Home | History | Annotate | Line # | Download | only in rumpkern
scheduler.c revision 1.20
      1 /*      $NetBSD: scheduler.c,v 1.20 2010/09/07 07:59:48 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2010 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     16  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     18  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     25  * SUCH DAMAGE.
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: scheduler.c,v 1.20 2010/09/07 07:59:48 pooka Exp $");
     30 
     31 #include <sys/param.h>
     32 #include <sys/atomic.h>
     33 #include <sys/cpu.h>
     34 #include <sys/kmem.h>
     35 #include <sys/mutex.h>
     36 #include <sys/namei.h>
     37 #include <sys/queue.h>
     38 #include <sys/select.h>
     39 #include <sys/systm.h>
     40 
     41 #include <rump/rumpuser.h>
     42 
     43 #include "rump_private.h"
     44 
     45 static struct cpu_info rump_cpus[MAXCPUS];
     46 static struct rumpcpu {
     47 	/* needed in fastpath */
     48 	struct cpu_info *rcpu_ci;
     49 	void *rcpu_prevlwp;
     50 
     51 	/* needed in slowpath */
     52 	struct rumpuser_mtx *rcpu_mtx;
     53 	struct rumpuser_cv *rcpu_cv;
     54 	int rcpu_wanted;
     55 
     56 	/* offset 20 (P=4) or 36 (P=8) here */
     57 
     58 	/*
     59 	 * Some stats.  Not really that necessary, but we should
     60 	 * have room.  Note that these overflow quite fast, so need
     61 	 * to be collected often.
     62 	 */
     63 	unsigned int rcpu_fastpath;
     64 	unsigned int rcpu_slowpath;
     65 	unsigned int rcpu_migrated;
     66 
     67 	/* offset 32 (P=4) or 50 (P=8) */
     68 
     69 	int rcpu_align[0] __aligned(CACHE_LINE_SIZE);
     70 } rcpu_storage[MAXCPUS];
     71 struct cpu_info *rump_cpu = &rump_cpus[0];
     72 int ncpu;
     73 
     74 #define RCPULWP_BUSY	((void *)-1)
     75 #define RCPULWP_WANTED	((void *)-2)
     76 
     77 static struct rumpuser_mtx *lwp0mtx;
     78 static struct rumpuser_cv *lwp0cv;
     79 static unsigned nextcpu;
     80 
     81 static bool lwp0isbusy = false;
     82 
     83 /*
     84  * Keep some stats.
     85  *
     86  * Keeping track of there is not really critical for speed, unless
     87  * stats happen to be on a different cache line (CACHE_LINE_SIZE is
     88  * really just a coarse estimate), so default for the performant case
     89  * (i.e. no stats).
     90  */
     91 #ifdef RUMPSCHED_STATS
     92 #define SCHED_FASTPATH(rcpu) rcpu->rcpu_fastpath++;
     93 #define SCHED_SLOWPATH(rcpu) rcpu->rcpu_slowpath++;
     94 #define SCHED_MIGRATED(rcpu) rcpu->rcpu_migrated++;
     95 #else
     96 #define SCHED_FASTPATH(rcpu)
     97 #define SCHED_SLOWPATH(rcpu)
     98 #define SCHED_MIGRATED(rcpu)
     99 #endif
    100 
    101 struct cpu_info *
    102 cpu_lookup(u_int index)
    103 {
    104 
    105 	return &rump_cpus[index];
    106 }
    107 
    108 static inline struct rumpcpu *
    109 getnextcpu(void)
    110 {
    111 	unsigned newcpu;
    112 
    113 	newcpu = atomic_inc_uint_nv(&nextcpu);
    114 	if (__predict_false(ncpu > UINT_MAX/2))
    115 		atomic_and_uint(&nextcpu, 0);
    116 	newcpu = newcpu % ncpu;
    117 
    118 	return &rcpu_storage[newcpu];
    119 }
    120 
    121 /* this could/should be mi_attach_cpu? */
    122 void
    123 rump_cpus_bootstrap(int num)
    124 {
    125 	struct rumpcpu *rcpu;
    126 	struct cpu_info *ci;
    127 	int i;
    128 
    129 	if (num > MAXCPUS) {
    130 		aprint_verbose("CPU limit: %d wanted, %d (MAXCPUS) available\n",
    131 		    num, MAXCPUS);
    132 		num = MAXCPUS;
    133 	}
    134 
    135 	for (i = 0; i < num; i++) {
    136 		rcpu = &rcpu_storage[i];
    137 		ci = &rump_cpus[i];
    138 		ci->ci_index = i;
    139 	}
    140 
    141 	/* attach first cpu for bootstrap */
    142 	rump_cpu_attach(&rump_cpus[0]);
    143 	ncpu = 1;
    144 }
    145 
    146 void
    147 rump_scheduler_init(int numcpu)
    148 {
    149 	struct rumpcpu *rcpu;
    150 	struct cpu_info *ci;
    151 	int i;
    152 
    153 	rumpuser_mutex_init(&lwp0mtx);
    154 	rumpuser_cv_init(&lwp0cv);
    155 	for (i = 0; i < numcpu; i++) {
    156 		rcpu = &rcpu_storage[i];
    157 		ci = &rump_cpus[i];
    158 		rcpu->rcpu_ci = ci;
    159 		ci->ci_schedstate.spc_mutex =
    160 		    mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    161 		ci->ci_schedstate.spc_flags = SPCF_RUNNING;
    162 		rcpu->rcpu_wanted = 0;
    163 		rumpuser_cv_init(&rcpu->rcpu_cv);
    164 		rumpuser_mutex_init(&rcpu->rcpu_mtx);
    165 	}
    166 }
    167 
    168 /*
    169  * condvar ops using scheduler lock as the rumpuser interlock.
