scheduler.c revision 1.30 1 1.30 pooka /* $NetBSD: scheduler.c,v 1.30 2012/11/13 20:10:02 pooka Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.26 pooka * Copyright (c) 2010, 2011 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.1 pooka * Redistribution and use in source and binary forms, with or without
7 1.1 pooka * modification, are permitted provided that the following conditions
8 1.1 pooka * are met:
9 1.1 pooka * 1. Redistributions of source code must retain the above copyright
10 1.1 pooka * notice, this list of conditions and the following disclaimer.
11 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 pooka * notice, this list of conditions and the following disclaimer in the
13 1.1 pooka * documentation and/or other materials provided with the distribution.
14 1.1 pooka *
15 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 1.1 pooka * SUCH DAMAGE.
26 1.1 pooka */
27 1.1 pooka
28 1.1 pooka #include <sys/cdefs.h>
29 1.30 pooka __KERNEL_RCSID(0, "$NetBSD: scheduler.c,v 1.30 2012/11/13 20:10:02 pooka Exp $");
30 1.1 pooka
31 1.1 pooka #include <sys/param.h>
32 1.16 pooka #include <sys/atomic.h>
33 1.1 pooka #include <sys/cpu.h>
34 1.2 pooka #include <sys/kmem.h>
35 1.1 pooka #include <sys/mutex.h>
36 1.8 pooka #include <sys/namei.h>
37 1.1 pooka #include <sys/queue.h>
38 1.1 pooka #include <sys/select.h>
39 1.10 pooka #include <sys/systm.h>
40 1.1 pooka
41 1.1 pooka #include <rump/rumpuser.h>
42 1.1 pooka
43 1.1 pooka #include "rump_private.h"
44 1.1 pooka
45 1.8 pooka static struct cpu_info rump_cpus[MAXCPUS];
46 1.1 pooka static struct rumpcpu {
47 1.15 pooka /* needed in fastpath */
48 1.1 pooka struct cpu_info *rcpu_ci;
49 1.15 pooka void *rcpu_prevlwp;
50 1.15 pooka
51 1.15 pooka /* needed in slowpath */
52 1.15 pooka struct rumpuser_mtx *rcpu_mtx;
53 1.8 pooka struct rumpuser_cv *rcpu_cv;
54 1.15 pooka int rcpu_wanted;
55 1.15 pooka
56 1.15 pooka /* offset 20 (P=4) or 36 (P=8) here */
57 1.15 pooka
58 1.15 pooka /*
59 1.15 pooka * Some stats. Not really that necessary, but we should
60 1.15 pooka * have room. Note that these overflow quite fast, so need
61 1.15 pooka * to be collected often.
62 1.15 pooka */
63 1.15 pooka unsigned int rcpu_fastpath;
64 1.15 pooka unsigned int rcpu_slowpath;
65 1.15 pooka unsigned int rcpu_migrated;
66 1.15 pooka
67 1.15 pooka /* offset 32 (P=4) or 50 (P=8) */
68 1.15 pooka
69 1.15 pooka int rcpu_align[0] __aligned(CACHE_LINE_SIZE);
70 1.8 pooka } rcpu_storage[MAXCPUS];
71 1.28 rmind
72 1.1 pooka struct cpu_info *rump_cpu = &rump_cpus[0];
73 1.28 rmind kcpuset_t *kcpuset_attached = NULL;
74 1.28 rmind kcpuset_t *kcpuset_running = NULL;
75 1.12 pooka int ncpu;
76 1.1 pooka
77 1.15 pooka #define RCPULWP_BUSY ((void *)-1)
78 1.15 pooka #define RCPULWP_WANTED ((void *)-2)
79 1.8 pooka
80 1.15 pooka static struct rumpuser_mtx *lwp0mtx;
81 1.15 pooka static struct rumpuser_cv *lwp0cv;
82 1.15 pooka static unsigned nextcpu;
83 1.14 pooka
84 1.25 pooka kmutex_t unruntime_lock; /* unruntime lwp lock. practically unused */
85 1.25 pooka
86 1.19 pooka static bool lwp0isbusy = false;
87 1.3 pooka
88 1.15 pooka /*
89 1.15 pooka * Keep some stats.
90 1.15 pooka *
91 1.15 pooka * Keeping track of there is not really critical for speed, unless
92 1.15 pooka * stats happen to be on a different cache line (CACHE_LINE_SIZE is
93 1.15 pooka * really just a coarse estimate), so default for the performant case
94 1.15 pooka * (i.e. no stats).
