scheduler.c revision 1.52 1 1.52 christos /* $NetBSD: scheduler.c,v 1.52 2020/11/01 20:58:38 christos Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.26 pooka * Copyright (c) 2010, 2011 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.1 pooka * Redistribution and use in source and binary forms, with or without
7 1.1 pooka * modification, are permitted provided that the following conditions
8 1.1 pooka * are met:
9 1.1 pooka * 1. Redistributions of source code must retain the above copyright
10 1.1 pooka * notice, this list of conditions and the following disclaimer.
11 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 pooka * notice, this list of conditions and the following disclaimer in the
13 1.1 pooka * documentation and/or other materials provided with the distribution.
14 1.1 pooka *
15 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 1.1 pooka * SUCH DAMAGE.
26 1.1 pooka */
27 1.1 pooka
28 1.1 pooka #include <sys/cdefs.h>
29 1.52 christos __KERNEL_RCSID(0, "$NetBSD: scheduler.c,v 1.52 2020/11/01 20:58:38 christos Exp $");
30 1.1 pooka
31 1.1 pooka #include <sys/param.h>
32 1.16 pooka #include <sys/atomic.h>
33 1.1 pooka #include <sys/cpu.h>
34 1.2 pooka #include <sys/kmem.h>
35 1.1 pooka #include <sys/mutex.h>
36 1.8 pooka #include <sys/namei.h>
37 1.1 pooka #include <sys/queue.h>
38 1.1 pooka #include <sys/select.h>
39 1.10 pooka #include <sys/systm.h>
40 1.1 pooka
41 1.42 pooka #include <rump-sys/kern.h>
42 1.42 pooka
43 1.1 pooka #include <rump/rumpuser.h>
44 1.1 pooka
45 1.1 pooka static struct rumpcpu {
46 1.15 pooka /* needed in fastpath */
47 1.1 pooka struct cpu_info *rcpu_ci;
48 1.15 pooka void *rcpu_prevlwp;
49 1.15 pooka
50 1.15 pooka /* needed in slowpath */
51 1.15 pooka struct rumpuser_mtx *rcpu_mtx;
52 1.8 pooka struct rumpuser_cv *rcpu_cv;
53 1.15 pooka int rcpu_wanted;
54 1.15 pooka
55 1.15 pooka /* offset 20 (P=4) or 36 (P=8) here */
56 1.15 pooka
57 1.15 pooka /*
58 1.15 pooka * Some stats. Not really that necessary, but we should
59 1.15 pooka * have room. Note that these overflow quite fast, so need
60 1.15 pooka * to be collected often.
61 1.15 pooka */
62 1.15 pooka unsigned int rcpu_fastpath;
63 1.15 pooka unsigned int rcpu_slowpath;
64 1.15 pooka unsigned int rcpu_migrated;
65 1.15 pooka
66 1.15 pooka /* offset 32 (P=4) or 50 (P=8) */
67 1.15 pooka
68 1.15 pooka int rcpu_align[0] __aligned(CACHE_LINE_SIZE);
69 1.8 pooka } rcpu_storage[MAXCPUS];
70 1.28 rmind
71 1.43 pooka static inline struct rumpcpu *
72 1.43 pooka cpuinfo_to_rumpcpu(struct cpu_info *ci)
73 1.43 pooka {
74 1.43 pooka
75 1.43 pooka return &rcpu_storage[cpu_index(ci)];
76 1.43 pooka }
77 1.43 pooka
78 1.43 pooka struct cpu_info rump_bootcpu;
79 1.44 pooka
80 1.15 pooka #define RCPULWP_BUSY ((void *)-1)
81 1.15 pooka #define RCPULWP_WANTED ((void *)-2)
82 1.8 pooka
83 1.15 pooka static struct rumpuser_mtx *lwp0mtx;
84 1.15 pooka static struct rumpuser_cv *lwp0cv;
85 1.15 pooka static unsigned nextcpu;
86 1.14 pooka
87 1.25 pooka kmutex_t unruntime_lock; /* unruntime lwp lock. practically unused */
88 1.25 pooka
89 1.19 pooka static bool lwp0isbusy = false;
90 1.3 pooka
91 1.15 pooka /*
92 1.15 pooka * Keep some stats.
