scheduler.c revision 1.27 1 1.27 yamt /* $NetBSD: scheduler.c,v 1.27 2011/10/31 13:17:22 yamt Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.26 pooka * Copyright (c) 2010, 2011 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.1 pooka * Redistribution and use in source and binary forms, with or without
7 1.1 pooka * modification, are permitted provided that the following conditions
8 1.1 pooka * are met:
9 1.1 pooka * 1. Redistributions of source code must retain the above copyright
10 1.1 pooka * notice, this list of conditions and the following disclaimer.
11 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 pooka * notice, this list of conditions and the following disclaimer in the
13 1.1 pooka * documentation and/or other materials provided with the distribution.
14 1.1 pooka *
15 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 1.1 pooka * SUCH DAMAGE.
26 1.1 pooka */
27 1.1 pooka
28 1.1 pooka #include <sys/cdefs.h>
29 1.27 yamt __KERNEL_RCSID(0, "$NetBSD: scheduler.c,v 1.27 2011/10/31 13:17:22 yamt Exp $");
30 1.1 pooka
31 1.1 pooka #include <sys/param.h>
32 1.16 pooka #include <sys/atomic.h>
33 1.1 pooka #include <sys/cpu.h>
34 1.2 pooka #include <sys/kmem.h>
35 1.1 pooka #include <sys/mutex.h>
36 1.8 pooka #include <sys/namei.h>
37 1.1 pooka #include <sys/queue.h>
38 1.1 pooka #include <sys/select.h>
39 1.10 pooka #include <sys/systm.h>
40 1.1 pooka
41 1.1 pooka #include <rump/rumpuser.h>
42 1.1 pooka
43 1.1 pooka #include "rump_private.h"
44 1.1 pooka
45 1.8 pooka static struct cpu_info rump_cpus[MAXCPUS];
46 1.1 pooka static struct rumpcpu {
47 1.15 pooka /* needed in fastpath */
48 1.1 pooka struct cpu_info *rcpu_ci;
49 1.15 pooka void *rcpu_prevlwp;
50 1.15 pooka
51 1.15 pooka /* needed in slowpath */
52 1.15 pooka struct rumpuser_mtx *rcpu_mtx;
53 1.8 pooka struct rumpuser_cv *rcpu_cv;
54 1.15 pooka int rcpu_wanted;
55 1.15 pooka
56 1.15 pooka /* offset 20 (P=4) or 36 (P=8) here */
57 1.15 pooka
58 1.15 pooka /*
59 1.15 pooka * Some stats. Not really that necessary, but we should
60 1.15 pooka * have room. Note that these overflow quite fast, so need
61 1.15 pooka * to be collected often.
62 1.15 pooka */
63 1.15 pooka unsigned int rcpu_fastpath;
64 1.15 pooka unsigned int rcpu_slowpath;
65 1.15 pooka unsigned int rcpu_migrated;
66 1.15 pooka
67 1.15 pooka /* offset 32 (P=4) or 50 (P=8) */
68 1.15 pooka
69 1.15 pooka int rcpu_align[0] __aligned(CACHE_LINE_SIZE);
70 1.8 pooka } rcpu_storage[MAXCPUS];
71 1.1 pooka struct cpu_info *rump_cpu = &rump_cpus[0];
72 1.12 pooka int ncpu;
73 1.1 pooka
74 1.15 pooka #define RCPULWP_BUSY ((void *)-1)
75 1.15 pooka #define RCPULWP_WANTED ((void *)-2)
76 1.8 pooka
77 1.15 pooka static struct rumpuser_mtx *lwp0mtx;
78 1.15 pooka static struct rumpuser_cv *lwp0cv;
79 1.15 pooka static unsigned nextcpu;
80 1.14 pooka
81 1.25 pooka kmutex_t unruntime_lock; /* unruntime lwp lock. practically unused */
82 1.25 pooka
83 1.19 pooka static bool lwp0isbusy = false;
84 1.3 pooka
85 1.15 pooka /*
86 1.15 pooka * Keep some stats.
87 1.15 pooka *
88 1.15 pooka * Keeping track of there is not really critical for speed, unless
89 1.15 pooka * stats happen to be on a different cache line (CACHE_LINE_SIZE is
90 1.15 pooka * really just a coarse estimate), so default for the performant case
91 1.15 pooka * (i.e. no stats).
