2 pooka
254 1.4 pooka void
255 1.4 pooka rump_schedule_cpu(struct lwp *l)
256 1.2 pooka {
257 1.14 pooka
258 1.14 pooka rump_schedule_cpu_interlock(l, NULL);
259 1.14 pooka }
260 1.14 pooka
261 1.15 pooka /*
262 1.15 pooka * Schedule a CPU. This optimizes for the case where we schedule
263 1.15 pooka * the same thread often, and we have nCPU >= nFrequently-Running-Thread
264 1.15 pooka * (where CPU is virtual rump cpu, not host CPU).
265 1.15 pooka */
266 1.14 pooka void
267 1.14 pooka rump_schedule_cpu_interlock(struct lwp *l, void *interlock)
268 1.14 pooka {
269 1.1 pooka struct rumpcpu *rcpu;
270 1.15 pooka void *old;
271 1.15 pooka bool domigrate;
272 1.15 pooka bool bound = l->l_pflag & LP_BOUND;
273 1.15 pooka
274 1.15 pooka /*
275 1.15 pooka * First, try fastpath: if we were the previous user of the
276 1.15 pooka * CPU, everything is in order cachewise and we can just
277 1.15 pooka * proceed to use it.
278 1.15 pooka *
279 1.15 pooka * If we are a different thread (i.e. CAS fails), we must go
280 1.15 pooka * through a memory barrier to ensure we get a truthful
281 1.15 pooka * view of the world.
282 1.15 pooka */
283 1.14 pooka
284 1.17 pooka KASSERT(l->l_target_cpu != NULL);
285 1.15 pooka rcpu = &rcpu_storage[l->l_target_cpu-&rump_cpus[0]];
286 1.15 pooka if (atomic_cas_ptr(&rcpu->rcpu_prevlwp, l, RCPULWP_BUSY) == l) {
287 1.15 pooka if (__predict_true(interlock == rcpu->rcpu_mtx))
288 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
289 1.15 pooka SCHED_FASTPATH(rcpu);
290 1.15 pooka /* jones, you're the man */
291 1.15 pooka goto fastlane;
292 1.15 pooka }
293 1.1 pooka
294 1.15 pooka /*
295 1.15 pooka * Else, it's the slowpath for us. First, determine if we
296 1.15 pooka * can migrate.
297 1.15 pooka */
298 1.15 pooka if (ncpu == 1)
299 1.15 pooka domigrate = false;
300 1.15 pooka else
301 1.15 pooka domigrate = true;
302 1.15 pooka
303 1.15 pooka /* Take lock. This acts as a load barrier too. */
304 1.15 pooka if (__predict_true(interlock != rcpu->rcpu_mtx))
305 1.15 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
306 1.15 pooka
307 1.15 pooka for (;;) {
308 1.15 pooka SCHED_SLOWPATH(rcpu);
309 1.15 pooka old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, RCPULWP_WANTED);
310 1.15 pooka
311 1.15 pooka /* CPU is free? */
312 1.15 pooka if (old != RCPULWP_BUSY && old != RCPULWP_WANTED) {
313 1.15 pooka if (atomic_cas_ptr(&rcpu->rcpu_prevlwp,
314 1.15 pooka RCPULWP_WANTED, RCPULWP_BUSY) == RCPULWP_WANTED) {
315 1.15 pooka break;
316 1.8 pooka }
317 1.8 pooka }
318 1.15 pooka
319 1.15 pooka /*
320 1.15 pooka * Do we want to migrate once?
321 1.15 pooka * This may need a slightly better algorithm, or we
322 1.15 pooka * might cache pingpong eternally for non-frequent
323 1.15 pooka * threads.