93 1.15 pooka *
94 1.15 pooka * Keeping track of there is not really critical for speed, unless
95 1.15 pooka * stats happen to be on a different cache line (CACHE_LINE_SIZE is
96 1.15 pooka * really just a coarse estimate), so default for the performant case
97 1.15 pooka * (i.e. no stats).
98 1.15 pooka */
99 1.15 pooka #ifdef RUMPSCHED_STATS
100 1.15 pooka #define SCHED_FASTPATH(rcpu) rcpu->rcpu_fastpath++;
101 1.15 pooka #define SCHED_SLOWPATH(rcpu) rcpu->rcpu_slowpath++;
102 1.15 pooka #define SCHED_MIGRATED(rcpu) rcpu->rcpu_migrated++;
103 1.15 pooka #else
104 1.15 pooka #define SCHED_FASTPATH(rcpu)
105 1.15 pooka #define SCHED_SLOWPATH(rcpu)
106 1.15 pooka #define SCHED_MIGRATED(rcpu)
107 1.15 pooka #endif
108 1.1 pooka
109 1.1 pooka struct cpu_info *
110 1.1 pooka cpu_lookup(u_int index)
111 1.1 pooka {
112 1.1 pooka
113 1.43 pooka return rcpu_storage[index].rcpu_ci;
114 1.1 pooka }
115 1.1 pooka
116 1.15 pooka static inline struct rumpcpu *
117 1.15 pooka getnextcpu(void)
118 1.15 pooka {
119 1.15 pooka unsigned newcpu;
120 1.15 pooka
121 1.15 pooka newcpu = atomic_inc_uint_nv(&nextcpu);
122 1.15 pooka if (__predict_false(ncpu > UINT_MAX/2))
123 1.15 pooka atomic_and_uint(&nextcpu, 0);
124 1.15 pooka newcpu = newcpu % ncpu;
125 1.15 pooka
126 1.15 pooka return &rcpu_storage[newcpu];
127 1.15 pooka }
128 1.15 pooka
129 1.12 pooka /* this could/should be mi_attach_cpu? */
130 1.12 pooka void
131 1.22 pooka rump_cpus_bootstrap(int *nump)
132 1.12 pooka {
133 1.22 pooka int num = *nump;
134 1.12 pooka
135 1.13 pooka if (num > MAXCPUS) {
136 1.22 pooka aprint_verbose("CPU limit: %d wanted, %d (MAXCPUS) "
137 1.22 pooka "available (adjusted)\n", num, MAXCPUS);
138 1.13 pooka num = MAXCPUS;
139 1.13 pooka }
140 1.13 pooka
141 1.48 ad cpu_setmodel("rumpcore (virtual)");
142 1.44 pooka
143 1.48 ad mi_cpu_init();
144 1.28 rmind
145 1.20 pooka /* attach first cpu for bootstrap */
146 1.43 pooka rump_cpu_attach(&rump_bootcpu);
147 1.20 pooka ncpu = 1;
148 1.22 pooka *nump = num;
149 1.12 pooka }
150 1.12 pooka
151 1.1 pooka void
152 1.20 pooka rump_scheduler_init(int numcpu)
153 1.1 pooka {
154 1.1 pooka struct rumpcpu *rcpu;
155 1.1 pooka struct cpu_info *ci;
156 1.1 pooka int i;
157 1.1 pooka
158 1.31 pooka rumpuser_mutex_init(&lwp0mtx, RUMPUSER_MTX_SPIN);
159 1.3 pooka rumpuser_cv_init(&lwp0cv);
160 1.20 pooka for (i = 0; i < numcpu; i++) {
161 1.43 pooka if (i == 0) {
162 1.43 pooka ci = &rump_bootcpu;
163 1.43 pooka } else {
164 1.43 pooka ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
165 1.43 pooka ci->ci_index = i;
166 1.43 pooka }
167 1.43 pooka
168 1.1 pooka rcpu = &rcpu_storage[i];
169 1.12 pooka rcpu->rcpu_ci = ci;
170 1.43 pooka rcpu->rcpu_wanted = 0;
171 1.43 pooka rumpuser_cv_init(&rcpu->rcpu_cv);
172 1.43 pooka rumpuser_mutex_init(&rcpu->rcpu_mtx, RUMPUSER_MTX_SPIN);
173 1.43 pooka
174 1.4 pooka ci->ci_schedstate.spc_mutex =
175 1.32 pooka mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
176 1.9 pooka ci->ci_schedstate.spc_flags = SPCF_RUNNING;
177 1.1 pooka }
178 1.25 pooka
179 1.32 pooka mutex_init(&unruntime_lock, MUTEX_DEFAULT, IPL_SCHED);
180 1.1 pooka }
181 1.1 pooka
182 1.52 christos void
183 1.52 christos rump_schedlock_cv_signal(struct cpu_info *ci, struct rumpuser_cv *cv)
184 1.52 christos {
185 1.52 christos struct rumpcpu *rcpu = cpuinfo_to_rumpcpu(ci);
186 1.52 christos
187 1.52 christos rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
188 1.52 christos rumpuser_cv_signal(cv);
189 1.52 christos rumpuser_mutex_exit(rcpu->rcpu_mtx);
190 1.52 christos }
191 1.52 christos
192 1.14 pooka /*
193 1.14 pooka * condvar ops using scheduler lock as the rumpuser interlock.