95 1.15 pooka */
96 1.15 pooka #ifdef RUMPSCHED_STATS
97 1.15 pooka #define SCHED_FASTPATH(rcpu) rcpu->rcpu_fastpath++;
98 1.15 pooka #define SCHED_SLOWPATH(rcpu) rcpu->rcpu_slowpath++;
99 1.15 pooka #define SCHED_MIGRATED(rcpu) rcpu->rcpu_migrated++;
100 1.15 pooka #else
101 1.15 pooka #define SCHED_FASTPATH(rcpu)
102 1.15 pooka #define SCHED_SLOWPATH(rcpu)
103 1.15 pooka #define SCHED_MIGRATED(rcpu)
104 1.15 pooka #endif
105 1.1 pooka
106 1.1 pooka struct cpu_info *
107 1.1 pooka cpu_lookup(u_int index)
108 1.1 pooka {
109 1.1 pooka
110 1.1 pooka return &rump_cpus[index];
111 1.1 pooka }
112 1.1 pooka
113 1.15 pooka static inline struct rumpcpu *
114 1.15 pooka getnextcpu(void)
115 1.15 pooka {
116 1.15 pooka unsigned newcpu;
117 1.15 pooka
118 1.15 pooka newcpu = atomic_inc_uint_nv(&nextcpu);
119 1.15 pooka if (__predict_false(ncpu > UINT_MAX/2))
120 1.15 pooka atomic_and_uint(&nextcpu, 0);
121 1.15 pooka newcpu = newcpu % ncpu;
122 1.15 pooka
123 1.15 pooka return &rcpu_storage[newcpu];
124 1.15 pooka }
125 1.15 pooka
126 1.12 pooka /* this could/should be mi_attach_cpu? */
127 1.12 pooka void
128 1.22 pooka rump_cpus_bootstrap(int *nump)
129 1.12 pooka {
130 1.12 pooka struct cpu_info *ci;
131 1.22 pooka int num = *nump;
132 1.12 pooka int i;
133 1.12 pooka
134 1.13 pooka if (num > MAXCPUS) {
135 1.22 pooka aprint_verbose("CPU limit: %d wanted, %d (MAXCPUS) "
136 1.22 pooka "available (adjusted)\n", num, MAXCPUS);
137 1.13 pooka num = MAXCPUS;
138 1.13 pooka }
139 1.13 pooka
140 1.12 pooka for (i = 0; i < num; i++) {
141 1.12 pooka ci = &rump_cpus[i];
142 1.12 pooka ci->ci_index = i;
143 1.12 pooka }
144 1.20 pooka
145 1.28 rmind kcpuset_create(&kcpuset_attached, true);
146 1.28 rmind kcpuset_create(&kcpuset_running, true);
147 1.28 rmind
148 1.20 pooka /* attach first cpu for bootstrap */
149 1.20 pooka rump_cpu_attach(&rump_cpus[0]);
150 1.20 pooka ncpu = 1;
151 1.22 pooka *nump = num;
152 1.12 pooka }
153 1.12 pooka
154 1.1 pooka void
155 1.20 pooka rump_scheduler_init(int numcpu)
156 1.1 pooka {
157 1.1 pooka struct rumpcpu *rcpu;
158 1.1 pooka struct cpu_info *ci;
159 1.1 pooka int i;
160 1.1 pooka
161 1.15 pooka rumpuser_mutex_init(&lwp0mtx);
162 1.3 pooka rumpuser_cv_init(&lwp0cv);
163 1.20 pooka for (i = 0; i < numcpu; i++) {
164 1.1 pooka rcpu = &rcpu_storage[i];
165 1.1 pooka ci = &rump_cpus[i];
166 1.12 pooka rcpu->rcpu_ci = ci;
167 1.4 pooka ci->ci_schedstate.spc_mutex =
168 1.4 pooka mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
169 1.9 pooka ci->ci_schedstate.spc_flags = SPCF_RUNNING;
170 1.15 pooka rcpu->rcpu_wanted = 0;
171 1.8 pooka rumpuser_cv_init(&rcpu->rcpu_cv);
172 1.15 pooka rumpuser_mutex_init(&rcpu->rcpu_mtx);
173 1.1 pooka }
174 1.25 pooka
175 1.25 pooka mutex_init(&unruntime_lock, MUTEX_DEFAULT, IPL_NONE);
176 1.1 pooka }
177 1.1 pooka
178 1.14 pooka /*
179 1.14 pooka * condvar ops using scheduler lock as the rumpuser interlock.