    170  */
    171 void
    172 rump_schedlock_cv_wait(struct rumpuser_cv *cv)
    173 {
    174 	struct lwp *l = curlwp;
    175 	struct rumpcpu *rcpu = &rcpu_storage[l->l_cpu-&rump_cpus[0]];
    176 
    177 	/* mutex will be taken and released in cpu schedule/unschedule */
    178 	rumpuser_cv_wait(cv, rcpu->rcpu_mtx);
    179 }
    180 
    181 int
    182 rump_schedlock_cv_timedwait(struct rumpuser_cv *cv, const struct timespec *ts)
    183 {
    184 	struct lwp *l = curlwp;
    185 	struct rumpcpu *rcpu = &rcpu_storage[l->l_cpu-&rump_cpus[0]];
    186 
    187 	/* mutex will be taken and released in cpu schedule/unschedule */
    188 	return rumpuser_cv_timedwait(cv, rcpu->rcpu_mtx,
    189 	    ts->tv_sec, ts->tv_nsec);
    190 }
    191 
    192 static void
    193 lwp0busy(void)
    194 {
    195 
    196 	/* busy lwp0 */
    197 	KASSERT(curlwp == NULL || curlwp->l_cpu == NULL);
    198 	rumpuser_mutex_enter_nowrap(lwp0mtx);
    199 	while (lwp0isbusy)
    200 		rumpuser_cv_wait_nowrap(lwp0cv, lwp0mtx);
    201 	lwp0isbusy = true;
    202 	rumpuser_mutex_exit(lwp0mtx);
    203 }
    204 
    205 static void
    206 lwp0rele(void)
    207 {
    208 
    209 	rumpuser_mutex_enter_nowrap(lwp0mtx);
    210 	KASSERT(lwp0isbusy == true);
    211 	lwp0isbusy = false;
    212 	rumpuser_cv_signal(lwp0cv);
    213 	rumpuser_mutex_exit(lwp0mtx);
    214 }
    215 
    216 void
    217 rump_schedule()
    218 {
    219 	struct lwp *l;
    220 
    221 	/*
    222 	 * If there is no dedicated lwp, allocate a temp one and
    223 	 * set it to be free'd upon unschedule().  Use lwp0 context
    224 	 * for reserving the necessary resources.  Don't optimize
    225 	 * for this case -- anyone who cares about performance will
    226 	 * start a real thread.
    227 	 */
    228 	if (__predict_true((l = rumpuser_get_curlwp()) != NULL)) {
    229 		rump_schedule_cpu(l);
    230 		LWP_CACHE_CREDS(l, l->l_proc);
    231 	} else {
    232 		lwp0busy();
    233 
    234 		/* schedule cpu and use lwp0 */
    235 		rump_schedule_cpu(&lwp0);
    236 		rumpuser_set_curlwp(&lwp0);
    237 
    238 		/* allocate thread, switch to it, and release lwp0 */
    239 		l = rump__lwproc_allockernlwp();
    240 		rump_lwproc_switch(l);
    241 		lwp0rele();
    242 
    243 		/*
    244 		 * mark new thread dead-on-unschedule.  this
    245 		 * means that we'll be running with l_refcnt == 0.
    246 		 * relax, it's fine.
