Home | History | Annotate | Line # | Download | only in rumpkern
scheduler.c revision 1.50
      1 /*      $NetBSD: scheduler.c,v 1.50 2020/02/15 18:12:15 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2010, 2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     16  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     18  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     25  * SUCH DAMAGE.
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: scheduler.c,v 1.50 2020/02/15 18:12:15 ad Exp $");
     30 
     31 #include <sys/param.h>
     32 #include <sys/atomic.h>
     33 #include <sys/cpu.h>
     34 #include <sys/kmem.h>
     35 #include <sys/mutex.h>
     36 #include <sys/namei.h>
     37 #include <sys/queue.h>
     38 #include <sys/select.h>
     39 #include <sys/systm.h>
     40 
     41 #include <rump-sys/kern.h>
     42 
     43 #include <rump/rumpuser.h>
     44 
     45 static struct rumpcpu {
     46 	/* needed in fastpath */
     47 	struct cpu_info *rcpu_ci;
     48 	void *rcpu_prevlwp;
     49 
     50 	/* needed in slowpath */
     51 	struct rumpuser_mtx *rcpu_mtx;
     52 	struct rumpuser_cv *rcpu_cv;
     53 	int rcpu_wanted;
     54 
     55 	/* offset 20 (P=4) or 36 (P=8) here */
     56 
     57 	/*
     58 	 * Some stats.  Not really that necessary, but we should
     59 	 * have room.  Note that these overflow quite fast, so need
     60 	 * to be collected often.
     61 	 */
     62 	unsigned int rcpu_fastpath;
     63 	unsigned int rcpu_slowpath;
     64 	unsigned int rcpu_migrated;
     65 
     66 	/* offset 32 (P=4) or 50 (P=8) */
     67 
     68 	int rcpu_align[0] __aligned(CACHE_LINE_SIZE);
     69 } rcpu_storage[MAXCPUS];
     70 
     71 static inline struct rumpcpu *
     72 cpuinfo_to_rumpcpu(struct cpu_info *ci)
     73 {
     74 
     75 	return &rcpu_storage[cpu_index(ci)];
     76 }
     77 
     78 struct cpu_info rump_bootcpu;
     79 
     80 #define RCPULWP_BUSY	((void *)-1)
     81 #define RCPULWP_WANTED	((void *)-2)
     82 
     83 static struct rumpuser_mtx *lwp0mtx;
     84 static struct rumpuser_cv *lwp0cv;
     85 static unsigned nextcpu;
     86 
     87 kmutex_t unruntime_lock; /* unruntime lwp lock.  practically unused */
     88 
     89 static bool lwp0isbusy = false;
     90 
     91 /*
     92  * Keep some stats.
     93  *
     94  * Keeping track of there is not really critical for speed, unless
     95  * stats happen to be on a different cache line (CACHE_LINE_SIZE is
     96  * really just a coarse estimate), so default for the performant case
     97  * (i.e. no stats).
     98  */
     99 #ifdef RUMPSCHED_STATS
    100 #define SCHED_FASTPATH(rcpu) rcpu->rcpu_fastpath++;
    101 #define SCHED_SLOWPATH(rcpu) rcpu->rcpu_slowpath++;
    102 #define SCHED_MIGRATED(rcpu) rcpu->rcpu_migrated++;
    103 #else
    104 #define SCHED_FASTPATH(rcpu)
    105 #define SCHED_SLOWPATH(rcpu)
    106 #define SCHED_MIGRATED(rcpu)
    107 #endif
    108 
    109 struct cpu_info *
    110 cpu_lookup(u_int index)
    111 {
    112 
    113 	return rcpu_storage[index].rcpu_ci;
    114 }
    115 
    116 static inline struct rumpcpu *
    117 getnextcpu(void)
    118 {
    119 	unsigned newcpu;
    120 
    121 	newcpu = atomic_inc_uint_nv(&nextcpu);
    122 	if (__predict_false(ncpu > UINT_MAX/2))
