Home | History | Annotate | Line # | Download | only in rumpkern
      1  1.197    martin /*	$NetBSD: vm.c,v 1.197 2023/09/24 09:33:26 martin Exp $	*/
      2    1.1     pooka 
      3    1.1     pooka /*
      4  1.114     pooka  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5    1.1     pooka  *
      6   1.76     pooka  * Development of this software was supported by
      7   1.76     pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8   1.76     pooka  * The Helsinki University of Technology.
      9    1.1     pooka  *
     10    1.1     pooka  * Redistribution and use in source and binary forms, with or without
     11    1.1     pooka  * modification, are permitted provided that the following conditions
     12    1.1     pooka  * are met:
     13    1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     14    1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     15    1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     17    1.1     pooka  *    documentation and/or other materials provided with the distribution.
     18    1.1     pooka  *
     19    1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20    1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21    1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22    1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23    1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24    1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25    1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26    1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27    1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28    1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29    1.1     pooka  * SUCH DAMAGE.
     30    1.1     pooka  */
     31    1.1     pooka 
     32    1.1     pooka /*
     33   1.88     pooka  * Virtual memory emulation routines.
     34    1.1     pooka  */
     35    1.1     pooka 
     36    1.1     pooka /*
     37    1.5     pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38    1.1     pooka  * for each page.  phys_addr would fit the job description better,
     39    1.1     pooka  * except that it will create unnecessary lossage on some platforms
     40    1.1     pooka  * due to not being a pointer type.
     41    1.1     pooka  */
     42    1.1     pooka 
     43   1.48     pooka #include <sys/cdefs.h>
     44  1.197    martin __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.197 2023/09/24 09:33:26 martin Exp $");
     45   1.48     pooka 
     46    1.1     pooka #include <sys/param.h>
     47   1.40     pooka #include <sys/atomic.h>
     48   1.80     pooka #include <sys/buf.h>
     49   1.80     pooka #include <sys/kernel.h>
     50   1.67     pooka #include <sys/kmem.h>
     51  1.121      para #include <sys/vmem.h>
     52   1.69     pooka #include <sys/mman.h>
     53    1.1     pooka #include <sys/null.h>
     54    1.1     pooka #include <sys/vnode.h>
     55  1.175        ad #include <sys/radixtree.h>
     56  1.194  riastrad #include <sys/module.h>
     57    1.1     pooka 
     58   1.34     pooka #include <machine/pmap.h>
     59   1.34     pooka 
     60  1.193  riastrad #if defined(__i386__) || defined(__x86_64__)
     61  1.193  riastrad /*
     62  1.193  riastrad  * This file abuses the pmap abstraction to create its own statically
     63  1.193  riastrad  * allocated struct pmap object, even though it can't do anything
     64  1.193  riastrad  * useful with such a thing from userland.  On x86 the struct pmap
     65  1.193  riastrad  * definition is private, so we have to go to extra effort to abuse it
     66  1.193  riastrad  * there.  This should be fixed -- all of the struct pmap definitions
     67  1.193  riastrad  * should be private, and then rump can furnish its own fake struct
     68  1.193  riastrad  * pmap without clashing with anything.