180 1.14 pooka */
181 1.14 pooka void
182 1.14 pooka rump_schedlock_cv_wait(struct rumpuser_cv *cv)
183 1.14 pooka {
184 1.15 pooka struct lwp *l = curlwp;
185 1.15 pooka struct rumpcpu *rcpu = &rcpu_storage[l->l_cpu-&rump_cpus[0]];
186 1.14 pooka
187 1.15 pooka /* mutex will be taken and released in cpu schedule/unschedule */
188 1.15 pooka rumpuser_cv_wait(cv, rcpu->rcpu_mtx);
189 1.14 pooka }
190 1.14 pooka
191 1.14 pooka int
192 1.14 pooka rump_schedlock_cv_timedwait(struct rumpuser_cv *cv, const struct timespec *ts)
193 1.14 pooka {
194 1.15 pooka struct lwp *l = curlwp;
195 1.15 pooka struct rumpcpu *rcpu = &rcpu_storage[l->l_cpu-&rump_cpus[0]];
196 1.14 pooka
197 1.15 pooka /* mutex will be taken and released in cpu schedule/unschedule */
198 1.15 pooka return rumpuser_cv_timedwait(cv, rcpu->rcpu_mtx,
199 1.15 pooka ts->tv_sec, ts->tv_nsec);
200 1.14 pooka }
201 1.14 pooka
202 1.19 pooka static void
203 1.19 pooka lwp0busy(void)
204 1.19 pooka {
205 1.19 pooka
206 1.19 pooka /* busy lwp0 */
207 1.25 pooka KASSERT(curlwp == NULL || curlwp->l_stat != LSONPROC);
208 1.19 pooka rumpuser_mutex_enter_nowrap(lwp0mtx);
209 1.19 pooka while (lwp0isbusy)
210 1.19 pooka rumpuser_cv_wait_nowrap(lwp0cv, lwp0mtx);
211 1.19 pooka lwp0isbusy = true;
212 1.19 pooka rumpuser_mutex_exit(lwp0mtx);
213 1.19 pooka }
214 1.19 pooka
215 1.19 pooka static void
216 1.19 pooka lwp0rele(void)
217 1.19 pooka {
218 1.19 pooka
219 1.19 pooka rumpuser_mutex_enter_nowrap(lwp0mtx);
220 1.19 pooka KASSERT(lwp0isbusy == true);
221 1.19 pooka lwp0isbusy = false;
222 1.19 pooka rumpuser_cv_signal(lwp0cv);
223 1.19 pooka rumpuser_mutex_exit(lwp0mtx);
224 1.19 pooka }
225 1.19 pooka
226 1.27 yamt /*
227 1.27 yamt * rump_schedule: ensure that the calling host thread has a valid lwp context.
228 1.27 yamt * ie. ensure that rumpuser_get_curlwp() != NULL.
229 1.27 yamt */
230 1.1 pooka void
231 1.1 pooka rump_schedule()
232 1.1 pooka {
233 1.3 pooka struct lwp *l;
234 1.2 pooka
235 1.2 pooka /*
236 1.2 pooka * If there is no dedicated lwp, allocate a temp one and
237 1.3 pooka * set it to be free'd upon unschedule(). Use lwp0 context
238 1.15 pooka * for reserving the necessary resources. Don't optimize
239 1.15 pooka * for this case -- anyone who cares about performance will
240 1.15 pooka * start a real thread.
241 1.2 pooka */
242 1.19 pooka if (__predict_true((l = rumpuser_get_curlwp()) != NULL)) {
243 1.19 pooka rump_schedule_cpu(l);
244 1.19 pooka LWP_CACHE_CREDS(l, l->l_proc);
245 1.19 pooka } else {
246 1.19 pooka lwp0busy();
247 1.3 pooka
248 1.3 pooka /* schedule cpu and use lwp0 */
249 1.4 pooka rump_schedule_cpu(&lwp0);
250 1.3 pooka rumpuser_set_curlwp(&lwp0);
251 1.3 pooka
252 1.19 pooka /* allocate thread, switch to it, and release lwp0 */
253 1.21 pooka l = rump__lwproc_alloclwp(initproc);
254 1.19 pooka rump_lwproc_switch(l);
255 1.19 pooka lwp0rele();
256 1.3 pooka
257 1.19 pooka /*
258 1.19 pooka * mark new thread dead-on-unschedule. this
259 1.19 pooka * means that we'll be running with l_refcnt == 0.
