scheduler.c revision 1.29 1 1.29 pooka /* $NetBSD: scheduler.c,v 1.29 2012/09/15 17:15:01 pooka Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.26 pooka * Copyright (c) 2010, 2011 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.1 pooka * Redistribution and use in source and binary forms, with or without
7 1.1 pooka * modification, are permitted provided that the following conditions
8 1.1 pooka * are met:
9 1.1 pooka * 1. Redistributions of source code must retain the above copyright
10 1.1 pooka * notice, this list of conditions and the following disclaimer.
11 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 pooka * notice, this list of conditions and the following disclaimer in the
13 1.1 pooka * documentation and/or other materials provided with the distribution.
14 1.1 pooka *
15 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 1.1 pooka * SUCH DAMAGE.
26 1.1 pooka */
27 1.1 pooka
28 1.1 pooka #include <sys/cdefs.h>
29 1.29 pooka __KERNEL_RCSID(0, "$NetBSD: scheduler.c,v 1.29 2012/09/15 17:15:01 pooka Exp $");
30 1.1 pooka
31 1.1 pooka #include <sys/param.h>
32 1.16 pooka #include <sys/atomic.h>
33 1.1 pooka #include <sys/cpu.h>
34 1.2 pooka #include <sys/kmem.h>
35 1.1 pooka #include <sys/mutex.h>
36 1.8 pooka #include <sys/namei.h>
37 1.1 pooka #include <sys/queue.h>
38 1.1 pooka #include <sys/select.h>
39 1.10 pooka #include <sys/systm.h>
40 1.1 pooka
41 1.1 pooka #include <rump/rumpuser.h>
42 1.1 pooka
43 1.1 pooka #include "rump_private.h"
44 1.1 pooka
45 1.8 pooka static struct cpu_info rump_cpus[MAXCPUS];
46 1.1 pooka static struct rumpcpu {
47 1.15 pooka /* needed in fastpath */
48 1.1 pooka struct cpu_info *rcpu_ci;
49 1.15 pooka void *rcpu_prevlwp;
50 1.15 pooka
51 1.15 pooka /* needed in slowpath */
52 1.15 pooka struct rumpuser_mtx *rcpu_mtx;
53 1.8 pooka struct rumpuser_cv *rcpu_cv;
54 1.15 pooka int rcpu_wanted;
55 1.15 pooka
56 1.15 pooka /* offset 20 (P=4) or 36 (P=8) here */
57 1.15 pooka
58 1.15 pooka /*
59 1.15 pooka * Some stats. Not really that necessary, but we should
60 1.15 pooka * have room. Note that these overflow quite fast, so need
61 1.15 pooka * to be collected often.
62 1.15 pooka */
63 1.15 pooka unsigned int rcpu_fastpath;
64 1.15 pooka unsigned int rcpu_slowpath;
65 1.15 pooka unsigned int rcpu_migrated;
66 1.15 pooka
67 1.15 pooka /* offset 32 (P=4) or 50 (P=8) */
68 1.15 pooka
69 1.15 pooka int rcpu_align[0] __aligned(CACHE_LINE_SIZE);
70 1.8 pooka } rcpu_storage[MAXCPUS];
71 1.28 rmind
72 1.1 pooka struct cpu_info *rump_cpu = &rump_cpus[0];
73 1.28 rmind kcpuset_t *kcpuset_attached = NULL;
74 1.28 rmind kcpuset_t *kcpuset_running = NULL;
75 1.12 pooka int ncpu;
76 1.1 pooka
77 1.15 pooka #define RCPULWP_BUSY ((void *)-1)
78 1.15 pooka #define RCPULWP_WANTED ((void *)-2)
79 1.8 pooka
80 1.15 pooka static struct rumpuser_mtx *lwp0mtx;
81 1.15 pooka static struct rumpuser_cv *lwp0cv;
82 1.15 pooka static unsigned nextcpu;
83 1.14 pooka
84 1.25 pooka kmutex_t unruntime_lock; /* unruntime lwp lock. practically unused */
85 1.25 pooka
86 1.19 pooka static bool lwp0isbusy = false;
87 1.3 pooka
88 1.15 pooka /*
89 1.15 pooka * Keep some stats.
90 1.15 pooka *
91 1.15 pooka * Keeping track of there is not really critical for speed, unless
92 1.15 pooka * stats happen to be on a different cache line (CACHE_LINE_SIZE is
93 1.15 pooka * really just a coarse estimate), so default for the performant case
94 1.15 pooka * (i.e. no stats).