    123 		atomic_and_uint(&nextcpu, 0);
    124 	newcpu = newcpu % ncpu;
    125 
    126 	return &rcpu_storage[newcpu];
    127 }
    128 
    129 /* this could/should be mi_attach_cpu? */
    130 void
    131 rump_cpus_bootstrap(int *nump)
    132 {
    133 	int num = *nump;
    134 
    135 	if (num > MAXCPUS) {
    136 		aprint_verbose("CPU limit: %d wanted, %d (MAXCPUS) "
    137 		    "available (adjusted)\n", num, MAXCPUS);
    138 		num = MAXCPUS;
    139 	}
    140 
    141 	cpu_setmodel("rumpcore (virtual)");
    142 
    143 	mi_cpu_init();
    144 
    145 	/* attach first cpu for bootstrap */
    146 	rump_cpu_attach(&rump_bootcpu);
    147 	ncpu = 1;
    148 	*nump = num;
    149 }
    150 
    151 void
    152 rump_scheduler_init(int numcpu)
    153 {
    154 	struct rumpcpu *rcpu;
    155 	struct cpu_info *ci;
    156 	int i;
    157 
    158 	rumpuser_mutex_init(&lwp0mtx, RUMPUSER_MTX_SPIN);
    159 	rumpuser_cv_init(&lwp0cv);
    160 	for (i = 0; i < numcpu; i++) {
    161 		if (i == 0) {
    162 			ci = &rump_bootcpu;
    163 		} else {
    164 			ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
    165 			ci->ci_index = i;
    166 		}
    167 
    168 		rcpu = &rcpu_storage[i];
    169 		rcpu->rcpu_ci = ci;
    170 		rcpu->rcpu_wanted = 0;
    171 		rumpuser_cv_init(&rcpu->rcpu_cv);
    172 		rumpuser_mutex_init(&rcpu->rcpu_mtx, RUMPUSER_MTX_SPIN);
    173 
    174 		ci->ci_schedstate.spc_mutex =
    175 		    mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    176 		ci->ci_schedstate.spc_flags = SPCF_RUNNING;
    177 	}
    178 
    179 	mutex_init(&unruntime_lock, MUTEX_DEFAULT, IPL_SCHED);
    180 }
    181 
    182 /*
    183  * condvar ops using scheduler lock as the rumpuser interlock.
    184  */
    185 void
    186 rump_schedlock_cv_wait(struct rumpuser_cv *cv)
    187 {
    188 	struct lwp *l = curlwp;
    189 	struct rumpcpu *rcpu = cpuinfo_to_rumpcpu(l->l_cpu);
    190 
    191 	/* mutex will be taken and released in cpu schedule/unschedule */
    192 	rumpuser_cv_wait(cv, rcpu->rcpu_mtx);
    193 }
    194 
    195 int
    196 rump_schedlock_cv_timedwait(struct rumpuser_cv *cv, const struct timespec *ts)
    197 {
    198 	struct lwp *l = curlwp;
    199 	struct rumpcpu *rcpu = cpuinfo_to_rumpcpu(l->l_cpu);
    200 
    201 	/* mutex will be taken and released in cpu schedule/unschedule */
    202 	return rumpuser_cv_timedwait(cv, rcpu->rcpu_mtx,
    203 	    ts->tv_sec, ts->tv_nsec);
    204 }
    205 
    206 static void
    207 lwp0busy(void)
    208 {
    209 
    210 	/* busy lwp0 */
    211 	KASSERT(curlwp == NULL || curlwp->l_stat != LSONPROC);
    212 	rumpuser_mutex_enter_nowrap(lwp0mtx);
    213 	while (lwp0isbusy)
    214 		rumpuser_cv_wait_nowrap(lwp0cv, lwp0mtx);
    215 	lwp0isbusy = true;
    216 	rumpuser_mutex_exit(lwp0mtx);
    217 }
    218 
    219 static void
    220 lwp0rele(void)
    221 {
    222 
    223 	rumpuser_mutex_enter_nowrap(lwp0mtx);
    224 	KASSERT(lwp0isbusy == true);
    225 	lwp0isbusy = false;
    226 	rumpuser_cv_signal(lwp0cv);
    227 	rumpuser_mutex_exit(lwp0mtx);
    228 }
    229 
    230 /*
    231  * rump_schedule: ensure that the calling host thread has a valid lwp context.
    232  * ie. ensure that curlwp != NULL.  Also, ensure that there
    233  * a 1:1 mapping between the lwp and rump kernel cpu.
