Home | History | Annotate | Line # | Download | only in rumpkern
scheduler.c revision 1.33
      1 /*      $NetBSD: scheduler.c,v 1.33 2013/05/02 19:15:01 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2010, 2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     16  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     18  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     25  * SUCH DAMAGE.
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: scheduler.c,v 1.33 2013/05/02 19:15:01 pooka Exp $");
     30 
     31 #include <sys/param.h>
     32 #include <sys/atomic.h>
     33 #include <sys/cpu.h>
     34 #include <sys/kmem.h>
     35 #include <sys/mutex.h>
     36 #include <sys/namei.h>
     37 #include <sys/queue.h>
     38 #include <sys/select.h>
     39 #include <sys/systm.h>
     40 
     41 #include <rump/rumpuser.h>
     42 
     43 #include "rump_private.h"
     44 
     45 static struct cpu_info rump_cpus[MAXCPUS];
     46 static struct rumpcpu {
     47 	/* needed in fastpath */
     48 	struct cpu_info *rcpu_ci;
     49 	void *rcpu_prevlwp;
     50 
     51 	/* needed in slowpath */
     52 	struct rumpuser_mtx *rcpu_mtx;
     53 	struct rumpuser_cv *rcpu_cv;
     54 	int rcpu_wanted;
     55 
     56 	/* offset 20 (P=4) or 36 (P=8) here */
     57 
     58 	/*
     59 	 * Some stats.  Not really that necessary, but we should
     60 	 * have room.  Note that these overflow quite fast, so need
     61 	 * to be collected often.
     62 	 */
     63 	unsigned int rcpu_fastpath;
     64 	unsigned int rcpu_slowpath;
     65 	unsigned int rcpu_migrated;
     66 
     67 	/* offset 32 (P=4) or 50 (P=8) */
     68 
     69 	int rcpu_align[0] __aligned(CACHE_LINE_SIZE);
     70 } rcpu_storage[MAXCPUS];
     71 
     72 struct cpu_info *rump_cpu = &rump_cpus[0];
     73 kcpuset_t *kcpuset_attached = NULL;
     74 kcpuset_t *kcpuset_running = NULL;
     75 int ncpu;
     76 
     77 #define RCPULWP_BUSY	((void *)-1)
     78 #define RCPULWP_WANTED	((void *)-2)
     79 
     80 static struct rumpuser_mtx *lwp0mtx;
     81 static struct rumpuser_cv *lwp0cv;
     82 static unsigned nextcpu;
     83 
     84 kmutex_t unruntime_lock; /* unruntime lwp lock.  practically unused */
     85 
     86 static bool lwp0isbusy = false;
     87 
     88 /*
     89  * Keep some stats.
     90  *
     91  * Keeping track of there is not really critical for speed, unless
     92  * stats happen to be on a different cache line (CACHE_LINE_SIZE is
     93  * really just a coarse estimate), so default for the performant case
     94  * (i.e. no stats).