95 1.15 pooka */
96 1.15 pooka #ifdef RUMPSCHED_STATS
97 1.15 pooka #define SCHED_FASTPATH(rcpu) rcpu->rcpu_fastpath++;
98 1.15 pooka #define SCHED_SLOWPATH(rcpu) rcpu->rcpu_slowpath++;
99 1.15 pooka #define SCHED_MIGRATED(rcpu) rcpu->rcpu_migrated++;
100 1.15 pooka #else
101 1.15 pooka #define SCHED_FASTPATH(rcpu)
102 1.15 pooka #define SCHED_SLOWPATH(rcpu)
103 1.15 pooka #define SCHED_MIGRATED(rcpu)
104 1.15 pooka #endif
105 1.1 pooka
106 1.1 pooka struct cpu_info *
107 1.1 pooka cpu_lookup(u_int index)
108 1.1 pooka {
109 1.1 pooka
110 1.1 pooka return &rump_cpus[index];
111 1.1 pooka }
112 1.1 pooka
113 1.15 pooka static inline struct rumpcpu *
114 1.15 pooka getnextcpu(void)
115 1.15 pooka {
116 1.15 pooka unsigned newcpu;
117 1.15 pooka
118 1.15 pooka newcpu = atomic_inc_uint_nv(&nextcpu);
119 1.15 pooka if (__predict_false(ncpu > UINT_MAX/2))
120 1.15 pooka atomic_and_uint(&nextcpu, 0);
121 1.15 pooka newcpu = newcpu % ncpu;
122 1.15 pooka
123 1.15 pooka return &rcpu_storage[newcpu];
124 1.15 pooka }
125 1.15 pooka
126 1.12 pooka /* this could/should be mi_attach_cpu? */
127 1.12 pooka void
128 1.22 pooka rump_cpus_bootstrap(int *nump)
129 1.12 pooka {
130 1.12 pooka struct rumpcpu *rcpu;
131 1.12 pooka struct cpu_info *ci;
132 1.22 pooka int num = *nump;
133 1.12 pooka int i;
134 1.12 pooka
135 1.13 pooka if (num > MAXCPUS) {
136 1.22 pooka aprint_verbose("CPU limit: %d wanted, %d (MAXCPUS) "
137 1.22 pooka "available (adjusted)\n", num, MAXCPUS);
138 1.13 pooka num = MAXCPUS;
139 1.13 pooka }
140 1.13 pooka
141 1.12 pooka for (i = 0; i < num; i++) {
142 1.12 pooka rcpu = &rcpu_storage[i];
143 1.12 pooka ci = &rump_cpus[i];
144 1.12 pooka ci->ci_index = i;
145 1.12 pooka }
146 1.20 pooka
147 1.28 rmind kcpuset_create(&kcpuset_attached, true);
148 1.28 rmind kcpuset_create(&kcpuset_running, true);
149 1.28 rmind
150 1.20 pooka /* attach first cpu for bootstrap */
151 1.20 pooka rump_cpu_attach(&rump_cpus[0]);
152 1.20 pooka ncpu = 1;
153 1.22 pooka *nump = num;
154 1.12 pooka }
155 1.12 pooka
156 1.1 pooka void
157 1.20 pooka rump_scheduler_init(int numcpu)
158 1.1 pooka {
159 1.1 pooka struct rumpcpu *rcpu;
160 1.1 pooka struct cpu_info *ci;
161 1.1 pooka int i;
162 1.1 pooka
163 1.15 pooka rumpuser_mutex_init(&lwp0mtx);
164 1.3 pooka rumpuser_cv_init(&lwp0cv);
165 1.20 pooka for (i = 0; i < numcpu; i++) {
166 1.1 pooka rcpu = &rcpu_storage[i];
167 1.1 pooka ci = &rump_cpus[i];
168 1.12 pooka rcpu->rcpu_ci = ci;
169 1.4 pooka ci->ci_schedstate.spc_mutex =
170 1.4 pooka mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
171 1.9 pooka ci->ci_schedstate.spc_flags = SPCF_RUNNING;
172 1.15 pooka rcpu->rcpu_wanted = 0;
173 1.8 pooka rumpuser_cv_init(&rcpu->rcpu_cv);
174 1.15 pooka rumpuser_mutex_init(&rcpu->rcpu_mtx);
175 1.1 pooka }
176 1.25 pooka
177 1.25 pooka mutex_init(&unruntime_lock, MUTEX_DEFAULT, IPL_NONE);
178 1.1 pooka }
179 1.1 pooka
180 1.14 pooka /*
181 1.14 pooka * condvar ops using scheduler lock as the rumpuser interlock.