92 1.15 pooka */
93 1.15 pooka #ifdef RUMPSCHED_STATS
94 1.15 pooka #define SCHED_FASTPATH(rcpu) rcpu->rcpu_fastpath++;
95 1.15 pooka #define SCHED_SLOWPATH(rcpu) rcpu->rcpu_slowpath++;
96 1.15 pooka #define SCHED_MIGRATED(rcpu) rcpu->rcpu_migrated++;
97 1.15 pooka #else
98 1.15 pooka #define SCHED_FASTPATH(rcpu)
99 1.15 pooka #define SCHED_SLOWPATH(rcpu)
100 1.15 pooka #define SCHED_MIGRATED(rcpu)
101 1.15 pooka #endif
102 1.1 pooka
103 1.1 pooka struct cpu_info *
104 1.1 pooka cpu_lookup(u_int index)
105 1.1 pooka {
106 1.1 pooka
107 1.1 pooka return &rump_cpus[index];
108 1.1 pooka }
109 1.1 pooka
110 1.15 pooka static inline struct rumpcpu *
111 1.15 pooka getnextcpu(void)
112 1.15 pooka {
113 1.15 pooka unsigned newcpu;
114 1.15 pooka
115 1.15 pooka newcpu = atomic_inc_uint_nv(&nextcpu);
116 1.15 pooka if (__predict_false(ncpu > UINT_MAX/2))
117 1.15 pooka atomic_and_uint(&nextcpu, 0);
118 1.15 pooka newcpu = newcpu % ncpu;
119 1.15 pooka
120 1.15 pooka return &rcpu_storage[newcpu];
121 1.15 pooka }
122 1.15 pooka
123 1.12 pooka /* this could/should be mi_attach_cpu? */
124 1.12 pooka void
125 1.22 pooka rump_cpus_bootstrap(int *nump)
126 1.12 pooka {
127 1.12 pooka struct rumpcpu *rcpu;
128 1.12 pooka struct cpu_info *ci;
129 1.22 pooka int num = *nump;
130 1.12 pooka int i;
131 1.12 pooka
132 1.13 pooka if (num > MAXCPUS) {
133 1.22 pooka aprint_verbose("CPU limit: %d wanted, %d (MAXCPUS) "
134 1.22 pooka "available (adjusted)\n", num, MAXCPUS);
135 1.13 pooka num = MAXCPUS;
136 1.13 pooka }
137 1.13 pooka
138 1.12 pooka for (i = 0; i < num; i++) {
139 1.12 pooka rcpu = &rcpu_storage[i];
140 1.12 pooka ci = &rump_cpus[i];
141 1.12 pooka ci->ci_index = i;
142 1.12 pooka }
143 1.20 pooka
144 1.20 pooka /* attach first cpu for bootstrap */
145 1.20 pooka rump_cpu_attach(&rump_cpus[0]);
146 1.20 pooka ncpu = 1;
147 1.22 pooka *nump = num;
148 1.12 pooka }
149 1.12 pooka
150 1.1 pooka void
151 1.20 pooka rump_scheduler_init(int numcpu)
152 1.1 pooka {
153 1.1 pooka struct rumpcpu *rcpu;
154 1.1 pooka struct cpu_info *ci;
155 1.1 pooka int i;
156 1.1 pooka
157 1.15 pooka rumpuser_mutex_init(&lwp0mtx);
158 1.3 pooka rumpuser_cv_init(&lwp0cv);
159 1.20 pooka for (i = 0; i < numcpu; i++) {
160 1.1 pooka rcpu = &rcpu_storage[i];
161 1.1 pooka ci = &rump_cpus[i];
162 1.12 pooka rcpu->rcpu_ci = ci;
163 1.4 pooka ci->ci_schedstate.spc_mutex =
164 1.4 pooka mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
165 1.9 pooka ci->ci_schedstate.spc_flags = SPCF_RUNNING;
166 1.15 pooka rcpu->rcpu_wanted = 0;
167 1.8 pooka rumpuser_cv_init(&rcpu->rcpu_cv);
168 1.15 pooka rumpuser_mutex_init(&rcpu->rcpu_mtx);
169 1.1 pooka }
170 1.25 pooka
171 1.25 pooka mutex_init(&unruntime_lock, MUTEX_DEFAULT, IPL_NONE);
172 1.1 pooka }
173 1.1 pooka
174 1.14 pooka /*
175 1.14 pooka * condvar ops using scheduler lock as the rumpuser interlock.