     95  */
     96 #ifdef RUMPSCHED_STATS
     97 #define SCHED_FASTPATH(rcpu) rcpu->rcpu_fastpath++;
     98 #define SCHED_SLOWPATH(rcpu) rcpu->rcpu_slowpath++;
     99 #define SCHED_MIGRATED(rcpu) rcpu->rcpu_migrated++;
    100 #else
    101 #define SCHED_FASTPATH(rcpu)
    102 #define SCHED_SLOWPATH(rcpu)
    103 #define SCHED_MIGRATED(rcpu)
    104 #endif
    105 
    106 struct cpu_info *
    107 cpu_lookup(u_int index)
    108 {
    109 
    110 	return &rump_cpus[index];
    111 }
    112 
    113 static inline struct rumpcpu *
    114 getnextcpu(void)
    115 {
    116 	unsigned newcpu;
    117 
    118 	newcpu = atomic_inc_uint_nv(&nextcpu);
    119 	if (__predict_false(ncpu > UINT_MAX/2))
    120 		atomic_and_uint(&nextcpu, 0);
    121 	newcpu = newcpu % ncpu;
    122 
    123 	return &rcpu_storage[newcpu];
    124 }
    125 
    126 /* this could/should be mi_attach_cpu? */
    127 void
    128 rump_cpus_bootstrap(int *nump)
    129 {
    130 	struct cpu_info *ci;
    131 	int num = *nump;
    132 	int i;
    133 
    134 	if (num > MAXCPUS) {
    135 		aprint_verbose("CPU limit: %d wanted, %d (MAXCPUS) "
    136 		    "available (adjusted)\n", num, MAXCPUS);
    137 		num = MAXCPUS;
    138 	}
    139 
    140 	for (i = 0; i < num; i++) {
    141 		ci = &rump_cpus[i];
    142 		ci->ci_index = i;
    143 	}
    144 
    145 	kcpuset_create(&kcpuset_attached, true);
    146 	kcpuset_create(&kcpuset_running, true);
    147 
    148 	/* attach first cpu for bootstrap */
    149 	rump_cpu_attach(&rump_cpus[0]);
    150 	ncpu = 1;
    151 	*nump = num;
    152 }
    153 
    154 void
    155 rump_scheduler_init(int numcpu)
    156 {
    157 	struct rumpcpu *rcpu;
    158 	struct cpu_info *ci;
    159 	int i;
    160 
    161 	rumpuser_mutex_init(&lwp0mtx, RUMPUSER_MTX_SPIN);
    162 	rumpuser_cv_init(&lwp0cv);
    163 	for (i = 0; i < numcpu; i++) {
    164 		rcpu = &rcpu_storage[i];
    165 		ci = &rump_cpus[i];
    166 		rcpu->rcpu_ci = ci;
    167 		ci->ci_schedstate.spc_mutex =
    168 		    mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    169 		ci->ci_schedstate.spc_flags = SPCF_RUNNING;
    170 		rcpu->rcpu_wanted = 0;
    171 		rumpuser_cv_init(&rcpu->rcpu_cv);
    172 		rumpuser_mutex_init(&rcpu->rcpu_mtx, RUMPUSER_MTX_SPIN);
    173 	}
    174 
    175 	mutex_init(&unruntime_lock, MUTEX_DEFAULT, IPL_SCHED);
    176 }
    177 
    178 /*
    179  * condvar ops using scheduler lock as the rumpuser interlock.
    180  */
    181 void
    182 rump_schedlock_cv_wait(struct rumpuser_cv *cv)
    183 {
    184 	struct lwp *l = curlwp;
    185 	struct rumpcpu *rcpu = &rcpu_storage[l->l_cpu-&rump_cpus[0]];
    186 
    187 	/* mutex will be taken and released in cpu schedule/unschedule */
    188 	rumpuser_cv_wait(cv, rcpu->rcpu_mtx);
    189 }
    190 
    191 int
    192 rump_schedlock_cv_timedwait(struct rumpuser_cv *cv, const struct timespec *ts)
    193 {
    194 	struct lwp *l = curlwp;
    195 	struct rumpcpu *rcpu = &rcpu_storage[l->l_cpu-&rump_cpus[0]];
    196 
    197 	/* mutex will be taken and released in cpu schedule/unschedule */
    198 	return rumpuser_cv_timedwait(cv, rcpu->rcpu_mtx,
    199 	    ts->tv_sec, ts->tv_nsec);
    200 }
    201 
    202 static void
    203 lwp0busy(void)
    204 {
    205 
    206 	/* busy lwp0 */
    207 	KASSERT(curlwp == NULL || curlwp->l_stat != LSONPROC);
    208 	rumpuser_mutex_enter_nowrap(lwp0mtx);
    209 	while (lwp0isbusy)
    210 		rumpuser_cv_wait_nowrap(lwp0cv, lwp0mtx);
    211 	lwp0isbusy = true;
    212 	rumpuser_mutex_exit(lwp0mtx);
    213 }
    214 
    215 static void
    216 lwp0rele(void)
    217 {
    218 
    219 	rumpuser_mutex_enter_nowrap(lwp0mtx);
    220 	KASSERT(lwp0isbusy == true);
    221 	lwp0isbusy = false;
    222 	rumpuser_cv_signal(lwp0cv);
    223 	rumpuser_mutex_exit(lwp0mtx);
    224 }
    225 
    226 /*
    227  * rump_schedule: ensure that the calling host thread has a valid lwp context.