182 1.14 pooka */
183 1.14 pooka void
184 1.14 pooka rump_schedlock_cv_wait(struct rumpuser_cv *cv)
185 1.14 pooka {
186 1.15 pooka struct lwp *l = curlwp;
187 1.15 pooka struct rumpcpu *rcpu = &rcpu_storage[l->l_cpu-&rump_cpus[0]];
188 1.14 pooka
189 1.15 pooka /* mutex will be taken and released in cpu schedule/unschedule */
190 1.15 pooka rumpuser_cv_wait(cv, rcpu->rcpu_mtx);
191 1.14 pooka }
192 1.14 pooka
193 1.14 pooka int
194 1.14 pooka rump_schedlock_cv_timedwait(struct rumpuser_cv *cv, const struct timespec *ts)
195 1.14 pooka {
196 1.15 pooka struct lwp *l = curlwp;
197 1.15 pooka struct rumpcpu *rcpu = &rcpu_storage[l->l_cpu-&rump_cpus[0]];
198 1.14 pooka
199 1.15 pooka /* mutex will be taken and released in cpu schedule/unschedule */
200 1.15 pooka return rumpuser_cv_timedwait(cv, rcpu->rcpu_mtx,
201 1.15 pooka ts->tv_sec, ts->tv_nsec);
202 1.14 pooka }
203 1.14 pooka
204 1.19 pooka static void
205 1.19 pooka lwp0busy(void)
206 1.19 pooka {
207 1.19 pooka
208 1.19 pooka /* busy lwp0 */
209 1.25 pooka KASSERT(curlwp == NULL || curlwp->l_stat != LSONPROC);
210 1.19 pooka rumpuser_mutex_enter_nowrap(lwp0mtx);
211 1.19 pooka while (lwp0isbusy)
212 1.19 pooka rumpuser_cv_wait_nowrap(lwp0cv, lwp0mtx);
213 1.19 pooka lwp0isbusy = true;
214 1.19 pooka rumpuser_mutex_exit(lwp0mtx);
215 1.19 pooka }
216 1.19 pooka
217 1.19 pooka static void
218 1.19 pooka lwp0rele(void)
219 1.19 pooka {
220 1.19 pooka
221 1.19 pooka rumpuser_mutex_enter_nowrap(lwp0mtx);
222 1.19 pooka KASSERT(lwp0isbusy == true);
223 1.19 pooka lwp0isbusy = false;
224 1.19 pooka rumpuser_cv_signal(lwp0cv);
225 1.19 pooka rumpuser_mutex_exit(lwp0mtx);
226 1.19 pooka }
227 1.19 pooka
228 1.27 yamt /*
229 1.27 yamt * rump_schedule: ensure that the calling host thread has a valid lwp context.
230 1.27 yamt * ie. ensure that rumpuser_get_curlwp() != NULL.
231 1.27 yamt */
232 1.1 pooka void
233 1.1 pooka rump_schedule()
234 1.1 pooka {
235 1.3 pooka struct lwp *l;
236 1.2 pooka
237 1.2 pooka /*
238 1.2 pooka * If there is no dedicated lwp, allocate a temp one and
239 1.3 pooka * set it to be free'd upon unschedule(). Use lwp0 context
240 1.15 pooka * for reserving the necessary resources. Don't optimize
241 1.15 pooka * for this case -- anyone who cares about performance will
242 1.15 pooka * start a real thread.
243 1.2 pooka */
244 1.19 pooka if (__predict_true((l = rumpuser_get_curlwp()) != NULL)) {
245 1.19 pooka rump_schedule_cpu(l);
246 1.19 pooka LWP_CACHE_CREDS(l, l->l_proc);
247 1.19 pooka } else {
248 1.19 pooka lwp0busy();
249 1.3 pooka
250 1.3 pooka /* schedule cpu and use lwp0 */
251 1.4 pooka rump_schedule_cpu(&lwp0);
252 1.3 pooka rumpuser_set_curlwp(&lwp0);
253 1.3 pooka
254 1.19 pooka /* allocate thread, switch to it, and release lwp0 */
255 1.21 pooka l = rump__lwproc_alloclwp(initproc);
256 1.19 pooka rump_lwproc_switch(l);
257 1.19 pooka lwp0rele();
258 1.3 pooka
259 1.19 pooka /*
260 1.19 pooka * mark new thread dead-on-unschedule. this
261 1.19 pooka * means that we'll be running with l_refcnt == 0.