194 1.14 pooka */
195 1.14 pooka void
196 1.14 pooka rump_schedlock_cv_wait(struct rumpuser_cv *cv)
197 1.14 pooka {
198 1.15 pooka struct lwp *l = curlwp;
199 1.43 pooka struct rumpcpu *rcpu = cpuinfo_to_rumpcpu(l->l_cpu);
200 1.14 pooka
201 1.15 pooka /* mutex will be taken and released in cpu schedule/unschedule */
202 1.15 pooka rumpuser_cv_wait(cv, rcpu->rcpu_mtx);
203 1.14 pooka }
204 1.14 pooka
205 1.14 pooka int
206 1.14 pooka rump_schedlock_cv_timedwait(struct rumpuser_cv *cv, const struct timespec *ts)
207 1.14 pooka {
208 1.15 pooka struct lwp *l = curlwp;
209 1.43 pooka struct rumpcpu *rcpu = cpuinfo_to_rumpcpu(l->l_cpu);
210 1.14 pooka
211 1.15 pooka /* mutex will be taken and released in cpu schedule/unschedule */
212 1.15 pooka return rumpuser_cv_timedwait(cv, rcpu->rcpu_mtx,
213 1.15 pooka ts->tv_sec, ts->tv_nsec);
214 1.14 pooka }
215 1.14 pooka
216 1.19 pooka static void
217 1.19 pooka lwp0busy(void)
218 1.19 pooka {
219 1.19 pooka
220 1.19 pooka /* busy lwp0 */
221 1.25 pooka KASSERT(curlwp == NULL || curlwp->l_stat != LSONPROC);
222 1.19 pooka rumpuser_mutex_enter_nowrap(lwp0mtx);
223 1.19 pooka while (lwp0isbusy)
224 1.19 pooka rumpuser_cv_wait_nowrap(lwp0cv, lwp0mtx);
225 1.19 pooka lwp0isbusy = true;
226 1.19 pooka rumpuser_mutex_exit(lwp0mtx);
227 1.19 pooka }
228 1.19 pooka
229 1.19 pooka static void
230 1.19 pooka lwp0rele(void)
231 1.19 pooka {
232 1.19 pooka
233 1.19 pooka rumpuser_mutex_enter_nowrap(lwp0mtx);
234 1.19 pooka KASSERT(lwp0isbusy == true);
235 1.19 pooka lwp0isbusy = false;
236 1.19 pooka rumpuser_cv_signal(lwp0cv);
237 1.19 pooka rumpuser_mutex_exit(lwp0mtx);
238 1.19 pooka }
239 1.19 pooka
240 1.27 yamt /*
241 1.27 yamt * rump_schedule: ensure that the calling host thread has a valid lwp context.
242 1.33 pooka * ie. ensure that curlwp != NULL. Also, ensure that there
243 1.33 pooka * a 1:1 mapping between the lwp and rump kernel cpu.
244 1.27 yamt */
245 1.1 pooka void
246 1.1 pooka rump_schedule()
247 1.1 pooka {
248 1.3 pooka struct lwp *l;
249 1.2 pooka
250 1.2 pooka /*
251 1.2 pooka * If there is no dedicated lwp, allocate a temp one and
252 1.3 pooka * set it to be free'd upon unschedule(). Use lwp0 context
253 1.15 pooka * for reserving the necessary resources. Don't optimize
254 1.15 pooka * for this case -- anyone who cares about performance will
255 1.15 pooka * start a real thread.