260 1.19 pooka * relax, it's fine.
261 1.19 pooka */
262 1.19 pooka rump_lwproc_releaselwp();
263 1.2 pooka }
264 1.2 pooka }
265 1.2 pooka
266 1.4 pooka void
267 1.4 pooka rump_schedule_cpu(struct lwp *l)
268 1.2 pooka {
269 1.14 pooka
270 1.14 pooka rump_schedule_cpu_interlock(l, NULL);
271 1.14 pooka }
272 1.14 pooka
273 1.15 pooka /*
274 1.15 pooka * Schedule a CPU. This optimizes for the case where we schedule
275 1.15 pooka * the same thread often, and we have nCPU >= nFrequently-Running-Thread
276 1.15 pooka * (where CPU is virtual rump cpu, not host CPU).
277 1.15 pooka */
278 1.14 pooka void
279 1.14 pooka rump_schedule_cpu_interlock(struct lwp *l, void *interlock)
280 1.14 pooka {
281 1.1 pooka struct rumpcpu *rcpu;
282 1.15 pooka void *old;
283 1.15 pooka bool domigrate;
284 1.15 pooka bool bound = l->l_pflag & LP_BOUND;
285 1.15 pooka
286 1.25 pooka l->l_stat = LSRUN;
287 1.25 pooka
288 1.15 pooka /*
289 1.15 pooka * First, try fastpath: if we were the previous user of the
290 1.15 pooka * CPU, everything is in order cachewise and we can just
291 1.15 pooka * proceed to use it.
292 1.15 pooka *
293 1.15 pooka * If we are a different thread (i.e. CAS fails), we must go
294 1.15 pooka * through a memory barrier to ensure we get a truthful
295 1.15 pooka * view of the world.
296 1.15 pooka */
297 1.14 pooka
298 1.17 pooka KASSERT(l->l_target_cpu != NULL);
299 1.15 pooka rcpu = &rcpu_storage[l->l_target_cpu-&rump_cpus[0]];
300 1.15 pooka if (atomic_cas_ptr(&rcpu->rcpu_prevlwp, l, RCPULWP_BUSY) == l) {
301 1.29 pooka if (interlock == rcpu->rcpu_mtx)
302 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
303 1.15 pooka SCHED_FASTPATH(rcpu);
304 1.15 pooka /* jones, you're the man */
305 1.15 pooka goto fastlane;
306 1.15 pooka }
307 1.1 pooka
308 1.15 pooka /*
309 1.15 pooka * Else, it's the slowpath for us. First, determine if we
310 1.15 pooka * can migrate.
311 1.15 pooka */
312 1.15 pooka if (ncpu == 1)
313 1.15 pooka domigrate = false;
314 1.15 pooka else
315 1.15 pooka domigrate = true;
316 1.15 pooka
317 1.15 pooka /* Take lock. This acts as a load barrier too. */
318 1.29 pooka if (interlock != rcpu->rcpu_mtx)
319 1.15 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
320 1.15 pooka
321 1.15 pooka for (;;) {
322 1.15 pooka SCHED_SLOWPATH(rcpu);
323 1.15 pooka old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, RCPULWP_WANTED);
324 1.15 pooka
325 1.15 pooka /* CPU is free? */
326 1.15 pooka if (old != RCPULWP_BUSY && old != RCPULWP_WANTED) {
327 1.15 pooka if (atomic_cas_ptr(&rcpu->rcpu_prevlwp,
328 1.15 pooka RCPULWP_WANTED, RCPULWP_BUSY) == RCPULWP_WANTED) {
329 1.15 pooka break;
330 1.8 pooka }
331 1.8 pooka }
332 1.15 pooka
333 1.15 pooka /*
334 1.15 pooka * Do we want to migrate once?
335 1.15 pooka * This may need a slightly better algorithm, or we
336 1.15 pooka * might cache pingpong eternally for non-frequent
337 1.15 pooka * threads.