     69  1.193  riastrad  */
     70  1.193  riastrad #include <machine/pmap_private.h>
     71  1.193  riastrad #endif
     72  1.193  riastrad 
     73    1.1     pooka #include <uvm/uvm.h>
     74   1.56     pooka #include <uvm/uvm_ddb.h>
     75   1.88     pooka #include <uvm/uvm_pdpolicy.h>
     76    1.1     pooka #include <uvm/uvm_prot.h>
     77   1.58        he #include <uvm/uvm_readahead.h>
     78  1.160       chs #include <uvm/uvm_device.h>
     79    1.1     pooka 
     80  1.169     pooka #include <rump-sys/kern.h>
     81  1.169     pooka #include <rump-sys/vfs.h>
     82  1.169     pooka 
     83  1.169     pooka #include <rump/rumpuser.h>
     84    1.1     pooka 
     85  1.174        ad kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
     86   1.88     pooka kmutex_t uvm_swap_data_lock;
     87   1.25        ad 
     88    1.1     pooka struct uvmexp uvmexp;
     89    1.7     pooka struct uvm uvm;
     90    1.1     pooka 
     91  1.112     pooka #ifdef __uvmexp_pagesize
     92  1.123    martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
     93  1.123    martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
     94  1.123    martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
     95  1.112     pooka #endif
     96  1.112     pooka 
     97  1.121      para static struct vm_map kernel_map_store;
     98  1.121      para struct vm_map *kernel_map = &kernel_map_store;
     99  1.121      para 
    100  1.130     pooka static struct vm_map module_map_store;
    101  1.130     pooka 
    102  1.164     pooka static struct pmap pmap_kernel;
    103  1.164     pooka struct pmap rump_pmap_local;
    104  1.164     pooka struct pmap *const kernel_pmap_ptr = &pmap_kernel;
    105  1.164     pooka 
    106  1.121      para vmem_t *kmem_arena;
    107  1.121      para vmem_t *kmem_va_arena;
    108   1.35     pooka 
    109   1.80     pooka static unsigned int pdaemon_waiters;
    110   1.80     pooka static kmutex_t pdaemonmtx;
    111   1.80     pooka static kcondvar_t pdaemoncv, oomwait;
    112   1.80     pooka 
    113  1.162     pooka /* all local non-proc0 processes share this vmspace */
    114  1.162     pooka struct vmspace *rump_vmspace_local;
    115  1.162     pooka 
    116   1.91     pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    117  1.147     pooka static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    118   1.84     pooka static unsigned long curphysmem;
    119   1.92     pooka static unsigned long dddlim;		/* 90% of memory limit used */
    120   1.92     pooka #define NEED_PAGEDAEMON() \
    121   1.92     pooka     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    122  1.158     pooka #define PDRESERVE (2*MAXPHYS)
    123   1.92     pooka 
    124   1.92     pooka /*
    125   1.92     pooka  * Try to free two pages worth of pages from objects.
    126  1.192    andvar  * If this successfully frees a full page cache page, we'll
    127  1.120      yamt  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    128   1.92     pooka  */
    129   1.92     pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    130   1.92     pooka 
    131   1.92     pooka /*
    132   1.92     pooka  * Keep a list of least recently used pages.  Since the only way a
    133   1.92     pooka  * rump kernel can "access" a page is via lookup, we put the page
    134   1.92     pooka  * at the back of queue every time a lookup for it is done.  If the
    135   1.92     pooka  * page is in front of this global queue and we're short of memory,
    136   1.92     pooka  * it's a candidate for pageout.
    137   1.92     pooka  */
    138   1.92     pooka static struct pglist vmpage_lruqueue;
    139   1.92     pooka static unsigned vmpage_onqueue;
    140   1.84     pooka 
    141    1.1     pooka /*
    142    1.1     pooka  * vm pages
    143    1.1     pooka  */
    144    1.1     pooka 
    145   1.90     pooka static int
    146   1.90     pooka pgctor(void *arg, void *obj, int flags)
    147   1.90     pooka {
    148   1.90     pooka 	struct vm_page *pg = obj;
    149   1.90     pooka 
    150   1.90     pooka 	memset(pg, 0, sizeof(*pg));
    151  1.103     pooka 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    152  1.103     pooka 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    153  1.103     pooka 	return pg->uanon == NULL;
    154   1.90     pooka }
    155   1.90     pooka 
    156   1.90     pooka static void
    157   1.90     pooka pgdtor(void *arg, void *obj)
    158   1.90     pooka {
    159   1.90     pooka 	struct vm_page *pg = obj;
    160   1.90     pooka 
    161   1.90     pooka 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    162   1.90     pooka }
    163   1.90     pooka 
    164   1.90     pooka static struct pool_cache pagecache;
    165   1.90     pooka 
    166  1.195  riastrad /* stub for UVM_OBJ_IS_VNODE */
    167  1.195  riastrad struct uvm_pagerops rump_uvm_vnodeops;
    168  1.195  riastrad __weak_alias(uvm_vnodeops,rump_uvm_vnodeops);
    169  1.195  riastrad 
    170   1.92     pooka /*
    171   1.92     pooka  * Called with the object locked.  We don't support anons.