    228  * ie. ensure that curlwp != NULL.  Also, ensure that there
    229  * a 1:1 mapping between the lwp and rump kernel cpu.
    230  */
    231 void
    232 rump_schedule()
    233 {
    234 	struct lwp *l;
    235 
    236 	/*
    237 	 * If there is no dedicated lwp, allocate a temp one and
    238 	 * set it to be free'd upon unschedule().  Use lwp0 context
    239 	 * for reserving the necessary resources.  Don't optimize
    240 	 * for this case -- anyone who cares about performance will
    241 	 * start a real thread.
    242 	 */
    243 	if (__predict_true((l = rumpuser_curlwp()) != NULL)) {
    244 		rump_schedule_cpu(l);
    245 		LWP_CACHE_CREDS(l, l->l_proc);
    246 	} else {
    247 		lwp0busy();
    248 
    249 		/* schedule cpu and use lwp0 */
    250 		rump_schedule_cpu(&lwp0);
    251 		rumpuser_curlwpop(RUMPUSER_LWP_SET, &lwp0);
    252 
    253 		/* allocate thread, switch to it, and release lwp0 */
    254 		l = rump__lwproc_alloclwp(initproc);
    255 		rump_lwproc_switch(l);
    256 		lwp0rele();
    257 
    258 		/*
    259 		 * mark new thread dead-on-unschedule.  this
    260 		 * means that we'll be running with l_refcnt == 0.
    261 		 * relax, it's fine.
    262 		 */
    263 		rump_lwproc_releaselwp();
    264 	}
    265 }
    266 
    267 void
    268 rump_schedule_cpu(struct lwp *l)
    269 {
    270 
    271 	rump_schedule_cpu_interlock(l, NULL);
    272 }
    273 
    274 /*
    275  * Schedule a CPU.  This optimizes for the case where we schedule
    276  * the same thread often, and we have nCPU >= nFrequently-Running-Thread
    277  * (where CPU is virtual rump cpu, not host CPU).
    278  */
    279 void
    280 rump_schedule_cpu_interlock(struct lwp *l, void *interlock)
    281 {
    282 	struct rumpcpu *rcpu;
    283 	void *old;
    284 	bool domigrate;
    285 	bool bound = l->l_pflag & LP_BOUND;
    286 
    287 	l->l_stat = LSRUN;
    288 
    289 	/*
    290 	 * First, try fastpath: if we were the previous user of the
    291 	 * CPU, everything is in order cachewise and we can just
    292 	 * proceed to use it.
    293 	 *
    294 	 * If we are a different thread (i.e. CAS fails), we must go
    295 	 * through a memory barrier to ensure we get a truthful
    296 	 * view of the world.
    297 	 */
    298 
    299 	KASSERT(l->l_target_cpu != NULL);
    300 	rcpu = &rcpu_storage[l->l_target_cpu-&rump_cpus[0]];
    301 	if (atomic_cas_ptr(&rcpu->rcpu_prevlwp, l, RCPULWP_BUSY) == l) {
    302 		if (interlock == rcpu->rcpu_mtx)
    303 			rumpuser_mutex_exit(rcpu->rcpu_mtx);
    304 		SCHED_FASTPATH(rcpu);
    305 		/* jones, you're the man */
    306 		goto fastlane;
    307 	}
    308 
    309 	/*
    310 	 * Else, it's the slowpath for us.  First, determine if we
    311 	 * can migrate.