    234  */
    235 void
    236 rump_schedule()
    237 {
    238 	struct lwp *l;
    239 
    240 	/*
    241 	 * If there is no dedicated lwp, allocate a temp one and
    242 	 * set it to be free'd upon unschedule().  Use lwp0 context
    243 	 * for reserving the necessary resources.  Don't optimize
    244 	 * for this case -- anyone who cares about performance will
    245 	 * start a real thread.
    246 	 */
    247 	if (__predict_true((l = curlwp) != NULL)) {
    248 		rump_schedule_cpu(l);
    249 		LWP_CACHE_CREDS(l, l->l_proc);
    250 	} else {
    251 		lwp0busy();
    252 
    253 		/* schedule cpu and use lwp0 */
    254 		rump_schedule_cpu(&lwp0);
    255 		rump_lwproc_curlwp_set(&lwp0);
    256 
    257 		/* allocate thread, switch to it, and release lwp0 */
    258 		l = rump__lwproc_alloclwp(initproc);
    259 		rump_lwproc_switch(l);
    260 		lwp0rele();
    261 
    262 		/*
    263 		 * mark new thread dead-on-unschedule.  this
    264 		 * means that we'll be running with l_refcnt == 0.
    265 		 * relax, it's fine.
    266 		 */
    267 		rump_lwproc_releaselwp();
    268 	}
    269 }
    270 
    271 void
    272 rump_schedule_cpu(struct lwp *l)
    273 {
    274 
    275 	rump_schedule_cpu_interlock(l, NULL);
    276 }
    277 
    278 /*
    279  * Schedule a CPU.  This optimizes for the case where we schedule
    280  * the same thread often, and we have nCPU >= nFrequently-Running-Thread
    281  * (where CPU is virtual rump cpu, not host CPU).
    282  */
    283 void
    284 rump_schedule_cpu_interlock(struct lwp *l, void *interlock)
    285 {
    286 	struct rumpcpu *rcpu;
    287 	struct cpu_info *ci;
    288 	void *old;
    289 	bool domigrate;
    290 	bool bound = l->l_pflag & LP_BOUND;
    291 
    292 	l->l_stat = LSRUN;
    293 
    294 	/*
    295 	 * First, try fastpath: if we were the previous user of the
    296 	 * CPU, everything is in order cachewise and we can just
    297 	 * proceed to use it.
    298 	 *
    299 	 * If we are a different thread (i.e. CAS fails), we must go
    300 	 * through a memory barrier to ensure we get a truthful
    301 	 * view of the world.
    302 	 */
    303 
    304 	KASSERT(l->l_target_cpu != NULL);
    305 	rcpu = cpuinfo_to_rumpcpu(l->l_target_cpu);
    306 	if (atomic_cas_ptr(&rcpu->rcpu_prevlwp, l, RCPULWP_BUSY) == l) {
    307 		if (interlock == rcpu->rcpu_mtx)
    308 			rumpuser_mutex_exit(rcpu->rcpu_mtx);
    309 		SCHED_FASTPATH(rcpu);
    310 		/* jones, you're the man */
    311 		goto fastlane;
    312 	}
    313 
    314 	/*
    315 	 * Else, it's the slowpath for us.  First, determine if we
    316 	 * can migrate.
    317 	 */
    318 	if (ncpu == 1)
    319 		domigrate = false;
    320 	else
    321 		domigrate = true;
    322 
    323 	/* Take lock.  This acts as a load barrier too. */
    324 	if (interlock != rcpu->rcpu_mtx)
    325 		rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    326 
    327 	for (;;) {
    328 		SCHED_SLOWPATH(rcpu);
    329 		old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, RCPULWP_WANTED);
    330 
    331 		/* CPU is free? */
    332 		if (old != RCPULWP_BUSY && old != RCPULWP_WANTED) {
    333 			if (atomic_cas_ptr(&rcpu->rcpu_prevlwp,
    334 			    RCPULWP_WANTED, RCPULWP_BUSY) == RCPULWP_WANTED) {
    335 				break;
    336 			}
    337 		}
    338 
    339 		/*
    340 		 * Do we want to migrate once?
    341 		 * This may need a slightly better algorithm, or we
    342 		 * might cache pingpong eternally for non-frequent
    343 		 * threads.