    172   1.92     pooka  */
    173    1.1     pooka struct vm_page *
    174   1.76     pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    175   1.76     pooka 	int flags, int strat, int free_list)
    176    1.1     pooka {
    177    1.1     pooka 	struct vm_page *pg;
    178    1.1     pooka 
    179  1.184        ad 	KASSERT(uobj && rw_write_held(uobj->vmobjlock));
    180   1.92     pooka 	KASSERT(anon == NULL);
    181   1.92     pooka 
    182  1.103     pooka 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    183  1.104     pooka 	if (__predict_false(pg == NULL)) {
    184  1.103     pooka 		return NULL;
    185  1.104     pooka 	}
    186  1.181        ad 	mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
    187  1.103     pooka 
    188    1.1     pooka 	pg->offset = off;
    189    1.5     pooka 	pg->uobject = uobj;
    190    1.1     pooka 
    191  1.175        ad 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
    192  1.175        ad 	    pg) != 0) {
    193  1.175        ad 		pool_cache_put(&pagecache, pg);
    194  1.175        ad 		return NULL;
    195  1.175        ad 	}
    196  1.185        ad 
    197  1.188        ad 	if (UVM_OBJ_IS_VNODE(uobj)) {
    198  1.188        ad 		if (uobj->uo_npages == 0) {
    199  1.188        ad 			struct vnode *vp = (struct vnode *)uobj;
    200  1.188        ad 			mutex_enter(vp->v_interlock);
    201  1.188        ad 			vp->v_iflag |= VI_PAGES;
    202  1.188        ad 			mutex_exit(vp->v_interlock);
    203  1.188        ad 		}
    204  1.188        ad 		pg->flags |= PG_FILE;
    205  1.188        ad 	}
    206  1.189        ad 	uobj->uo_npages++;
    207  1.188        ad 
    208  1.185        ad 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    209  1.185        ad 	if (flags & UVM_PGA_ZERO) {
    210  1.185        ad 		uvm_pagezero(pg);
    211  1.185        ad 	}
    212   1.89     pooka 
    213   1.92     pooka 	/*
    214   1.93     pooka 	 * Don't put anons on the LRU page queue.  We can't flush them
    215   1.93     pooka 	 * (there's no concept of swap in a rump kernel), so no reason
    216   1.93     pooka 	 * to bother with them.
    217   1.92     pooka 	 */
    218   1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    219   1.92     pooka 		atomic_inc_uint(&vmpage_onqueue);
    220  1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
    221   1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    222  1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
    223  1.188        ad 	} else {
    224  1.188        ad 		pg->flags |= PG_AOBJ;
    225   1.92     pooka 	}
    226   1.92     pooka 
    227    1.1     pooka 	return pg;
    228    1.1     pooka }
    229    1.1     pooka 
    230   1.21     pooka /*
    231   1.21     pooka  * Release a page.
    232   1.21     pooka  *
    233   1.22     pooka  * Called with the vm object locked.