    247 		 */
    248 		rump_lwproc_releaselwp();
    249 	}
    250 }
    251 
    252 void
    253 rump_schedule_cpu(struct lwp *l)
    254 {
    255 
    256 	rump_schedule_cpu_interlock(l, NULL);
    257 }
    258 
    259 /*
    260  * Schedule a CPU.  This optimizes for the case where we schedule
    261  * the same thread often, and we have nCPU >= nFrequently-Running-Thread
    262  * (where CPU is virtual rump cpu, not host CPU).
    263  */
    264 void
    265 rump_schedule_cpu_interlock(struct lwp *l, void *interlock)
    266 {
    267 	struct rumpcpu *rcpu;
    268 	void *old;
    269 	bool domigrate;
    270 	bool bound = l->l_pflag & LP_BOUND;
    271 
    272 	/*
    273 	 * First, try fastpath: if we were the previous user of the
    274 	 * CPU, everything is in order cachewise and we can just
    275 	 * proceed to use it.
    276 	 *
    277 	 * If we are a different thread (i.e. CAS fails), we must go
    278 	 * through a memory barrier to ensure we get a truthful
    279 	 * view of the world.
    280 	 */
    281 
    282 	KASSERT(l->l_target_cpu != NULL);
    283 	rcpu = &rcpu_storage[l->l_target_cpu-&rump_cpus[0]];
    284 	if (atomic_cas_ptr(&rcpu->rcpu_prevlwp, l, RCPULWP_BUSY) == l) {
    285 		if (__predict_true(interlock == rcpu->rcpu_mtx))
    286 			rumpuser_mutex_exit(rcpu->rcpu_mtx);
    287 		SCHED_FASTPATH(rcpu);
    288 		/* jones, you're the man */
    289 		goto fastlane;
    290 	}
    291 
    292 	/*
    293 	 * Else, it's the slowpath for us.  First, determine if we
    294 	 * can migrate.
    295 	 */
    296 	if (ncpu == 1)
    297 		domigrate = false;
    298 	else
    299 		domigrate = true;
    300 
    301 	/* Take lock.  This acts as a load barrier too. */
    302 	if (__predict_true(interlock != rcpu->rcpu_mtx))
    303 		rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    304 
    305 	for (;;) {
    306 		SCHED_SLOWPATH(rcpu);
    307 		old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, RCPULWP_WANTED);
    308 
    309 		/* CPU is free? */
    310 		if (old != RCPULWP_BUSY && old != RCPULWP_WANTED) {
    311 			if (atomic_cas_ptr(&rcpu->rcpu_prevlwp,
    312 			    RCPULWP_WANTED, RCPULWP_BUSY) == RCPULWP_WANTED) {
    313 				break;
    314 			}
    315 		}
    316 
    317 		/*
    318 		 * Do we want to migrate once?
    319 		 * This may need a slightly better algorithm, or we
    320 		 * might cache pingpong eternally for non-frequent
    321 		 * threads.
    322 		 */
    323 		if (domigrate && !bound) {
    324 			domigrate = false;
    325 			SCHED_MIGRATED(rcpu);
    326 			rumpuser_mutex_exit(rcpu->rcpu_mtx);
    327 			rcpu = getnextcpu();
    328 			rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    329 			continue;
    330 		}
    331 
    332 		/* Want CPU, wait until it's released an retry */
    333 		rcpu->rcpu_wanted++;
    334 		rumpuser_cv_wait_nowrap(rcpu->rcpu_cv, rcpu->rcpu_mtx);
    335 		rcpu->rcpu_wanted--;
    336 	}
    337 	rumpuser_mutex_exit(rcpu->rcpu_mtx);
    338 
    339  fastlane:
    340 	l->l_cpu = l->l_target_cpu = rcpu->rcpu_ci;
    341 	l->l_mutex = rcpu->rcpu_ci->ci_schedstate.spc_mutex;
    342 	l->l_ncsw++;
    343 }
    344 
    345 void
    346 rump_unschedule()
    347 {
    348 	struct lwp *l;
    349 
    350 	l = rumpuser_get_curlwp();
    351 	KASSERT(l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex);
    352 	rump_unschedule_cpu(l);
    353 	l->l_mutex = NULL;
    354 
    355 	/*
    356 	 * Check special conditions:
    357 	 *  1) do we need to free the lwp which just unscheduled?