    344 		 */
    345 		if (domigrate && !bound) {
    346 			domigrate = false;
    347 			SCHED_MIGRATED(rcpu);
    348 			rumpuser_mutex_exit(rcpu->rcpu_mtx);
    349 			rcpu = getnextcpu();
    350 			rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    351 			continue;
    352 		}
    353 
    354 		/* Want CPU, wait until it's released an retry */
    355 		rcpu->rcpu_wanted++;
    356 		rumpuser_cv_wait_nowrap(rcpu->rcpu_cv, rcpu->rcpu_mtx);
    357 		rcpu->rcpu_wanted--;
    358 	}
    359 	rumpuser_mutex_exit(rcpu->rcpu_mtx);
    360 
    361  fastlane:
    362 	ci = rcpu->rcpu_ci;
    363 	l->l_cpu = l->l_target_cpu = ci;
    364 	l->l_mutex = rcpu->rcpu_ci->ci_schedstate.spc_mutex;
    365 	l->l_ncsw++;
    366 	l->l_stat = LSONPROC;
    367 
    368 	/*
    369 	 * No interrupts, so ci_curlwp === cpu_onproc.
    370 	 * Okay, we could make an attempt to not set cpu_onproc
    371 	 * in the case that an interrupt is scheduled immediately
    372 	 * after a user proc, but leave that for later.
    373 	 */
    374 	ci->ci_curlwp = ci->ci_onproc = l;
    375 }
    376 
    377 void
    378 rump_unschedule()
    379 {
    380 	struct lwp *l = curlwp;
    381 #ifdef DIAGNOSTIC
    382 	int nlock;
    383 
    384 	KERNEL_UNLOCK_ALL(l, &nlock);
    385 	KASSERT(nlock == 0);
    386 #endif
    387 
    388 	KASSERT(l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex);
    389 	rump_unschedule_cpu(l);
    390 	l->l_mutex = &unruntime_lock;
    391 	l->l_stat = LSSTOP;
    392 
    393 	/*
    394 	 * Check special conditions:
    395 	 *  1) do we need to free the lwp which just unscheduled?
    396 	 *     (locking order: lwp0, cpu)
    397 	 *  2) do we want to clear curlwp for the current host thread
    398 	 */
    399 	if (__predict_false(l->l_flag & LW_WEXIT)) {
    400 		lwp0busy();
    401 
    402 		/* Now that we have lwp0, we can schedule a CPU again */
    403 		rump_schedule_cpu(l);
    404 
    405 		/* switch to lwp0.  this frees the old thread */
    406 		KASSERT(l->l_flag & LW_WEXIT);
    407 		rump_lwproc_switch(&lwp0);
    408 
    409 		/* release lwp0 */
    410 		rump_unschedule_cpu(&lwp0);
    411 		lwp0.l_mutex = &unruntime_lock;
    412 		lwp0.l_pflag &= ~LP_RUNNING;
    413 		lwp0rele();
    414 		rump_lwproc_curlwp_clear(&lwp0);
    415 
    416 	} else if (__predict_false(l->l_flag & LW_RUMP_CLEAR)) {
    417 		rump_lwproc_curlwp_clear(l);
    418 		l->l_flag &= ~LW_RUMP_CLEAR;
    419 	}
    420 }
    421 
    422 void
    423 rump_unschedule_cpu(struct lwp *l)
    424 {
    425 
    426 	rump_unschedule_cpu_interlock(l, NULL);
    427 }
    428 
    429 void
    430 rump_unschedule_cpu_interlock(struct lwp *l, void *interlock)
    431 {
    432 
    433 	if ((l->l_pflag & LP_INTR) == 0)
    434 		rump_softint_run(l->l_cpu);
    435 	rump_unschedule_cpu1(l, interlock);
    436 }
    437 
    438 void
    439 rump_unschedule_cpu1(struct lwp *l, void *interlock)
    440 {
    441 	struct rumpcpu *rcpu;
    442 	struct cpu_info *ci;
    443 	void *old;
    444 
    445 	ci = l->l_cpu;
    446 	ci->ci_curlwp = ci->ci_onproc = NULL;
    447 	rcpu = cpuinfo_to_rumpcpu(ci);
    448 
    449 	KASSERT(rcpu->rcpu_ci == ci);
    450 
    451 	/*
    452 	 * Make sure all stores are seen before the CPU release.  This
    453 	 * is relevant only in the non-fastpath scheduling case, but
    454 	 * we don't know here if that's going to happen, so need to
    455 	 * expect the worst.