    234   1.21     pooka  */
    235    1.1     pooka void
    236   1.22     pooka uvm_pagefree(struct vm_page *pg)
    237    1.1     pooka {
    238    1.5     pooka 	struct uvm_object *uobj = pg->uobject;
    239  1.175        ad 	struct vm_page *pg2 __unused;
    240    1.1     pooka 
    241  1.184        ad 	KASSERT(rw_write_held(uobj->vmobjlock));
    242   1.92     pooka 
    243  1.186        ad 	mutex_enter(&pg->interlock);
    244  1.188        ad 	uvm_pagewakeup(pg);
    245  1.186        ad 	mutex_exit(&pg->interlock);
    246   1.22     pooka 
    247   1.59     pooka 	uobj->uo_npages--;
    248  1.175        ad 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    249  1.175        ad 	KASSERT(pg == pg2);
    250   1.92     pooka 
    251   1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    252  1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
    253   1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    254  1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
    255   1.92     pooka 		atomic_dec_uint(&vmpage_onqueue);
    256   1.92     pooka 	}
    257   1.92     pooka 
    258  1.185        ad 	if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
    259  1.185        ad 		struct vnode *vp = (struct vnode *)uobj;
    260  1.185        ad 		mutex_enter(vp->v_interlock);
    261  1.185        ad 		vp->v_iflag &= ~VI_PAGES;
    262  1.185        ad 		mutex_exit(vp->v_interlock);
    263  1.185        ad 	}
    264  1.185        ad 
    265  1.181        ad 	mutex_destroy(&pg->interlock);
    266   1.90     pooka 	pool_cache_put(&pagecache, pg);
    267    1.1     pooka }
    268    1.1     pooka 
    269   1.15     pooka void
    270   1.61     pooka uvm_pagezero(struct vm_page *pg)
    271   1.15     pooka {
    272   1.15     pooka 
    273  1.183        ad 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    274   1.61     pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    275   1.15     pooka }
    276   1.15     pooka 
    277    1.1     pooka /*
    278  1.178        ad  * uvm_page_owner_locked_p: return true if object associated with page is
    279  1.136      yamt  * locked.  this is a weak check for runtime assertions only.
    280  1.136      yamt  */
    281  1.136      yamt 
    282  1.136      yamt bool
    283  1.184        ad uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
    284  1.136      yamt {
    285  1.136      yamt 
    286  1.184        ad 	if (exclusive)
    287  1.184        ad 		return rw_write_held(pg->uobject->vmobjlock);
    288  1.184        ad 	else
    289  1.184        ad 		return rw_lock_held(pg->uobject->vmobjlock);
    290  1.136      yamt }
    291  1.136      yamt 
    292  1.136      yamt /*
    293    1.1     pooka  * Misc routines
    294    1.1     pooka  */
    295    1.1     pooka 
    296   1.61     pooka static kmutex_t pagermtx;
    297   1.61     pooka 
    298    1.1     pooka void
    299   1.79     pooka uvm_init(void)
    300    1.1     pooka {
    301   1.84     pooka 	char buf[64];
    302   1.84     pooka 
    303  1.141     pooka 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    304  1.105     pooka 		unsigned long tmp;
    305  1.105     pooka 		char *ep;
    306  1.105     pooka 		int mult;
    307  1.105     pooka 
    308  1.109     pooka 		tmp = strtoul(buf, &ep, 10);
    309  1.105     pooka 		if (strlen(ep) > 1)
    310  1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    311  1.105     pooka 
    312  1.105     pooka 		/* mini-dehumanize-number */
    313  1.105     pooka 		mult = 1;
    314  1.105     pooka 		switch (*ep) {
    315  1.105     pooka 		case 'k':
    316  1.105     pooka 			mult = 1024;
    317  1.105     pooka 			break;
    318  1.105     pooka 		case 'm':
    319  1.105     pooka 			mult = 1024*1024;
    320  1.105     pooka 			break;
    321  1.105     pooka 		case 'g':
    322  1.105     pooka 			mult = 1024*1024*1024;
    323  1.105     pooka 			break;
    324  1.105     pooka 		case 0:
    325  1.105     pooka 			break;
    326  1.105     pooka 		default:
    327  1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    328  1.105     pooka 		}
    329  1.105     pooka 		rump_physmemlimit = tmp * mult;
    330  1.105     pooka 
    331  1.105     pooka 		if (rump_physmemlimit / mult != tmp)
    332  1.105     pooka 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    333  1.147     pooka 
    334  1.147     pooka 		/* reserve some memory for the pager */