262 1.19 pooka * relax, it's fine.
263 1.19 pooka */
264 1.19 pooka rump_lwproc_releaselwp();
265 1.2 pooka }
266 1.2 pooka }
267 1.2 pooka
268 1.4 pooka void
269 1.4 pooka rump_schedule_cpu(struct lwp *l)
270 1.2 pooka {
271 1.14 pooka
272 1.14 pooka rump_schedule_cpu_interlock(l, NULL);
273 1.14 pooka }
274 1.14 pooka
275 1.15 pooka /*
276 1.15 pooka * Schedule a CPU. This optimizes for the case where we schedule
277 1.15 pooka * the same thread often, and we have nCPU >= nFrequently-Running-Thread
278 1.15 pooka * (where CPU is virtual rump cpu, not host CPU).
279 1.15 pooka */
280 1.14 pooka void
281 1.14 pooka rump_schedule_cpu_interlock(struct lwp *l, void *interlock)
282 1.14 pooka {
283 1.1 pooka struct rumpcpu *rcpu;
284 1.15 pooka void *old;
285 1.15 pooka bool domigrate;
286 1.15 pooka bool bound = l->l_pflag & LP_BOUND;
287 1.15 pooka
288 1.25 pooka l->l_stat = LSRUN;
289 1.25 pooka
290 1.15 pooka /*
291 1.15 pooka * First, try fastpath: if we were the previous user of the
292 1.15 pooka * CPU, everything is in order cachewise and we can just
293 1.15 pooka * proceed to use it.
294 1.15 pooka *
295 1.15 pooka * If we are a different thread (i.e. CAS fails), we must go
296 1.15 pooka * through a memory barrier to ensure we get a truthful
297 1.15 pooka * view of the world.
298 1.15 pooka */
299 1.14 pooka
300 1.17 pooka KASSERT(l->l_target_cpu != NULL);
301 1.15 pooka rcpu = &rcpu_storage[l->l_target_cpu-&rump_cpus[0]];
302 1.15 pooka if (atomic_cas_ptr(&rcpu->rcpu_prevlwp, l, RCPULWP_BUSY) == l) {
303 1.29 pooka if (interlock == rcpu->rcpu_mtx)
304 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
305 1.15 pooka SCHED_FASTPATH(rcpu);
306 1.15 pooka /* jones, you're the man */
307 1.15 pooka goto fastlane;
308 1.15 pooka }
309 1.1 pooka
310 1.15 pooka /*
311 1.15 pooka * Else, it's the slowpath for us. First, determine if we
312 1.15 pooka * can migrate.
313 1.15 pooka */
314 1.15 pooka if (ncpu == 1)
315 1.15 pooka domigrate = false;
316 1.15 pooka else
317 1.15 pooka domigrate = true;
318 1.15 pooka
319 1.15 pooka /* Take lock. This acts as a load barrier too. */
320 1.29 pooka if (interlock != rcpu->rcpu_mtx)
321 1.15 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
322 1.15 pooka
323 1.15 pooka for (;;) {
324 1.15 pooka SCHED_SLOWPATH(rcpu);
325 1.15 pooka old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, RCPULWP_WANTED);
326 1.15 pooka
327 1.15 pooka /* CPU is free? */
328 1.15 pooka if (old != RCPULWP_BUSY && old != RCPULWP_WANTED) {
329 1.15 pooka if (atomic_cas_ptr(&rcpu->rcpu_prevlwp,
330 1.15 pooka RCPULWP_WANTED, RCPULWP_BUSY) == RCPULWP_WANTED) {
331 1.15 pooka break;
332 1.8 pooka }
333 1.8 pooka }
334 1.15 pooka
335 1.15 pooka /*
336 1.15 pooka * Do we want to migrate once?
337 1.15 pooka * This may need a slightly better algorithm, or we
338 1.15 pooka * might cache pingpong eternally for non-frequent
339 1.15 pooka * threads.