    312 	 */
    313 	if (ncpu == 1)
    314 		domigrate = false;
    315 	else
    316 		domigrate = true;
    317 
    318 	/* Take lock.  This acts as a load barrier too. */
    319 	if (interlock != rcpu->rcpu_mtx)
    320 		rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    321 
    322 	for (;;) {
    323 		SCHED_SLOWPATH(rcpu);
    324 		old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, RCPULWP_WANTED);
    325 
    326 		/* CPU is free? */
    327 		if (old != RCPULWP_BUSY && old != RCPULWP_WANTED) {
    328 			if (atomic_cas_ptr(&rcpu->rcpu_prevlwp,
    329 			    RCPULWP_WANTED, RCPULWP_BUSY) == RCPULWP_WANTED) {
    330 				break;
    331 			}
    332 		}
    333 
    334 		/*
    335 		 * Do we want to migrate once?
    336 		 * This may need a slightly better algorithm, or we
    337 		 * might cache pingpong eternally for non-frequent
    338 		 * threads.
    339 		 */
    340 		if (domigrate && !bound) {
    341 			domigrate = false;
    342 			SCHED_MIGRATED(rcpu);
    343 			rumpuser_mutex_exit(rcpu->rcpu_mtx);
    344 			rcpu = getnextcpu();
    345 			rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    346 			continue;
    347 		}
    348 
    349 		/* Want CPU, wait until it's released an retry */
    350 		rcpu->rcpu_wanted++;
    351 		rumpuser_cv_wait_nowrap(rcpu->rcpu_cv, rcpu->rcpu_mtx);
    352 		rcpu->rcpu_wanted--;
    353 	}
    354 	rumpuser_mutex_exit(rcpu->rcpu_mtx);
    355 
    356  fastlane:
    357 	l->l_cpu = l->l_target_cpu = rcpu->rcpu_ci;
    358 	l->l_mutex = rcpu->rcpu_ci->ci_schedstate.spc_mutex;
    359 	l->l_ncsw++;
    360 	l->l_stat = LSONPROC;
    361 
    362 	rcpu->rcpu_ci->ci_curlwp = l;
    363 }
    364 
    365 void
    366 rump_unschedule()
    367 {
    368 	struct lwp *l = rumpuser_curlwp();
    369 #ifdef DIAGNOSTIC
    370 	int nlock;
    371 
    372 	KERNEL_UNLOCK_ALL(l, &nlock);
    373 	KASSERT(nlock == 0);
    374 #endif
    375 
    376 	KASSERT(l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex);
    377 	rump_unschedule_cpu(l);
    378 	l->l_mutex = &unruntime_lock;
    379 	l->l_stat = LSSTOP;
    380 
    381 	/*
    382 	 * Check special conditions:
    383 	 *  1) do we need to free the lwp which just unscheduled?
    384 	 *     (locking order: lwp0, cpu)
    385 	 *  2) do we want to clear curlwp for the current host thread
    386 	 */
    387 	if (__predict_false(l->l_flag & LW_WEXIT)) {
    388 		lwp0busy();
    389 
    390 		/* Now that we have lwp0, we can schedule a CPU again */
    391 		rump_schedule_cpu(l);
    392 
    393 		/* switch to lwp0.  this frees the old thread */
    394 		KASSERT(l->l_flag & LW_WEXIT);
    395 		rump_lwproc_switch(&lwp0);
    396 
    397 		/* release lwp0 */
    398 		rump_unschedule_cpu(&lwp0);
    399 		lwp0.l_mutex = &unruntime_lock;
    400 		lwp0.l_pflag &= ~LP_RUNNING;
    401 		lwp0rele();
    402 		rumpuser_curlwpop(RUMPUSER_LWP_SET, NULL);
    403 
    404 	} else if (__predict_false(l->l_flag & LW_RUMP_CLEAR)) {
    405 		rumpuser_curlwpop(RUMPUSER_LWP_SET, NULL);
    406 		l->l_flag &= ~LW_RUMP_CLEAR;
    407 	}
    408 }
    409 
    410 void
    411 rump_unschedule_cpu(struct lwp *l)
    412 {
    413 
    414 	rump_unschedule_cpu_interlock(l, NULL);
    415 }
    416 
    417 void
    418 rump_unschedule_cpu_interlock(struct lwp *l, void *interlock)
    419 {
    420 
    421 	if ((l->l_pflag & LP_INTR) == 0)
    422 		rump_softint_run(l->l_cpu);
    423 	rump_unschedule_cpu1(l, interlock);
    424 }
    425 
    426 void
    427 rump_unschedule_cpu1(struct lwp *l, void *interlock)
    428 {
    429 	struct rumpcpu *rcpu;
    430 	struct cpu_info *ci;
    431 	void *old;
    432 
    433 	ci = l->l_cpu;
    434 	ci->ci_curlwp = NULL;
    435 	rcpu = &rcpu_storage[ci-&rump_cpus[0]];
    436 
    437 	KASSERT(rcpu->rcpu_ci == ci);
    438 
    439 	/*
    440 	 * Make sure all stores are seen before the CPU release.  This
    441 	 * is relevant only in the non-fastpath scheduling case, but
    442 	 * we don't know here if that's going to happen, so need to
    443 	 * expect the worst.