    335  1.158     pooka 		if (rump_physmemlimit <= PDRESERVE)
    336  1.158     pooka 			panic("uvm_init: system reserves %d bytes of mem, "
    337  1.158     pooka 			    "only %lu bytes given",
    338  1.158     pooka 			    PDRESERVE, rump_physmemlimit);
    339  1.147     pooka 		pdlimit = rump_physmemlimit;
    340  1.158     pooka 		rump_physmemlimit -= PDRESERVE;
    341  1.105     pooka 
    342  1.157     pooka 		if (pdlimit < 1024*1024)
    343  1.157     pooka 			printf("uvm_init: WARNING: <1MB RAM limit, "
    344  1.157     pooka 			    "hope you know what you're doing\n");
    345  1.157     pooka 
    346   1.84     pooka #define HUMANIZE_BYTES 9
    347   1.84     pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    348   1.91     pooka 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    349   1.84     pooka #undef HUMANIZE_BYTES
    350   1.92     pooka 		dddlim = 9 * (rump_physmemlimit / 10);
    351   1.84     pooka 	} else {
    352   1.84     pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    353   1.84     pooka 	}
    354   1.84     pooka 	aprint_verbose("total memory = %s\n", buf);
    355    1.1     pooka 
    356   1.92     pooka 	TAILQ_INIT(&vmpage_lruqueue);
    357   1.92     pooka 
    358  1.157     pooka 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    359  1.157     pooka 		uvmexp.npages = physmem;
    360  1.157     pooka 	} else {
    361  1.157     pooka 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    362  1.158     pooka 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    363  1.157     pooka 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    364  1.157     pooka 	}
    365  1.157     pooka 	/*
    366  1.157     pooka 	 * uvmexp.free is not used internally or updated.  The reason is
    367  1.157     pooka 	 * that the memory hypercall allocator is allowed to allocate
    368  1.157     pooka 	 * non-page sized chunks.  We use a byte count in curphysmem
    369  1.157     pooka 	 * instead.
    370  1.157     pooka 	 */
    371  1.157     pooka 	uvmexp.free = uvmexp.npages;
    372   1.21     pooka 
    373  1.112     pooka #ifndef __uvmexp_pagesize
    374  1.112     pooka 	uvmexp.pagesize = PAGE_SIZE;
    375  1.112     pooka 	uvmexp.pagemask = PAGE_MASK;
    376  1.112     pooka 	uvmexp.pageshift = PAGE_SHIFT;
    377  1.112     pooka #else
    378  1.197    martin 	uvmexp.pagesize = rumpuser_getpagesize();
    379  1.197    martin 	uvmexp.pagemask = uvmexp.pagesize-1;
    380  1.197    martin 	uvmexp.pageshift = ffs(uvmexp.pagesize)-1;
    381  1.112     pooka #endif
    382  1.112     pooka 
    383  1.140     pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    384  1.174        ad 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
    385  1.140     pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    386  1.188        ad 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    387   1.35     pooka 
    388   1.80     pooka 	cv_init(&pdaemoncv, "pdaemon");
    389   1.80     pooka 	cv_init(&oomwait, "oomwait");
    390   1.80     pooka 
    391  1.130     pooka 	module_map = &module_map_store;
    392  1.130     pooka 
    393   1.50     pooka 	kernel_map->pmap = pmap_kernel();
    394  1.121      para 
    395  1.122     njoly 	pool_subsystem_init();
    396  1.128     pooka 
    397  1.121      para 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    398  1.121      para 	    NULL, NULL, NULL,
    399  1.121      para 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    400  1.121      para 
    401  1.135      para 	vmem_subsystem_init(kmem_arena);
    402  1.121      para 
    403  1.121      para 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    404  1.121      para 	    vmem_alloc, vmem_free, kmem_arena,
    405  1.124      para 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    406   1.90     pooka 
    407   1.90     pooka 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    408   1.90     pooka 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    409  1.162     pooka 
    410  1.175        ad 	radix_tree_init();
    411  1.175        ad 
    412  1.162     pooka 	/* create vmspace used by local clients */
    413  1.162     pooka 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    414  1.164     pooka 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    415    1.1     pooka }
    416    1.1     pooka 
    417   1.83     pooka void
    418  1.145    martin uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    419  1.145    martin     bool topdown)