340 1.15 pooka */
341 1.15 pooka if (domigrate && !bound) {
342 1.15 pooka domigrate = false;
343 1.15 pooka SCHED_MIGRATED(rcpu);
344 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
345 1.15 pooka rcpu = getnextcpu();
346 1.15 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
347 1.15 pooka continue;
348 1.8 pooka }
349 1.15 pooka
350 1.15 pooka /* Want CPU, wait until it's released an retry */
351 1.15 pooka rcpu->rcpu_wanted++;
352 1.15 pooka rumpuser_cv_wait_nowrap(rcpu->rcpu_cv, rcpu->rcpu_mtx);
353 1.15 pooka rcpu->rcpu_wanted--;
354 1.8 pooka }
355 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
356 1.15 pooka
357 1.15 pooka fastlane:
358 1.15 pooka l->l_cpu = l->l_target_cpu = rcpu->rcpu_ci;
359 1.4 pooka l->l_mutex = rcpu->rcpu_ci->ci_schedstate.spc_mutex;
360 1.18 pooka l->l_ncsw++;
361 1.25 pooka l->l_stat = LSONPROC;
362 1.23 pooka
363 1.23 pooka rcpu->rcpu_ci->ci_curlwp = l;
364 1.1 pooka }
365 1.1 pooka
366 1.1 pooka void
367 1.1 pooka rump_unschedule()
368 1.1 pooka {
369 1.24 pooka struct lwp *l = rumpuser_get_curlwp();
370 1.24 pooka #ifdef DIAGNOSTIC
371 1.24 pooka int nlock;
372 1.24 pooka
373 1.24 pooka KERNEL_UNLOCK_ALL(l, &nlock);
374 1.24 pooka KASSERT(nlock == 0);
375 1.24 pooka #endif
376 1.2 pooka
377 1.4 pooka KASSERT(l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex);
378 1.2 pooka rump_unschedule_cpu(l);
379 1.25 pooka l->l_mutex = &unruntime_lock;
380 1.25 pooka l->l_stat = LSSTOP;
381 1.6 pooka
382 1.6 pooka /*
383 1.19 pooka * Check special conditions:
384 1.19 pooka * 1) do we need to free the lwp which just unscheduled?
385 1.19 pooka * (locking order: lwp0, cpu)
386 1.19 pooka * 2) do we want to clear curlwp for the current host thread
387 1.6 pooka */
388 1.19 pooka if (__predict_false(l->l_flag & LW_WEXIT)) {
389 1.19 pooka lwp0busy();
390 1.19 pooka
391 1.19 pooka /* Now that we have lwp0, we can schedule a CPU again */
392 1.19 pooka rump_schedule_cpu(l);
393 1.6 pooka
394 1.19 pooka /* switch to lwp0. this frees the old thread */
395 1.19 pooka KASSERT(l->l_flag & LW_WEXIT);
396 1.19 pooka rump_lwproc_switch(&lwp0);
397 1.6 pooka
398 1.19 pooka /* release lwp0 */
399 1.6 pooka rump_unschedule_cpu(&lwp0);
400 1.25 pooka lwp0.l_mutex = &unruntime_lock;
401 1.19 pooka lwp0.l_pflag &= ~LP_RUNNING;
402 1.19 pooka lwp0rele();
403 1.6 pooka rumpuser_set_curlwp(NULL);
404 1.6 pooka
405 1.19 pooka } else if (__predict_false(l->l_flag & LW_RUMP_CLEAR)) {
406 1.19 pooka rumpuser_set_curlwp(NULL);
407 1.19 pooka l->l_flag &= ~LW_RUMP_CLEAR;
408 1.2 pooka }
409 1.2 pooka }
410 1.2 pooka
411 1.2 pooka void
412 1.2 pooka rump_unschedule_cpu(struct lwp *l)
413 1.2 pooka {
414 1.8 pooka
415 1.14 pooka rump_unschedule_cpu_interlock(l, NULL);
416 1.14 pooka }
417 1.14 pooka
418 1.14 pooka void
419 1.14 pooka rump_unschedule_cpu_interlock(struct lwp *l, void *interlock)
420 1.14 pooka {
421 1.14 pooka
422 1.8 pooka if ((l->l_pflag & LP_INTR) == 0)
423 1.8 pooka rump_softint_run(l->l_cpu);
424 1.14 pooka rump_unschedule_cpu1(l, interlock);
425 1.8 pooka }
426 1.8 pooka
427 1.8 pooka void
428 1.14 pooka rump_unschedule_cpu1(struct lwp *l, void *interlock)
429 1.8 pooka {
430 1.1 pooka struct rumpcpu *rcpu;
431 1.1 pooka struct cpu_info *ci;
432 1.15 pooka void *old;
433 1.1 pooka
434 1.1 pooka ci = l->l_cpu;
435 1.23 pooka ci->ci_curlwp = NULL;
436 1.1 pooka rcpu = &rcpu_storage[ci-&rump_cpus[0]];
437 1.15 pooka
438 1.1 pooka KASSERT(rcpu->rcpu_ci == ci);
439 1.1 pooka
440 1.15 pooka /*
441 1.15 pooka * Make sure all stores are seen before the CPU release. This
442 1.15 pooka * is relevant only in the non-fastpath scheduling case, but
443 1.15 pooka * we don't know here if that's going to happen, so need to
444 1.15 pooka * expect the worst.