    444 	 *
    445 	 * If the scheduler interlock was requested by the caller, we
    446 	 * need to obtain it before we release the CPU.  Otherwise, we risk a
    447 	 * race condition where another thread is scheduled onto the
    448 	 * rump kernel CPU before our current thread can
    449 	 * grab the interlock.
    450 	 */
    451 	if (interlock == rcpu->rcpu_mtx)
    452 		rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    453 	else
    454 		membar_exit();
    455 
    456 	/* Release the CPU. */
    457 	old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, l);
    458 
    459 	/* No waiters?  No problems.  We're outta here. */
    460 	if (old == RCPULWP_BUSY) {
    461 		return;
    462 	}
    463 
    464 	KASSERT(old == RCPULWP_WANTED);
    465 
    466 	/*
    467 	 * Ok, things weren't so snappy.
    468 	 *
    469 	 * Snailpath: take lock and signal anyone waiting for this CPU.
    470 	 */
    471 
    472 	if (interlock != rcpu->rcpu_mtx)
    473 		rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    474 	if (rcpu->rcpu_wanted)
    475 		rumpuser_cv_broadcast(rcpu->rcpu_cv);
    476 	if (interlock != rcpu->rcpu_mtx)
    477 		rumpuser_mutex_exit(rcpu->rcpu_mtx);
    478 }
    479 
    480 /* Give up and retake CPU (perhaps a different one) */
    481 void
    482 yield()
    483 {
    484 	struct lwp *l = curlwp;
    485 	int nlocks;
    486 
    487 	KERNEL_UNLOCK_ALL(l, &nlocks);
    488 	rump_unschedule_cpu(l);
    489 	rump_schedule_cpu(l);
    490 	KERNEL_LOCK(nlocks, l);
    491 }
    492 
    493 void
    494 preempt()
    495 {
    496 
    497 	yield();
    498 }
    499 
    500 bool
    501 kpreempt(uintptr_t where)
    502 {
    503 
    504 	return false;
    505 }
    506 
    507 /*
    508  * There is no kernel thread preemption in rump currently.  But call
    509  * the implementing macros anyway in case they grow some side-effects
    510  * down the road.
    511  */
    512 void
    513 kpreempt_disable(void)
    514 {
    515 
    516 	//KPREEMPT_DISABLE(curlwp);
    517 }
    518 
    519 void
    520 kpreempt_enable(void)
    521 {
    522 
    523 	//KPREEMPT_ENABLE(curlwp);
    524 }
    525 
    526 void
    527 suspendsched(void)
    528 {
    529 
    530 	/*
    531 	 * Could wait until everyone is out and block further entries,
    532 	 * but skip that for now.
    533 	 */
    534 }
    535 
    536 void
    537 sched_nice(struct proc *p, int level)
    538 {
    539 
    540 	/* nothing to do for now */
    541 }
    542