    420   1.83     pooka {
    421   1.83     pooka 
    422  1.162     pooka 	vm->vm_map.pmap = pmap;
    423   1.83     pooka 	vm->vm_refcnt = 1;
    424   1.83     pooka }
    425    1.1     pooka 
    426  1.173       nat int
    427  1.173       nat uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
    428  1.173       nat     bool new_pageable, int lockflags)
    429  1.173       nat {
    430  1.173       nat 	return 0;
    431  1.173       nat }
    432  1.173       nat 
    433    1.1     pooka void
    434    1.7     pooka uvm_pagewire(struct vm_page *pg)
    435    1.7     pooka {
    436    1.7     pooka 
    437    1.7     pooka 	/* nada */
    438    1.7     pooka }
    439    1.7     pooka 
    440    1.7     pooka void
    441    1.7     pooka uvm_pageunwire(struct vm_page *pg)
    442    1.7     pooka {
    443    1.7     pooka 
    444    1.7     pooka 	/* nada */
    445    1.7     pooka }
    446    1.7     pooka 
    447  1.177        ad int
    448  1.190        ad uvm_availmem(bool cached)
    449  1.177        ad {
    450  1.177        ad 
    451  1.177        ad 	return uvmexp.free;
    452  1.177        ad }
    453  1.177        ad 
    454  1.180        ad void
    455  1.180        ad uvm_pagelock(struct vm_page *pg)
    456  1.180        ad {
    457  1.180        ad 
    458  1.180        ad 	mutex_enter(&pg->interlock);
    459  1.180        ad }
    460  1.180        ad 
    461  1.180        ad void
    462  1.180        ad uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
    463  1.180        ad {
    464  1.180        ad 
    465  1.180        ad 	if (pg1 < pg2) {
    466  1.180        ad 		mutex_enter(&pg1->interlock);
    467  1.180        ad 		mutex_enter(&pg2->interlock);
    468  1.180        ad 	} else {
    469  1.180        ad 		mutex_enter(&pg2->interlock);
    470  1.180        ad 		mutex_enter(&pg1->interlock);
    471  1.180        ad 	}
    472  1.180        ad }
    473  1.180        ad 
    474  1.180        ad void
    475  1.180        ad uvm_pageunlock(struct vm_page *pg)
    476  1.180        ad {
    477  1.180        ad 
    478  1.180        ad 	mutex_exit(&pg->interlock);
    479  1.180        ad }
    480  1.180        ad 
    481  1.180        ad void
    482  1.180        ad uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
    483  1.180        ad {
    484  1.180        ad 
    485  1.180        ad 	mutex_exit(&pg1->interlock);
    486  1.180        ad 	mutex_exit(&pg2->interlock);
    487  1.180        ad }
    488  1.180        ad 
    489   1.83     pooka /* where's your schmonz now? */
    490   1.83     pooka #define PUNLIMIT(a)	\
    491   1.83     pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    492   1.83     pooka void
    493   1.83     pooka uvm_init_limits(struct proc *p)
    494   1.83     pooka {
    495   1.83     pooka 
    496  1.155     pooka #ifndef DFLSSIZ
    497  1.155     pooka #define DFLSSIZ (16*1024*1024)
    498  1.155     pooka #endif
    499  1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    500  1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    501   1.83     pooka 	PUNLIMIT(RLIMIT_DATA);
    502   1.83     pooka 	PUNLIMIT(RLIMIT_RSS);
    503   1.83     pooka 	PUNLIMIT(RLIMIT_AS);
    504   1.83     pooka 	/* nice, cascade */
    505   1.83     pooka }
    506   1.83     pooka #undef PUNLIMIT
    507   1.83     pooka 
    508   1.69     pooka /*
    509   1.69     pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    510   1.69     pooka  */
    511   1.49     pooka int
    512  1.160       chs uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    513   1.49     pooka {
    514   1.69     pooka 	int error;
    515   1.49     pooka 
    516   1.69     pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    517  1.160       chs 	if (*addrp != NULL)
    518   1.69     pooka 		panic("uvm_mmap() variant unsupported");
    519   1.69     pooka 
    520  1.106     pooka 	if (RUMP_LOCALPROC_P(curproc)) {
    521  1.160       chs 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    522   1.98     pooka 	} else {
    523  1.166     pooka 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
    524  1.160       chs 		    size, addrp);
    525   1.98     pooka 	}
    526  1.160       chs 	return error;
    527  1.160       chs }
    528   1.69     pooka 
    529  1.160       chs /*
    530  1.160       chs  * Stubs for things referenced from vfs_vnode.c but not used.