176 1.14 pooka */
177 1.14 pooka void
178 1.14 pooka rump_schedlock_cv_wait(struct rumpuser_cv *cv)
179 1.14 pooka {
180 1.15 pooka struct lwp *l = curlwp;
181 1.15 pooka struct rumpcpu *rcpu = &rcpu_storage[l->l_cpu-&rump_cpus[0]];
182 1.14 pooka
183 1.15 pooka /* mutex will be taken and released in cpu schedule/unschedule */
184 1.15 pooka rumpuser_cv_wait(cv, rcpu->rcpu_mtx);
185 1.14 pooka }
186 1.14 pooka
187 1.14 pooka int
188 1.14 pooka rump_schedlock_cv_timedwait(struct rumpuser_cv *cv, const struct timespec *ts)
189 1.14 pooka {
190 1.15 pooka struct lwp *l = curlwp;
191 1.15 pooka struct rumpcpu *rcpu = &rcpu_storage[l->l_cpu-&rump_cpus[0]];
192 1.14 pooka
193 1.15 pooka /* mutex will be taken and released in cpu schedule/unschedule */
194 1.15 pooka return rumpuser_cv_timedwait(cv, rcpu->rcpu_mtx,
195 1.15 pooka ts->tv_sec, ts->tv_nsec);
196 1.14 pooka }
197 1.14 pooka
198 1.19 pooka static void
199 1.19 pooka lwp0busy(void)
200 1.19 pooka {
201 1.19 pooka
202 1.19 pooka /* busy lwp0 */
203 1.25 pooka KASSERT(curlwp == NULL || curlwp->l_stat != LSONPROC);
204 1.19 pooka rumpuser_mutex_enter_nowrap(lwp0mtx);
205 1.19 pooka while (lwp0isbusy)
206 1.19 pooka rumpuser_cv_wait_nowrap(lwp0cv, lwp0mtx);
207 1.19 pooka lwp0isbusy = true;
208 1.19 pooka rumpuser_mutex_exit(lwp0mtx);
209 1.19 pooka }
210 1.19 pooka
211 1.19 pooka static void
212 1.19 pooka lwp0rele(void)
213 1.19 pooka {
214 1.19 pooka
215 1.19 pooka rumpuser_mutex_enter_nowrap(lwp0mtx);
216 1.19 pooka KASSERT(lwp0isbusy == true);
217 1.19 pooka lwp0isbusy = false;
218 1.19 pooka rumpuser_cv_signal(lwp0cv);
219 1.19 pooka rumpuser_mutex_exit(lwp0mtx);
220 1.19 pooka }
221 1.19 pooka
222 1.27 yamt /*
223 1.27 yamt * rump_schedule: ensure that the calling host thread has a valid lwp context.
224 1.27 yamt * ie. ensure that rumpuser_get_curlwp() != NULL.
225 1.27 yamt */
226 1.1 pooka void
227 1.1 pooka rump_schedule()
228 1.1 pooka {
229 1.3 pooka struct lwp *l;
230 1.2 pooka
231 1.2 pooka /*
232 1.2 pooka * If there is no dedicated lwp, allocate a temp one and
233 1.3 pooka * set it to be free'd upon unschedule(). Use lwp0 context
234 1.15 pooka * for reserving the necessary resources. Don't optimize
235 1.15 pooka * for this case -- anyone who cares about performance will
236 1.15 pooka * start a real thread.
237 1.2 pooka */
238 1.19 pooka if (__predict_true((l = rumpuser_get_curlwp()) != NULL)) {
239 1.19 pooka rump_schedule_cpu(l);
240 1.19 pooka LWP_CACHE_CREDS(l, l->l_proc);
241 1.19 pooka } else {
242 1.19 pooka lwp0busy();
243 1.3 pooka
244 1.3 pooka /* schedule cpu and use lwp0 */
245 1.4 pooka rump_schedule_cpu(&lwp0);
246 1.3 pooka rumpuser_set_curlwp(&lwp0);
247 1.3 pooka
248 1.19 pooka /* allocate thread, switch to it, and release lwp0 */
249 1.21 pooka l = rump__lwproc_alloclwp(initproc);
250 1.19 pooka rump_lwproc_switch(l);
251 1.19 pooka lwp0rele();
252 1.3 pooka
253 1.19 pooka /*
254 1.19 pooka * mark new thread dead-on-unschedule. this
255 1.19 pooka * means that we'll be running with l_refcnt == 0.