256 1.2 pooka */
257 1.36 pooka if (__predict_true((l = curlwp) != NULL)) {
258 1.19 pooka rump_schedule_cpu(l);
259 1.19 pooka LWP_CACHE_CREDS(l, l->l_proc);
260 1.19 pooka } else {
261 1.19 pooka lwp0busy();
262 1.3 pooka
263 1.3 pooka /* schedule cpu and use lwp0 */
264 1.4 pooka rump_schedule_cpu(&lwp0);
265 1.36 pooka rump_lwproc_curlwp_set(&lwp0);
266 1.3 pooka
267 1.19 pooka /* allocate thread, switch to it, and release lwp0 */
268 1.21 pooka l = rump__lwproc_alloclwp(initproc);
269 1.19 pooka rump_lwproc_switch(l);
270 1.19 pooka lwp0rele();
271 1.3 pooka
272 1.19 pooka /*
273 1.19 pooka * mark new thread dead-on-unschedule. this
274 1.19 pooka * means that we'll be running with l_refcnt == 0.
275 1.19 pooka * relax, it's fine.
276 1.19 pooka */
277 1.19 pooka rump_lwproc_releaselwp();
278 1.2 pooka }
279 1.2 pooka }
280 1.2 pooka
281 1.4 pooka void
282 1.4 pooka rump_schedule_cpu(struct lwp *l)
283 1.2 pooka {
284 1.14 pooka
285 1.14 pooka rump_schedule_cpu_interlock(l, NULL);
286 1.14 pooka }
287 1.14 pooka
288 1.15 pooka /*
289 1.15 pooka * Schedule a CPU. This optimizes for the case where we schedule
290 1.15 pooka * the same thread often, and we have nCPU >= nFrequently-Running-Thread
291 1.15 pooka * (where CPU is virtual rump cpu, not host CPU).
292 1.15 pooka */
293 1.14 pooka void
294 1.14 pooka rump_schedule_cpu_interlock(struct lwp *l, void *interlock)
295 1.14 pooka {
296 1.1 pooka struct rumpcpu *rcpu;
297 1.40 pooka struct cpu_info *ci;
298 1.15 pooka void *old;
299 1.15 pooka bool domigrate;
300 1.15 pooka bool bound = l->l_pflag & LP_BOUND;
301 1.15 pooka
302 1.25 pooka l->l_stat = LSRUN;
303 1.25 pooka
304 1.15 pooka /*
305 1.15 pooka * First, try fastpath: if we were the previous user of the
306 1.15 pooka * CPU, everything is in order cachewise and we can just
307 1.15 pooka * proceed to use it.
308 1.15 pooka *
309 1.15 pooka * If we are a different thread (i.e. CAS fails), we must go
310 1.15 pooka * through a memory barrier to ensure we get a truthful
311 1.15 pooka * view of the world.
312 1.15 pooka */
313 1.14 pooka
314 1.17 pooka KASSERT(l->l_target_cpu != NULL);
315 1.43 pooka rcpu = cpuinfo_to_rumpcpu(l->l_target_cpu);
316 1.15 pooka if (atomic_cas_ptr(&rcpu->rcpu_prevlwp, l, RCPULWP_BUSY) == l) {
317 1.29 pooka if (interlock == rcpu->rcpu_mtx)
318 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
319 1.15 pooka SCHED_FASTPATH(rcpu);
320 1.15 pooka /* jones, you're the man */
321 1.15 pooka goto fastlane;
322 1.15 pooka }
323 1.1 pooka
324 1.15 pooka /*
325 1.15 pooka * Else, it's the slowpath for us. First, determine if we
326 1.15 pooka * can migrate.