    531  1.160       chs  */
    532  1.160       chs const dev_t zerodev;
    533  1.160       chs 
    534  1.160       chs struct uvm_object *
    535  1.160       chs udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    536  1.160       chs {
    537  1.160       chs 	return NULL;
    538   1.49     pooka }
    539   1.49     pooka 
    540   1.61     pooka struct pagerinfo {
    541   1.61     pooka 	vaddr_t pgr_kva;
    542   1.61     pooka 	int pgr_npages;
    543   1.61     pooka 	struct vm_page **pgr_pgs;
    544   1.61     pooka 	bool pgr_read;
    545   1.61     pooka 
    546   1.61     pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    547   1.61     pooka };
    548   1.61     pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    549   1.61     pooka 
    550   1.61     pooka /*
    551   1.61     pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    552  1.159     pooka  * and copy page contents there.  The reason for copying instead of
    553  1.159     pooka  * mapping is simple: we do not assume we are running on virtual
    554  1.159     pooka  * memory.  Even if we could emulate virtual memory in some envs
    555  1.159     pooka  * such as userspace, copying is much faster than trying to awkardly
    556  1.159     pooka  * cope with remapping (see "Design and Implementation" pp.95-98).
    557  1.159     pooka  * The downside of the approach is that the pager requires MAXPHYS
    558  1.159     pooka  * free memory to perform paging, but short of virtual memory or
    559  1.159     pooka  * making the pager do I/O in page-sized chunks we cannot do much
    560  1.159     pooka  * about that.
    561   1.61     pooka  */
    562    1.7     pooka vaddr_t
    563   1.61     pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    564    1.7     pooka {
    565   1.61     pooka 	struct pagerinfo *pgri;
    566   1.61     pooka 	vaddr_t curkva;
    567   1.61     pooka 	int i;
    568   1.61     pooka 
    569   1.61     pooka 	/* allocate structures */
    570   1.61     pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    571   1.61     pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    572   1.61     pooka 	pgri->pgr_npages = npages;
    573   1.61     pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    574   1.61     pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    575   1.61     pooka 
    576   1.61     pooka 	/* copy contents to "mapped" memory */
    577   1.61     pooka 	for (i = 0, curkva = pgri->pgr_kva;
    578   1.61     pooka 	    i < npages;
    579   1.61     pooka 	    i++, curkva += PAGE_SIZE) {
    580   1.61     pooka 		/*
    581   1.61     pooka 		 * We need to copy the previous contents of the pages to
    582   1.61     pooka 		 * the window even if we are reading from the
    583   1.61     pooka 		 * device, since the device might not fill the contents of
    584   1.61     pooka 		 * the full mapped range and we will end up corrupting
    585   1.61     pooka 		 * data when we unmap the window.
    586   1.61     pooka 		 */
    587   1.61     pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    588   1.61     pooka 		pgri->pgr_pgs[i] = pgs[i];
    589   1.61     pooka 	}
    590   1.61     pooka 
    591   1.61     pooka 	mutex_enter(&pagermtx);
    592   1.61     pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    593   1.61     pooka 	mutex_exit(&pagermtx);
    594    1.7     pooka 
    595   1.61     pooka 	return pgri->pgr_kva;
    596    1.7     pooka }
    597    1.7     pooka 
    598   1.61     pooka /*
    599   1.61     pooka  * map out the pager window.  return contents from VA to page storage
    600   1.61     pooka  * and free structures.