256 1.19 pooka * relax, it's fine.
257 1.19 pooka */
258 1.19 pooka rump_lwproc_releaselwp();
259 1.2 pooka }
260 1.2 pooka }
261 1.2 pooka
262 1.4 pooka void
263 1.4 pooka rump_schedule_cpu(struct lwp *l)
264 1.2 pooka {
265 1.14 pooka
266 1.14 pooka rump_schedule_cpu_interlock(l, NULL);
267 1.14 pooka }
268 1.14 pooka
269 1.15 pooka /*
270 1.15 pooka * Schedule a CPU. This optimizes for the case where we schedule
271 1.15 pooka * the same thread often, and we have nCPU >= nFrequently-Running-Thread
272 1.15 pooka * (where CPU is virtual rump cpu, not host CPU).
273 1.15 pooka */
274 1.14 pooka void
275 1.14 pooka rump_schedule_cpu_interlock(struct lwp *l, void *interlock)
276 1.14 pooka {
277 1.1 pooka struct rumpcpu *rcpu;
278 1.15 pooka void *old;
279 1.15 pooka bool domigrate;
280 1.15 pooka bool bound = l->l_pflag & LP_BOUND;
281 1.15 pooka
282 1.25 pooka l->l_stat = LSRUN;
283 1.25 pooka
284 1.15 pooka /*
285 1.15 pooka * First, try fastpath: if we were the previous user of the
286 1.15 pooka * CPU, everything is in order cachewise and we can just
287 1.15 pooka * proceed to use it.
288 1.15 pooka *
289 1.15 pooka * If we are a different thread (i.e. CAS fails), we must go
290 1.15 pooka * through a memory barrier to ensure we get a truthful
291 1.15 pooka * view of the world.
292 1.15 pooka */
293 1.14 pooka
294 1.17 pooka KASSERT(l->l_target_cpu != NULL);
295 1.15 pooka rcpu = &rcpu_storage[l->l_target_cpu-&rump_cpus[0]];
296 1.15 pooka if (atomic_cas_ptr(&rcpu->rcpu_prevlwp, l, RCPULWP_BUSY) == l) {
297 1.15 pooka if (__predict_true(interlock == rcpu->rcpu_mtx))
298 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
299 1.15 pooka SCHED_FASTPATH(rcpu);
300 1.15 pooka /* jones, you're the man */
301 1.15 pooka goto fastlane;
302 1.15 pooka }
303 1.1 pooka
304 1.15 pooka /*
305 1.15 pooka * Else, it's the slowpath for us. First, determine if we
306 1.15 pooka * can migrate.
307 1.15 pooka */
308 1.15 pooka if (ncpu == 1)
309 1.15 pooka domigrate = false;
310 1.15 pooka else
311 1.15 pooka domigrate = true;
312 1.15 pooka
313 1.15 pooka /* Take lock. This acts as a load barrier too. */
314 1.15 pooka if (__predict_true(interlock != rcpu->rcpu_mtx))
315 1.15 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
316 1.15 pooka
317 1.15 pooka for (;;) {
318 1.15 pooka SCHED_SLOWPATH(rcpu);
319 1.15 pooka old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, RCPULWP_WANTED);
320 1.15 pooka
321 1.15 pooka /* CPU is free? */
322 1.15 pooka if (old != RCPULWP_BUSY && old != RCPULWP_WANTED) {
323 1.15 pooka if (atomic_cas_ptr(&rcpu->rcpu_prevlwp,
324 1.15 pooka RCPULWP_WANTED, RCPULWP_BUSY) == RCPULWP_WANTED) {
325 1.15 pooka break;
326 1.8 pooka }
327 1.8 pooka }
328 1.15 pooka
329 1.15 pooka /*
330 1.15 pooka * Do we want to migrate once?
331 1.15 pooka * This may need a slightly better algorithm, or we
332 1.15 pooka * might cache pingpong eternally for non-frequent
333 1.15 pooka * threads.