338 1.15 pooka */
339 1.15 pooka if (domigrate && !bound) {
340 1.15 pooka domigrate = false;
341 1.15 pooka SCHED_MIGRATED(rcpu);
342 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
343 1.15 pooka rcpu = getnextcpu();
344 1.15 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
345 1.15 pooka continue;
346 1.8 pooka }
347 1.15 pooka
348 1.15 pooka /* Want CPU, wait until it's released an retry */
349 1.15 pooka rcpu->rcpu_wanted++;
350 1.15 pooka rumpuser_cv_wait_nowrap(rcpu->rcpu_cv, rcpu->rcpu_mtx);
351 1.15 pooka rcpu->rcpu_wanted--;
352 1.8 pooka }
353 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
354 1.15 pooka
355 1.15 pooka fastlane:
356 1.15 pooka l->l_cpu = l->l_target_cpu = rcpu->rcpu_ci;
357 1.4 pooka l->l_mutex = rcpu->rcpu_ci->ci_schedstate.spc_mutex;
358 1.18 pooka l->l_ncsw++;
359 1.25 pooka l->l_stat = LSONPROC;
360 1.23 pooka
361 1.23 pooka rcpu->rcpu_ci->ci_curlwp = l;
362 1.1 pooka }
363 1.1 pooka
364 1.1 pooka void
365 1.1 pooka rump_unschedule()
366 1.1 pooka {
367 1.24 pooka struct lwp *l = rumpuser_get_curlwp();
368 1.24 pooka #ifdef DIAGNOSTIC
369 1.24 pooka int nlock;
370 1.24 pooka
371 1.24 pooka KERNEL_UNLOCK_ALL(l, &nlock);
372 1.24 pooka KASSERT(nlock == 0);
373 1.24 pooka #endif
374 1.2 pooka
375 1.4 pooka KASSERT(l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex);
376 1.2 pooka rump_unschedule_cpu(l);
377 1.25 pooka l->l_mutex = &unruntime_lock;
378 1.25 pooka l->l_stat = LSSTOP;
379 1.6 pooka
380 1.6 pooka /*
381 1.19 pooka * Check special conditions:
382 1.19 pooka * 1) do we need to free the lwp which just unscheduled?
383 1.19 pooka * (locking order: lwp0, cpu)
384 1.19 pooka * 2) do we want to clear curlwp for the current host thread
385 1.6 pooka */
386 1.19 pooka if (__predict_false(l->l_flag & LW_WEXIT)) {
387 1.19 pooka lwp0busy();
388 1.19 pooka
389 1.19 pooka /* Now that we have lwp0, we can schedule a CPU again */
390 1.19 pooka rump_schedule_cpu(l);
391 1.6 pooka
392 1.19 pooka /* switch to lwp0. this frees the old thread */
393 1.19 pooka KASSERT(l->l_flag & LW_WEXIT);
394 1.19 pooka rump_lwproc_switch(&lwp0);
395 1.6 pooka
396 1.19 pooka /* release lwp0 */
397 1.6 pooka rump_unschedule_cpu(&lwp0);
398 1.25 pooka lwp0.l_mutex = &unruntime_lock;
399 1.19 pooka lwp0.l_pflag &= ~LP_RUNNING;
400 1.19 pooka lwp0rele();
401 1.6 pooka rumpuser_set_curlwp(NULL);
402 1.6 pooka
403 1.19 pooka } else if (__predict_false(l->l_flag & LW_RUMP_CLEAR)) {
404 1.19 pooka rumpuser_set_curlwp(NULL);
405 1.19 pooka l->l_flag &= ~LW_RUMP_CLEAR;
406 1.2 pooka }
407 1.2 pooka }
408 1.2 pooka
409 1.2 pooka void
410 1.2 pooka rump_unschedule_cpu(struct lwp *l)
411 1.2 pooka {
412 1.8 pooka
413 1.14 pooka rump_unschedule_cpu_interlock(l, NULL);
414 1.14 pooka }
415 1.14 pooka
416 1.14 pooka void
417 1.14 pooka rump_unschedule_cpu_interlock(struct lwp *l, void *interlock)
418 1.14 pooka {
419 1.14 pooka
420 1.8 pooka if ((l->l_pflag & LP_INTR) == 0)
421 1.8 pooka rump_softint_run(l->l_cpu);
422 1.14 pooka rump_unschedule_cpu1(l, interlock);
423 1.8 pooka }
424 1.8 pooka
425 1.8 pooka void
426 1.14 pooka rump_unschedule_cpu1(struct lwp *l, void *interlock)
427 1.8 pooka {
428 1.1 pooka struct rumpcpu *rcpu;
429 1.1 pooka struct cpu_info *ci;
430 1.15 pooka void *old;
431 1.1 pooka
432 1.1 pooka ci = l->l_cpu;
433 1.23 pooka ci->ci_curlwp = NULL;
434 1.1 pooka rcpu = &rcpu_storage[ci-&rump_cpus[0]];
435 1.15 pooka
436 1.1 pooka KASSERT(rcpu->rcpu_ci == ci);
437 1.1 pooka
438 1.15 pooka /*
439 1.15 pooka * Make sure all stores are seen before the CPU release. This
440 1.15 pooka * is relevant only in the non-fastpath scheduling case, but
441 1.15 pooka * we don't know here if that's going to happen, so need to
442 1.15 pooka * expect the worst.