    358 	 *     (locking order: lwp0, cpu)
    359 	 *  2) do we want to clear curlwp for the current host thread
    360 	 */
    361 	if (__predict_false(l->l_flag & LW_WEXIT)) {
    362 		lwp0busy();
    363 
    364 		/* Now that we have lwp0, we can schedule a CPU again */
    365 		rump_schedule_cpu(l);
    366 
    367 		/* switch to lwp0.  this frees the old thread */
    368 		KASSERT(l->l_flag & LW_WEXIT);
    369 		rump_lwproc_switch(&lwp0);
    370 
    371 		/* release lwp0 */
    372 		rump_unschedule_cpu(&lwp0);
    373 		lwp0.l_mutex = NULL;
    374 		lwp0.l_pflag &= ~LP_RUNNING;
    375 		lwp0rele();
    376 		rumpuser_set_curlwp(NULL);
    377 
    378 	} else if (__predict_false(l->l_flag & LW_RUMP_CLEAR)) {
    379 		rumpuser_set_curlwp(NULL);
    380 		l->l_flag &= ~LW_RUMP_CLEAR;
    381 	}
    382 }
    383 
    384 void
    385 rump_unschedule_cpu(struct lwp *l)
    386 {
    387 
    388 	rump_unschedule_cpu_interlock(l, NULL);
    389 }
    390 
    391 void
    392 rump_unschedule_cpu_interlock(struct lwp *l, void *interlock)
    393 {
    394 
    395 	if ((l->l_pflag & LP_INTR) == 0)
    396 		rump_softint_run(l->l_cpu);
    397 	rump_unschedule_cpu1(l, interlock);
    398 }
    399 
    400 void
    401 rump_unschedule_cpu1(struct lwp *l, void *interlock)
    402 {
    403 	struct rumpcpu *rcpu;
    404 	struct cpu_info *ci;
    405 	void *old;
    406 
    407 	ci = l->l_cpu;
    408 	l->l_cpu = NULL;
    409 	rcpu = &rcpu_storage[ci-&rump_cpus[0]];
    410 
    411 	KASSERT(rcpu->rcpu_ci == ci);
    412 
    413 	/*
    414 	 * Make sure all stores are seen before the CPU release.  This
    415 	 * is relevant only in the non-fastpath scheduling case, but
    416 	 * we don't know here if that's going to happen, so need to
    417 	 * expect the worst.
    418 	 */
    419 	membar_exit();
    420 
    421 	/* Release the CPU. */
    422 	old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, l);
    423 
    424 	/* No waiters?  No problems.  We're outta here. */
    425 	if (old == RCPULWP_BUSY) {
    426 		/* Was the scheduler interlock requested? */
    427 		if (__predict_false(interlock == rcpu->rcpu_mtx))
    428 			rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    429 		return;
    430 	}
    431 
    432 	KASSERT(old == RCPULWP_WANTED);
    433 
    434 	/*
    435 	 * Ok, things weren't so snappy.
    436 	 *
    437 	 * Snailpath: take lock and signal anyone waiting for this CPU.
    438 	 */
    439 
    440 	rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    441 	if (rcpu->rcpu_wanted)
    442 		rumpuser_cv_broadcast(rcpu->rcpu_cv);
    443 
    444 	if (__predict_true(interlock != rcpu->rcpu_mtx))
    445 		rumpuser_mutex_exit(rcpu->rcpu_mtx);
    446 }
    447 
    448 /* Give up and retake CPU (perhaps a different one) */
    449 void
    450 yield()
    451 {
    452 	struct lwp *l = curlwp;
    453 	int nlocks;
    454 
    455 	KERNEL_UNLOCK_ALL(l, &nlocks);
    456 	rump_unschedule_cpu(l);
    457 	rump_schedule_cpu(l);
    458 	KERNEL_LOCK(nlocks, l);
    459 }
    460 
    461 void
    462 preempt()
    463 {
    464 
    465 	yield();
    466 }
    467 
    468 bool
    469 kpreempt(uintptr_t where)
    470 {
    471 
    472 	return false;
    473 }
    474 
    475 /*
    476  * There is no kernel thread preemption in rump currently.  But call
    477  * the implementing macros anyway in case they grow some side-effects
    478  * down the road.
    479  */
    480 void
    481 kpreempt_disable(void)
    482 {
    483 
    484 	KPREEMPT_DISABLE(curlwp);
    485 }
    486 
    487 void
    488 kpreempt_enable(void)
    489 {
    490 
    491 	KPREEMPT_ENABLE(curlwp);
    492 }
    493 
    494 void
    495 suspendsched(void)
    496 {
    497 
    498 	/*
    499 	 * Could wait until everyone is out and block further entries,
    500 	 * but skip that for now.
    501 	 */
    502 }
    503 
    504 void
    505 sched_nice(struct proc *p, int level)
    506 {
    507 
    508 	/* nothing to do for now */
    509 }
    510