324 1.15 pooka */
325 1.15 pooka if (domigrate && !bound) {
326 1.15 pooka domigrate = false;
327 1.15 pooka SCHED_MIGRATED(rcpu);
328 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
329 1.15 pooka rcpu = getnextcpu();
330 1.15 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
331 1.15 pooka continue;
332 1.8 pooka }
333 1.15 pooka
334 1.15 pooka /* Want CPU, wait until it's released an retry */
335 1.15 pooka rcpu->rcpu_wanted++;
336 1.15 pooka rumpuser_cv_wait_nowrap(rcpu->rcpu_cv, rcpu->rcpu_mtx);
337 1.15 pooka rcpu->rcpu_wanted--;
338 1.8 pooka }
339 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
340 1.15 pooka
341 1.15 pooka fastlane:
342 1.15 pooka l->l_cpu = l->l_target_cpu = rcpu->rcpu_ci;
343 1.4 pooka l->l_mutex = rcpu->rcpu_ci->ci_schedstate.spc_mutex;
344 1.18 pooka l->l_ncsw++;
345 1.23 pooka
346 1.23 pooka rcpu->rcpu_ci->ci_curlwp = l;
347 1.1 pooka }
348 1.1 pooka
349 1.1 pooka void
350 1.1 pooka rump_unschedule()
351 1.1 pooka {
352 1.2 pooka struct lwp *l;
353 1.2 pooka
354 1.2 pooka l = rumpuser_get_curlwp();
355 1.4 pooka KASSERT(l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex);
356 1.2 pooka rump_unschedule_cpu(l);
357 1.4 pooka l->l_mutex = NULL;
358 1.6 pooka
359 1.6 pooka /*
360 1.19 pooka * Check special conditions:
361 1.19 pooka * 1) do we need to free the lwp which just unscheduled?
362 1.19 pooka * (locking order: lwp0, cpu)
363 1.19 pooka * 2) do we want to clear curlwp for the current host thread
364 1.6 pooka */
365 1.19 pooka if (__predict_false(l->l_flag & LW_WEXIT)) {
366 1.19 pooka lwp0busy();
367 1.19 pooka
368 1.19 pooka /* Now that we have lwp0, we can schedule a CPU again */
369 1.19 pooka rump_schedule_cpu(l);
370 1.6 pooka
371 1.19 pooka /* switch to lwp0. this frees the old thread */
372 1.19 pooka KASSERT(l->l_flag & LW_WEXIT);
373 1.19 pooka rump_lwproc_switch(&lwp0);
374 1.6 pooka
375 1.19 pooka /* release lwp0 */
376 1.6 pooka rump_unschedule_cpu(&lwp0);
377 1.19 pooka lwp0.l_mutex = NULL;
378 1.19 pooka lwp0.l_pflag &= ~LP_RUNNING;
379 1.19 pooka lwp0rele();
380 1.6 pooka rumpuser_set_curlwp(NULL);
381 1.6 pooka
382 1.19 pooka } else if (__predict_false(l->l_flag & LW_RUMP_CLEAR)) {
383 1.19 pooka rumpuser_set_curlwp(NULL);
384 1.19 pooka l->l_flag &= ~LW_RUMP_CLEAR;
385 1.2 pooka }
386 1.2 pooka }
387 1.2 pooka
388 1.2 pooka void
389 1.2 pooka rump_unschedule_cpu(struct lwp *l)
390 1.2 pooka {
391 1.8 pooka
392 1.14 pooka rump_unschedule_cpu_interlock(l, NULL);
393 1.14 pooka }
394 1.14 pooka
395 1.14 pooka void
396 1.14 pooka rump_unschedule_cpu_interlock(struct lwp *l, void *interlock)
397 1.14 pooka {
398 1.14 pooka
399 1.8 pooka if ((l->l_pflag & LP_INTR) == 0)
400 1.8 pooka rump_softint_run(l->l_cpu);
401 1.14 pooka rump_unschedule_cpu1(l, interlock);
402 1.8 pooka }
403 1.8 pooka
404 1.8 pooka void
405 1.14 pooka rump_unschedule_cpu1(struct lwp *l, void *interlock)
406 1.8 pooka {
407 1.1 pooka struct rumpcpu *rcpu;
408 1.1 pooka struct cpu_info *ci;
409 1.15 pooka void *old;
410 1.1 pooka
411 1.1 pooka ci = l->l_cpu;
412 1.23 pooka ci->ci_curlwp = NULL;
413 1.15 pooka l->l_cpu = NULL;
414 1.1 pooka rcpu = &rcpu_storage[ci-&rump_cpus[0]];
415 1.15 pooka
416 1.1 pooka KASSERT(rcpu->rcpu_ci == ci);
417 1.1 pooka
418 1.15 pooka /*
419 1.15 pooka * Make sure all stores are seen before the CPU release. This
420 1.15 pooka * is relevant only in the non-fastpath scheduling case, but
421 1.15 pooka * we don't know here if that's going to happen, so need to
422 1.15 pooka * expect the worst.