327 1.15 pooka */
328 1.15 pooka if (ncpu == 1)
329 1.15 pooka domigrate = false;
330 1.15 pooka else
331 1.15 pooka domigrate = true;
332 1.15 pooka
333 1.15 pooka /* Take lock. This acts as a load barrier too. */
334 1.29 pooka if (interlock != rcpu->rcpu_mtx)
335 1.15 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
336 1.15 pooka
337 1.15 pooka for (;;) {
338 1.15 pooka SCHED_SLOWPATH(rcpu);
339 1.15 pooka old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, RCPULWP_WANTED);
340 1.15 pooka
341 1.15 pooka /* CPU is free? */
342 1.15 pooka if (old != RCPULWP_BUSY && old != RCPULWP_WANTED) {
343 1.15 pooka if (atomic_cas_ptr(&rcpu->rcpu_prevlwp,
344 1.15 pooka RCPULWP_WANTED, RCPULWP_BUSY) == RCPULWP_WANTED) {
345 1.15 pooka break;
346 1.8 pooka }
347 1.8 pooka }
348 1.15 pooka
349 1.15 pooka /*
350 1.15 pooka * Do we want to migrate once?
351 1.15 pooka * This may need a slightly better algorithm, or we
352 1.15 pooka * might cache pingpong eternally for non-frequent
353 1.15 pooka * threads.
354 1.15 pooka */
355 1.15 pooka if (domigrate && !bound) {
356 1.15 pooka domigrate = false;
357 1.15 pooka SCHED_MIGRATED(rcpu);
358 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
359 1.15 pooka rcpu = getnextcpu();
360 1.15 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
361 1.15 pooka continue;
362 1.8 pooka }
363 1.15 pooka
364 1.15 pooka /* Want CPU, wait until it's released an retry */
365 1.15 pooka rcpu->rcpu_wanted++;
366 1.15 pooka rumpuser_cv_wait_nowrap(rcpu->rcpu_cv, rcpu->rcpu_mtx);
367 1.15 pooka rcpu->rcpu_wanted--;
368 1.8 pooka }
369 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
370 1.15 pooka
371 1.15 pooka fastlane:
372 1.40 pooka ci = rcpu->rcpu_ci;
373 1.40 pooka l->l_cpu = l->l_target_cpu = ci;
374 1.4 pooka l->l_mutex = rcpu->rcpu_ci->ci_schedstate.spc_mutex;
375 1.18 pooka l->l_ncsw++;
376 1.25 pooka l->l_stat = LSONPROC;
377 1.23 pooka
378 1.40 pooka /*
379 1.40 pooka * No interrupts, so ci_curlwp === cpu_onproc.
380 1.40 pooka * Okay, we could make an attempt to not set cpu_onproc
381 1.40 pooka * in the case that an interrupt is scheduled immediately
382 1.40 pooka * after a user proc, but leave that for later.
383 1.40 pooka */
384 1.46 ad ci->ci_curlwp = ci->ci_onproc = l;
385 1.1 pooka }
386 1.1 pooka
387 1.1 pooka void
388 1.1 pooka rump_unschedule()
389 1.1 pooka {
390 1.36 pooka struct lwp *l = curlwp;
391 1.24 pooka #ifdef DIAGNOSTIC
392 1.24 pooka int nlock;
393 1.24 pooka
394 1.24 pooka KERNEL_UNLOCK_ALL(l, &nlock);
395 1.24 pooka KASSERT(nlock == 0);
396 1.24 pooka #endif
397 1.2 pooka
398 1.4 pooka KASSERT(l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex);
399 1.2 pooka rump_unschedule_cpu(l);
400 1.25 pooka l->l_mutex = &unruntime_lock;
401 1.25 pooka l->l_stat = LSSTOP;
402 1.6 pooka
403 1.6 pooka /*
404 1.19 pooka * Check special conditions:
405 1.19 pooka * 1) do we need to free the lwp which just unscheduled?