334 1.15 pooka */
335 1.15 pooka if (domigrate && !bound) {
336 1.15 pooka domigrate = false;
337 1.15 pooka SCHED_MIGRATED(rcpu);
338 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
339 1.15 pooka rcpu = getnextcpu();
340 1.15 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
341 1.15 pooka continue;
342 1.8 pooka }
343 1.15 pooka
344 1.15 pooka /* Want CPU, wait until it's released an retry */
345 1.15 pooka rcpu->rcpu_wanted++;
346 1.15 pooka rumpuser_cv_wait_nowrap(rcpu->rcpu_cv, rcpu->rcpu_mtx);
347 1.15 pooka rcpu->rcpu_wanted--;
348 1.8 pooka }
349 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
350 1.15 pooka
351 1.15 pooka fastlane:
352 1.15 pooka l->l_cpu = l->l_target_cpu = rcpu->rcpu_ci;
353 1.4 pooka l->l_mutex = rcpu->rcpu_ci->ci_schedstate.spc_mutex;
354 1.18 pooka l->l_ncsw++;
355 1.25 pooka l->l_stat = LSONPROC;
356 1.23 pooka
357 1.23 pooka rcpu->rcpu_ci->ci_curlwp = l;
358 1.1 pooka }
359 1.1 pooka
360 1.1 pooka void
361 1.1 pooka rump_unschedule()
362 1.1 pooka {
363 1.24 pooka struct lwp *l = rumpuser_get_curlwp();
364 1.24 pooka #ifdef DIAGNOSTIC
365 1.24 pooka int nlock;
366 1.24 pooka
367 1.24 pooka KERNEL_UNLOCK_ALL(l, &nlock);
368 1.24 pooka KASSERT(nlock == 0);
369 1.24 pooka #endif
370 1.2 pooka
371 1.4 pooka KASSERT(l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex);
372 1.2 pooka rump_unschedule_cpu(l);
373 1.25 pooka l->l_mutex = &unruntime_lock;
374 1.25 pooka l->l_stat = LSSTOP;
375 1.6 pooka
376 1.6 pooka /*
377 1.19 pooka * Check special conditions:
378 1.19 pooka * 1) do we need to free the lwp which just unscheduled?
379 1.19 pooka * (locking order: lwp0, cpu)
380 1.19 pooka * 2) do we want to clear curlwp for the current host thread
381 1.6 pooka */
382 1.19 pooka if (__predict_false(l->l_flag & LW_WEXIT)) {
383 1.19 pooka lwp0busy();
384 1.19 pooka
385 1.19 pooka /* Now that we have lwp0, we can schedule a CPU again */
386 1.19 pooka rump_schedule_cpu(l);
387 1.6 pooka
388 1.19 pooka /* switch to lwp0. this frees the old thread */
389 1.19 pooka KASSERT(l->l_flag & LW_WEXIT);
390 1.19 pooka rump_lwproc_switch(&lwp0);
391 1.6 pooka
392 1.19 pooka /* release lwp0 */
393 1.6 pooka rump_unschedule_cpu(&lwp0);
394 1.25 pooka lwp0.l_mutex = &unruntime_lock;
395 1.19 pooka lwp0.l_pflag &= ~LP_RUNNING;
396 1.19 pooka lwp0rele();
397 1.6 pooka rumpuser_set_curlwp(NULL);
398 1.6 pooka
399 1.19 pooka } else if (__predict_false(l->l_flag & LW_RUMP_CLEAR)) {
400 1.19 pooka rumpuser_set_curlwp(NULL);
401 1.19 pooka l->l_flag &= ~LW_RUMP_CLEAR;
402 1.2 pooka }
403 1.2 pooka }
404 1.2 pooka
405 1.2 pooka void
406 1.2 pooka rump_unschedule_cpu(struct lwp *l)
407 1.2 pooka {
408 1.8 pooka
409 1.14 pooka rump_unschedule_cpu_interlock(l, NULL);
410 1.14 pooka }
411 1.14 pooka
412 1.14 pooka void
413 1.14 pooka rump_unschedule_cpu_interlock(struct lwp *l, void *interlock)
414 1.14 pooka {
415 1.14 pooka
416 1.8 pooka if ((l->l_pflag & LP_INTR) == 0)
417 1.8 pooka rump_softint_run(l->l_cpu);
418 1.14 pooka rump_unschedule_cpu1(l, interlock);
419 1.8 pooka }
420 1.8 pooka
421 1.8 pooka void
422 1.14 pooka rump_unschedule_cpu1(struct lwp *l, void *interlock)
423 1.8 pooka {
424 1.1 pooka struct rumpcpu *rcpu;
425 1.1 pooka struct cpu_info *ci;
426 1.15 pooka void *old;
427 1.1 pooka
428 1.1 pooka ci = l->l_cpu;
429 1.23 pooka ci->ci_curlwp = NULL;
430 1.1 pooka rcpu = &rcpu_storage[ci-&rump_cpus[0]];
431 1.15 pooka
432 1.1 pooka KASSERT(rcpu->rcpu_ci == ci);
433 1.1 pooka
434 1.15 pooka /*
435 1.15 pooka * Make sure all stores are seen before the CPU release. This
436 1.15 pooka * is relevant only in the non-fastpath scheduling case, but
437 1.15 pooka * we don't know here if that's going to happen, so need to
438 1.15 pooka * expect the worst.