445 1.29 pooka *
446 1.29 pooka * If the scheduler interlock was requested by the caller, we
447 1.29 pooka * need to obtain it before we release the CPU. Otherwise, we risk a
448 1.29 pooka * race condition where another thread is scheduled onto the
449 1.29 pooka * rump kernel CPU before our current thread can
450 1.29 pooka * grab the interlock.
451 1.15 pooka */
452 1.29 pooka if (interlock == rcpu->rcpu_mtx)
453 1.29 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
454 1.29 pooka else
455 1.29 pooka membar_exit();
456 1.15 pooka
457 1.15 pooka /* Release the CPU. */
458 1.15 pooka old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, l);
459 1.15 pooka
460 1.15 pooka /* No waiters? No problems. We're outta here. */
461 1.15 pooka if (old == RCPULWP_BUSY) {
462 1.15 pooka return;
463 1.15 pooka }
464 1.15 pooka
465 1.15 pooka KASSERT(old == RCPULWP_WANTED);
466 1.15 pooka
467 1.15 pooka /*
468 1.15 pooka * Ok, things weren't so snappy.
469 1.15 pooka *
470 1.15 pooka * Snailpath: take lock and signal anyone waiting for this CPU.
471 1.15 pooka */
472 1.14 pooka
473 1.29 pooka if (interlock != rcpu->rcpu_mtx)
474 1.29 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
475 1.15 pooka if (rcpu->rcpu_wanted)
476 1.8 pooka rumpuser_cv_broadcast(rcpu->rcpu_cv);
477 1.29 pooka if (interlock != rcpu->rcpu_mtx)
478 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
479 1.1 pooka }
480 1.5 pooka
481 1.5 pooka /* Give up and retake CPU (perhaps a different one) */
482 1.5 pooka void
483 1.5 pooka yield()
484 1.5 pooka {
485 1.5 pooka struct lwp *l = curlwp;
486 1.5 pooka int nlocks;
487 1.5 pooka
488 1.5 pooka KERNEL_UNLOCK_ALL(l, &nlocks);
489 1.5 pooka rump_unschedule_cpu(l);
490 1.5 pooka rump_schedule_cpu(l);
491 1.5 pooka KERNEL_LOCK(nlocks, l);
492 1.5 pooka }
493 1.5 pooka
494 1.5 pooka void
495 1.5 pooka preempt()
496 1.5 pooka {
497 1.5 pooka
498 1.5 pooka yield();
499 1.5 pooka }
500 1.10 pooka
501 1.10 pooka bool
502 1.10 pooka kpreempt(uintptr_t where)
503 1.10 pooka {
504 1.10 pooka
505 1.10 pooka return false;
506 1.10 pooka }
507 1.10 pooka
508 1.10 pooka /*
509 1.10 pooka * There is no kernel thread preemption in rump currently. But call
510 1.10 pooka * the implementing macros anyway in case they grow some side-effects
511 1.10 pooka * down the road.
512 1.10 pooka */
513 1.10 pooka void
514 1.10 pooka kpreempt_disable(void)
515 1.10 pooka {
516 1.10 pooka
517 1.10 pooka KPREEMPT_DISABLE(curlwp);
518 1.10 pooka }
519 1.10 pooka
520 1.10 pooka void
521 1.10 pooka kpreempt_enable(void)
522 1.10 pooka {
523 1.10 pooka
524 1.10 pooka KPREEMPT_ENABLE(curlwp);
525 1.10 pooka }
526 1.10 pooka
527 1.10 pooka void
528 1.10 pooka suspendsched(void)
529 1.10 pooka {
530 1.10 pooka
531 1.10 pooka /*
532 1.10 pooka * Could wait until everyone is out and block further entries,
533 1.10 pooka * but skip that for now.
534 1.10 pooka */
535 1.10 pooka }
536 1.11 pooka
537 1.11 pooka void
538 1.11 pooka sched_nice(struct proc *p, int level)
539 1.11 pooka {
540 1.11 pooka
541 1.11 pooka /* nothing to do for now */
542 1.11 pooka }
543