406 1.19 pooka * (locking order: lwp0, cpu)
407 1.19 pooka * 2) do we want to clear curlwp for the current host thread
408 1.6 pooka */
409 1.19 pooka if (__predict_false(l->l_flag & LW_WEXIT)) {
410 1.19 pooka lwp0busy();
411 1.19 pooka
412 1.19 pooka /* Now that we have lwp0, we can schedule a CPU again */
413 1.19 pooka rump_schedule_cpu(l);
414 1.6 pooka
415 1.19 pooka /* switch to lwp0. this frees the old thread */
416 1.19 pooka KASSERT(l->l_flag & LW_WEXIT);
417 1.19 pooka rump_lwproc_switch(&lwp0);
418 1.6 pooka
419 1.19 pooka /* release lwp0 */
420 1.6 pooka rump_unschedule_cpu(&lwp0);
421 1.25 pooka lwp0.l_mutex = &unruntime_lock;
422 1.50 ad lwp0.l_pflag &= ~LP_RUNNING;
423 1.19 pooka lwp0rele();
424 1.36 pooka rump_lwproc_curlwp_clear(&lwp0);
425 1.6 pooka
426 1.19 pooka } else if (__predict_false(l->l_flag & LW_RUMP_CLEAR)) {
427 1.36 pooka rump_lwproc_curlwp_clear(l);
428 1.19 pooka l->l_flag &= ~LW_RUMP_CLEAR;
429 1.2 pooka }
430 1.2 pooka }
431 1.2 pooka
432 1.2 pooka void
433 1.2 pooka rump_unschedule_cpu(struct lwp *l)
434 1.2 pooka {
435 1.8 pooka
436 1.14 pooka rump_unschedule_cpu_interlock(l, NULL);
437 1.14 pooka }
438 1.14 pooka
439 1.14 pooka void
440 1.14 pooka rump_unschedule_cpu_interlock(struct lwp *l, void *interlock)
441 1.14 pooka {
442 1.14 pooka
443 1.8 pooka if ((l->l_pflag & LP_INTR) == 0)
444 1.8 pooka rump_softint_run(l->l_cpu);
445 1.14 pooka rump_unschedule_cpu1(l, interlock);
446 1.8 pooka }
447 1.8 pooka
448 1.8 pooka void
449 1.14 pooka rump_unschedule_cpu1(struct lwp *l, void *interlock)
450 1.8 pooka {
451 1.1 pooka struct rumpcpu *rcpu;
452 1.1 pooka struct cpu_info *ci;
453 1.15 pooka void *old;
454 1.1 pooka
455 1.1 pooka ci = l->l_cpu;
456 1.47 ad ci->ci_curlwp = ci->ci_onproc = NULL;
457 1.43 pooka rcpu = cpuinfo_to_rumpcpu(ci);
458 1.15 pooka
459 1.1 pooka KASSERT(rcpu->rcpu_ci == ci);
460 1.1 pooka
461 1.15 pooka /*
462 1.15 pooka * Make sure all stores are seen before the CPU release. This
463 1.15 pooka * is relevant only in the non-fastpath scheduling case, but
464 1.15 pooka * we don't know here if that's going to happen, so need to
465 1.15 pooka * expect the worst.
466 1.29 pooka *
467 1.29 pooka * If the scheduler interlock was requested by the caller, we
468 1.29 pooka * need to obtain it before we release the CPU. Otherwise, we risk a
469 1.29 pooka * race condition where another thread is scheduled onto the
470 1.29 pooka * rump kernel CPU before our current thread can
471 1.29 pooka * grab the interlock.
472 1.15 pooka */
473 1.29 pooka if (interlock == rcpu->rcpu_mtx)
474 1.29 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
475 1.29 pooka else
476 1.29 pooka membar_exit();
477 1.15 pooka
478 1.15 pooka /* Release the CPU. */
479 1.15 pooka old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, l);
480 1.15 pooka
481 1.15 pooka /* No waiters? No problems. We're outta here. */
482 1.15 pooka if (old == RCPULWP_BUSY) {
483 1.15 pooka return;
484 1.15 pooka }
485 1.15 pooka
486 1.15 pooka KASSERT(old == RCPULWP_WANTED);
487 1.15 pooka
488 1.15 pooka /*
489 1.15 pooka * Ok, things weren't so snappy.
490 1.15 pooka *
491 1.15 pooka * Snailpath: take lock and signal anyone waiting for this CPU.