    456 	 *
    457 	 * If the scheduler interlock was requested by the caller, we
    458 	 * need to obtain it before we release the CPU.  Otherwise, we risk a
    459 	 * race condition where another thread is scheduled onto the
    460 	 * rump kernel CPU before our current thread can
    461 	 * grab the interlock.
    462 	 */
    463 	if (interlock == rcpu->rcpu_mtx)
    464 		rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    465 	else
    466 		membar_exit();
    467 
    468 	/* Release the CPU. */
    469 	old = atomic_swap_ptr(&rcpu->rcpu_prevlwp, l);
    470 
    471 	/* No waiters?  No problems.  We're outta here. */
    472 	if (old == RCPULWP_BUSY) {
    473 		return;
    474 	}
    475 
    476 	KASSERT(old == RCPULWP_WANTED);
    477 
    478 	/*
    479 	 * Ok, things weren't so snappy.
    480 	 *
    481 	 * Snailpath: take lock and signal anyone waiting for this CPU.
    482 	 */
    483 
    484 	if (interlock != rcpu->rcpu_mtx)
    485 		rumpuser_mutex_enter_nowrap(rcpu->rcpu_mtx);
    486 	if (rcpu->rcpu_wanted)
    487 		rumpuser_cv_broadcast(rcpu->rcpu_cv);
    488 	if (interlock != rcpu->rcpu_mtx)
    489 		rumpuser_mutex_exit(rcpu->rcpu_mtx);
    490 }
    491 
    492 /* Give up and retake CPU (perhaps a different one) */
    493 void
    494 yield()
    495 {
    496 	struct lwp *l = curlwp;
    497 	int nlocks;
    498 
    499 	KERNEL_UNLOCK_ALL(l, &nlocks);
    500 	rump_unschedule_cpu(l);
    501 	rump_schedule_cpu(l);
    502 	KERNEL_LOCK(nlocks, l);
    503 }
    504 
    505 void
    506 preempt()
    507 {
    508 
    509 	yield();
    510 }
    511 
    512 bool
    513 kpreempt(uintptr_t where)
    514 {
    515 
    516 	return false;
    517 }
    518 
    519 /*
    520  * There is no kernel thread preemption in rump currently.  But call
    521  * the implementing macros anyway in case they grow some side-effects
    522  * down the road.
    523  */
    524 void
    525 kpreempt_disable(void)
    526 {
    527 
    528 	KPREEMPT_DISABLE(curlwp);
    529 }
    530 
    531 void
    532 kpreempt_enable(void)
    533 {
    534 
    535 	KPREEMPT_ENABLE(curlwp);
    536 }
    537 
    538 bool
    539 kpreempt_disabled(void)
    540 {
    541 #if 0
    542 	const lwp_t *l = curlwp;
    543 
    544 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    545 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    546 #endif
    547 	/* XXX: emulate cpu_kpreempt_disabled() */
    548 	return true;
    549 }
    550 
    551 void
    552 suspendsched(void)
    553 {
    554 
    555 	/*
    556 	 * Could wait until everyone is out and block further entries,
    557 	 * but skip that for now.
    558 	 */
    559 }
    560 
    561 void
    562 sched_nice(struct proc *p, int level)
    563 {
    564 
    565 	/* nothing to do for now */
    566 }
    567 
    568 void
    569 setrunnable(struct lwp *l)
    570 {
    571 
    572 	sched_enqueue(l);
    573 }
    574 
    575 void
    576 sched_enqueue(struct lwp *l)
    577 {
    578 
    579 	rump_thread_allow(l);
    580 }
    581 
    582 void
    583 sched_resched_cpu(struct cpu_info *ci, pri_t pri, bool unlock)
    584 {
    585 
    586 }
    587 
    588 void
    589 sched_resched_lwp(struct lwp *l, bool unlock)
    590 {
    591 
    592 }
    593 
    594 void
    595 sched_dequeue(struct lwp *l)
    596 {
    597 
    598 	panic("sched_dequeue not implemented");
    599 }
    600