423 1.15 pooka */
424 1.15 pooka membar_exit();
425 1.15 pooka
426 1.15 pooka /* Release the CPU. */
427 1.15 pooka old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, l);
428 1.15 pooka
429 1.15 pooka /* No waiters? No problems. We're outta here. */
430 1.15 pooka if (old == RCPULWP_BUSY) {
431 1.15 pooka /* Was the scheduler interlock requested? */
432 1.15 pooka if (__predict_false(interlock == rcpu->rcpu_mtx))
433 1.15 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
434 1.15 pooka return;
435 1.15 pooka }
436 1.15 pooka
437 1.15 pooka KASSERT(old == RCPULWP_WANTED);
438 1.15 pooka
439 1.15 pooka /*
440 1.15 pooka * Ok, things weren't so snappy.
441 1.15 pooka *
442 1.15 pooka * Snailpath: take lock and signal anyone waiting for this CPU.
443 1.15 pooka */
444 1.14 pooka
445 1.15 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
446 1.15 pooka if (rcpu->rcpu_wanted)
447 1.8 pooka rumpuser_cv_broadcast(rcpu->rcpu_cv);
448 1.14 pooka
449 1.15 pooka if (__predict_true(interlock != rcpu->rcpu_mtx))
450 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
451 1.1 pooka }
452 1.5 pooka
453 1.5 pooka /* Give up and retake CPU (perhaps a different one) */
454 1.5 pooka void
455 1.5 pooka yield()
456 1.5 pooka {
457 1.5 pooka struct lwp *l = curlwp;
458 1.5 pooka int nlocks;
459 1.5 pooka
460 1.5 pooka KERNEL_UNLOCK_ALL(l, &nlocks);
461 1.5 pooka rump_unschedule_cpu(l);
462 1.5 pooka rump_schedule_cpu(l);
463 1.5 pooka KERNEL_LOCK(nlocks, l);
464 1.5 pooka }
465 1.5 pooka
466 1.5 pooka void
467 1.5 pooka preempt()
468 1.5 pooka {
469 1.5 pooka
470 1.5 pooka yield();
471 1.5 pooka }
472 1.10 pooka
473 1.10 pooka bool
474 1.10 pooka kpreempt(uintptr_t where)
475 1.10 pooka {
476 1.10 pooka
477 1.10 pooka return false;
478 1.10 pooka }
479 1.10 pooka
480 1.10 pooka /*
481 1.10 pooka * There is no kernel thread preemption in rump currently. But call
482 1.10 pooka * the implementing macros anyway in case they grow some side-effects
483 1.10 pooka * down the road.
484 1.10 pooka */
485 1.10 pooka void
486 1.10 pooka kpreempt_disable(void)
487 1.10 pooka {
488 1.10 pooka
489 1.10 pooka KPREEMPT_DISABLE(curlwp);
490 1.10 pooka }
491 1.10 pooka
492 1.10 pooka void
493 1.10 pooka kpreempt_enable(void)
494 1.10 pooka {
495 1.10 pooka
496 1.10 pooka KPREEMPT_ENABLE(curlwp);
497 1.10 pooka }
498 1.10 pooka
499 1.10 pooka void
500 1.10 pooka suspendsched(void)
501 1.10 pooka {
502 1.10 pooka
503 1.10 pooka /*
504 1.10 pooka * Could wait until everyone is out and block further entries,
505 1.10 pooka * but skip that for now.
506 1.10 pooka */
507 1.10 pooka }
508 1.11 pooka
509 1.11 pooka void
510 1.11 pooka sched_nice(struct proc *p, int level)
511 1.11 pooka {
512 1.11 pooka
513 1.11 pooka /* nothing to do for now */
514 1.11 pooka }
515