492 1.15 pooka */
493 1.14 pooka
494 1.29 pooka if (interlock != rcpu->rcpu_mtx)
495 1.29 pooka rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
496 1.15 pooka if (rcpu->rcpu_wanted)
497 1.8 pooka rumpuser_cv_broadcast(rcpu->rcpu_cv);
498 1.29 pooka if (interlock != rcpu->rcpu_mtx)
499 1.15 pooka rumpuser_mutex_exit(rcpu->rcpu_mtx);
500 1.1 pooka }
501 1.5 pooka
502 1.5 pooka /* Give up and retake CPU (perhaps a different one) */
503 1.5 pooka void
504 1.5 pooka yield()
505 1.5 pooka {
506 1.5 pooka struct lwp *l = curlwp;
507 1.5 pooka int nlocks;
508 1.5 pooka
509 1.5 pooka KERNEL_UNLOCK_ALL(l, &nlocks);
510 1.5 pooka rump_unschedule_cpu(l);
511 1.5 pooka rump_schedule_cpu(l);
512 1.5 pooka KERNEL_LOCK(nlocks, l);
513 1.5 pooka }
514 1.5 pooka
515 1.5 pooka void
516 1.5 pooka preempt()
517 1.5 pooka {
518 1.5 pooka
519 1.5 pooka yield();
520 1.5 pooka }
521 1.10 pooka
522 1.10 pooka bool
523 1.10 pooka kpreempt(uintptr_t where)
524 1.10 pooka {
525 1.10 pooka
526 1.10 pooka return false;
527 1.10 pooka }
528 1.10 pooka
529 1.10 pooka /*
530 1.10 pooka * There is no kernel thread preemption in rump currently. But call
531 1.10 pooka * the implementing macros anyway in case they grow some side-effects
532 1.10 pooka * down the road.
533 1.10 pooka */
534 1.10 pooka void
535 1.10 pooka kpreempt_disable(void)
536 1.10 pooka {
537 1.10 pooka
538 1.35 pooka KPREEMPT_DISABLE(curlwp);
539 1.10 pooka }
540 1.10 pooka
541 1.10 pooka void
542 1.10 pooka kpreempt_enable(void)
543 1.10 pooka {
544 1.10 pooka
545 1.35 pooka KPREEMPT_ENABLE(curlwp);
546 1.10 pooka }
547 1.10 pooka
548 1.38 rmind bool
549 1.38 rmind kpreempt_disabled(void)
550 1.38 rmind {
551 1.39 rmind #if 0
552 1.38 rmind const lwp_t *l = curlwp;
553 1.38 rmind
554 1.38 rmind return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
555 1.39 rmind (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
556 1.39 rmind #endif
557 1.39 rmind /* XXX: emulate cpu_kpreempt_disabled() */
558 1.39 rmind return true;
559 1.38 rmind }
560 1.38 rmind
561 1.10 pooka void
562 1.10 pooka suspendsched(void)
563 1.10 pooka {
564 1.10 pooka
565 1.10 pooka /*
566 1.10 pooka * Could wait until everyone is out and block further entries,
567 1.10 pooka * but skip that for now.
568 1.10 pooka */
569 1.10 pooka }
570 1.11 pooka
571 1.11 pooka void
572 1.11 pooka sched_nice(struct proc *p, int level)
573 1.11 pooka {
574 1.11 pooka
575 1.11 pooka /* nothing to do for now */
576 1.11 pooka }
577 1.37 pooka
578 1.37 pooka void
579 1.45 ad setrunnable(struct lwp *l)
580 1.45 ad {
581 1.45 ad
582 1.45 ad sched_enqueue(l);
583 1.45 ad }
584 1.45 ad
585 1.45 ad void
586 1.45 ad sched_enqueue(struct lwp *l)
587 1.37 pooka {
588 1.37 pooka
589 1.37 pooka rump_thread_allow(l);
590 1.37 pooka }
591 1.37 pooka
592 1.37 pooka void
593 1.45 ad sched_resched_cpu(struct cpu_info *ci, pri_t pri, bool unlock)
594 1.45 ad {
595 1.45 ad
596 1.45 ad }
597 1.45 ad
598 1.45 ad void
599 1.45 ad sched_resched_lwp(struct lwp *l, bool unlock)
600 1.45 ad {
601 1.45 ad
602 1.45 ad }
603 1.45 ad
604 1.45 ad void
605 1.37 pooka sched_dequeue(struct lwp *l)
606 1.37 pooka {
607 1.37 pooka
608 1.37 pooka panic("sched_dequeue not implemented");
609 1.37 pooka }
610 1.51 ad
611 1.51 ad void
612 1.51 ad preempt_point(void)
613 1.51 ad {
614 1.51 ad
615 1.51 ad }
616 1.51 ad
617 1.51 ad bool
618 1.51 ad preempt_needed(void)
619 1.51 ad {
620 1.51 ad
621 1.51 ad return false;
622 1.51 ad }
623