443 1.29 pooka *
444 1.29 pooka * If the scheduler interlock was requested by the caller, we
445 1.29 pooka * need to obtain it before we release the CPU. Otherwise, we risk a
446 1.29 pooka * race condition where another thread is scheduled onto the
447 1.29 pooka * rump kernel CPU before our current thread can
448 1.29 pooka * grab the interlock.
449 1.15 pooka */
450 1.29 pooka if (interlock == rcpu->rcpu_mtx)
451 1.29 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
452 1.29 pooka else
453 1.29 pooka membar_exit();
454 1.15 pooka
455 1.15 pooka /* Release the CPU. */
456 1.15 pooka old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, l);
457 1.15 pooka
458 1.15 pooka /* No waiters? No problems. We're outta here. */
459 1.15 pooka if (old == RCPULWP_BUSY) {
460 1.15 pooka return;
461 1.15 pooka }
462 1.15 pooka
463 1.15 pooka KASSERT(old == RCPULWP_WANTED);
464 1.15 pooka
465 1.15 pooka /*
466 1.15 pooka * Ok, things weren't so snappy.
467 1.15 pooka *
468 1.15 pooka * Snailpath: take lock and signal anyone waiting for this CPU.
469 1.15 pooka */
470 1.14 pooka
471 1.29 pooka if (interlock != rcpu->rcpu_mtx)
472 1.29 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
473 1.15 pooka if (rcpu->rcpu_wanted)
474 1.8 pooka rumpuser_cv_broadcast(rcpu->rcpu_cv);
475 1.29 pooka if (interlock != rcpu->rcpu_mtx)
476 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
477 1.1 pooka }
478 1.5 pooka
479 1.5 pooka /* Give up and retake CPU (perhaps a different one) */
480 1.5 pooka void
481 1.5 pooka yield()
482 1.5 pooka {
483 1.5 pooka struct lwp *l = curlwp;
484 1.5 pooka int nlocks;
485 1.5 pooka
486 1.5 pooka KERNEL_UNLOCK_ALL(l, &nlocks);
487 1.5 pooka rump_unschedule_cpu(l);
488 1.5 pooka rump_schedule_cpu(l);
489 1.5 pooka KERNEL_LOCK(nlocks, l);
490 1.5 pooka }
491 1.5 pooka
492 1.5 pooka void
493 1.5 pooka preempt()
494 1.5 pooka {
495 1.5 pooka
496 1.5 pooka yield();
497 1.5 pooka }
498 1.10 pooka
499 1.10 pooka bool
500 1.10 pooka kpreempt(uintptr_t where)
501 1.10 pooka {
502 1.10 pooka
503 1.10 pooka return false;
504 1.10 pooka }
505 1.10 pooka
506 1.10 pooka /*
507 1.10 pooka * There is no kernel thread preemption in rump currently. But call
508 1.10 pooka * the implementing macros anyway in case they grow some side-effects
509 1.10 pooka * down the road.
510 1.10 pooka */
511 1.10 pooka void
512 1.10 pooka kpreempt_disable(void)
513 1.10 pooka {
514 1.10 pooka
515 1.30 pooka //KPREEMPT_DISABLE(curlwp);
516 1.10 pooka }
517 1.10 pooka
518 1.10 pooka void
519 1.10 pooka kpreempt_enable(void)
520 1.10 pooka {
521 1.10 pooka
522 1.30 pooka //KPREEMPT_ENABLE(curlwp);
523 1.10 pooka }
524 1.10 pooka
525 1.10 pooka void
526 1.10 pooka suspendsched(void)
527 1.10 pooka {
528 1.10 pooka
529 1.10 pooka /*
530 1.10 pooka * Could wait until everyone is out and block further entries,
531 1.10 pooka * but skip that for now.
532 1.10 pooka */
533 1.10 pooka }
534 1.11 pooka
535 1.11 pooka void
536 1.11 pooka sched_nice(struct proc *p, int level)
537 1.11 pooka {
538 1.11 pooka
539 1.11 pooka /* nothing to do for now */
540 1.11 pooka }
541