439 1.15 pooka */
440 1.15 pooka membar_exit();
441 1.15 pooka
442 1.15 pooka /* Release the CPU. */
443 1.15 pooka old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, l);
444 1.15 pooka
445 1.15 pooka /* No waiters? No problems. We're outta here. */
446 1.15 pooka if (old == RCPULWP_BUSY) {
447 1.15 pooka /* Was the scheduler interlock requested? */
448 1.15 pooka if (__predict_false(interlock == rcpu->rcpu_mtx))
449 1.15 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
450 1.15 pooka return;
451 1.15 pooka }
452 1.15 pooka
453 1.15 pooka KASSERT(old == RCPULWP_WANTED);
454 1.15 pooka
455 1.15 pooka /*
456 1.15 pooka * Ok, things weren't so snappy.
457 1.15 pooka *
458 1.15 pooka * Snailpath: take lock and signal anyone waiting for this CPU.
459 1.15 pooka */
460 1.14 pooka
461 1.15 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
462 1.15 pooka if (rcpu->rcpu_wanted)
463 1.8 pooka rumpuser_cv_broadcast(rcpu->rcpu_cv);
464 1.14 pooka
465 1.15 pooka if (__predict_true(interlock != rcpu->rcpu_mtx))
466 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
467 1.1 pooka }
468 1.5 pooka
469 1.5 pooka /* Give up and retake CPU (perhaps a different one) */
470 1.5 pooka void
471 1.5 pooka yield()
472 1.5 pooka {
473 1.5 pooka struct lwp *l = curlwp;
474 1.5 pooka int nlocks;
475 1.5 pooka
476 1.5 pooka KERNEL_UNLOCK_ALL(l, &nlocks);
477 1.5 pooka rump_unschedule_cpu(l);
478 1.5 pooka rump_schedule_cpu(l);
479 1.5 pooka KERNEL_LOCK(nlocks, l);
480 1.5 pooka }
481 1.5 pooka
482 1.5 pooka void
483 1.5 pooka preempt()
484 1.5 pooka {
485 1.5 pooka
486 1.5 pooka yield();
487 1.5 pooka }
488 1.10 pooka
489 1.10 pooka bool
490 1.10 pooka kpreempt(uintptr_t where)
491 1.10 pooka {
492 1.10 pooka
493 1.10 pooka return false;
494 1.10 pooka }
495 1.10 pooka
496 1.10 pooka /*
497 1.10 pooka * There is no kernel thread preemption in rump currently. But call
498 1.10 pooka * the implementing macros anyway in case they grow some side-effects
499 1.10 pooka * down the road.
500 1.10 pooka */
501 1.10 pooka void
502 1.10 pooka kpreempt_disable(void)
503 1.10 pooka {
504 1.10 pooka
505 1.10 pooka KPREEMPT_DISABLE(curlwp);
506 1.10 pooka }
507 1.10 pooka
508 1.10 pooka void
509 1.10 pooka kpreempt_enable(void)
510 1.10 pooka {
511 1.10 pooka
512 1.10 pooka KPREEMPT_ENABLE(curlwp);
513 1.10 pooka }
514 1.10 pooka
515 1.10 pooka void
516 1.10 pooka suspendsched(void)
517 1.10 pooka {
518 1.10 pooka
519 1.10 pooka /*
520 1.10 pooka * Could wait until everyone is out and block further entries,
521 1.10 pooka * but skip that for now.
522 1.10 pooka */
523 1.10 pooka }
524 1.11 pooka
525 1.11 pooka void
526 1.11 pooka sched_nice(struct proc *p, int level)
527 1.11 pooka {
528 1.11 pooka
529 1.11 pooka /* nothing to do for now */
530 1.11 pooka }
531