    601   1.61     pooka  *
    602   1.61     pooka  * Note: does not currently support partial frees
    603   1.61     pooka  */
    604   1.61     pooka void
    605   1.61     pooka uvm_pagermapout(vaddr_t kva, int npages)
    606    1.7     pooka {
    607   1.61     pooka 	struct pagerinfo *pgri;
    608   1.61     pooka 	vaddr_t curkva;
    609   1.61     pooka 	int i;
    610    1.7     pooka 
    611   1.61     pooka 	mutex_enter(&pagermtx);
    612   1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    613   1.61     pooka 		if (pgri->pgr_kva == kva)
    614   1.61     pooka 			break;
    615   1.61     pooka 	}
    616   1.61     pooka 	KASSERT(pgri);
    617   1.61     pooka 	if (pgri->pgr_npages != npages)
    618   1.61     pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    619   1.61     pooka 	LIST_REMOVE(pgri, pgr_entries);
    620   1.61     pooka 	mutex_exit(&pagermtx);
    621   1.61     pooka 
    622   1.61     pooka 	if (pgri->pgr_read) {
    623   1.61     pooka 		for (i = 0, curkva = pgri->pgr_kva;
    624   1.61     pooka 		    i < pgri->pgr_npages;
    625   1.61     pooka 		    i++, curkva += PAGE_SIZE) {
    626   1.61     pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    627   1.21     pooka 		}
    628   1.21     pooka 	}
    629   1.10     pooka 
    630   1.61     pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    631   1.61     pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    632   1.61     pooka 	kmem_free(pgri, sizeof(*pgri));
    633    1.7     pooka }
    634    1.7     pooka 
    635   1.61     pooka /*
    636   1.61     pooka  * convert va in pager window to page structure.
    637   1.61     pooka  * XXX: how expensive is this (global lock, list traversal)?
    638   1.61     pooka  */
    639   1.14     pooka struct vm_page *
    640   1.14     pooka uvm_pageratop(vaddr_t va)
    641   1.14     pooka {
    642   1.61     pooka 	struct pagerinfo *pgri;
    643   1.61     pooka 	struct vm_page *pg = NULL;
    644   1.61     pooka 	int i;
    645   1.14     pooka 
    646   1.61     pooka 	mutex_enter(&pagermtx);
    647   1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    648   1.61     pooka 		if (pgri->pgr_kva <= va
    649   1.61     pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    650   1.21     pooka 			break;
    651   1.61     pooka 	}
    652   1.61     pooka 	if (pgri) {
    653   1.61     pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    654   1.61     pooka 		pg = pgri->pgr_pgs[i];
    655   1.61     pooka 	}
    656   1.61     pooka 	mutex_exit(&pagermtx);
    657   1.21     pooka 
    658   1.61     pooka 	return pg;
    659   1.61     pooka }
    660   1.15     pooka 
    661   1.97     pooka /*
    662   1.97     pooka  * Called with the vm object locked.
    663   1.97     pooka  *
    664   1.97     pooka  * Put vnode object pages at the end of the access queue to indicate
    665   1.97     pooka  * they have been recently accessed and should not be immediate
    666   1.97     pooka  * candidates for pageout.  Do not do this for lookups done by
    667   1.97     pooka  * the pagedaemon to mimic pmap_kentered mappings which don't track
    668   1.97     pooka  * access information.
    669   1.97     pooka  */
    670   1.61     pooka struct vm_page *
    671   1.61     pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    672   1.61     pooka {
    673   1.92     pooka 	struct vm_page *pg;
    674   1.97     pooka 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    675   1.61     pooka 
    676  1.175        ad 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    677   1.97     pooka 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    678  1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
    679   1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    680   1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    681  1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
    682   1.92     pooka 	}
    683   1.92     pooka 
    684   1.92     pooka 	return pg;
    685   1.14     pooka }
    686   1.14     pooka 
    687    1.7     pooka void
    688   1.22     pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    689   1.22     pooka {
    690   1.22     pooka 	struct vm_page *pg;
    691  1.191       chs 	int i, pageout_done;
    692   1.22     pooka 
    693   1.94     pooka 	KASSERT(npgs > 0);
    694   1.94     pooka 
    695  1.191       chs 	pageout_done = 0;
    696   1.22     pooka 	for (i = 0; i < npgs; i++) {
    697   1.22     pooka 		pg = pgs[i];
    698  1.191       chs 		if (pg == NULL || pg == PGO_DONTCARE) {
    699   1.22     pooka 			continue;
    700  1.191       chs 		}
    701   1.22     pooka 
    702  1.191       chs #if 0
    703  1.191       chs 		KASSERT(uvm_page_owner_locked_p(pg, true));
    704  1.191       chs #else
    705  1.191       chs 		/*
    706  1.191       chs 		 * uvm_page_owner_locked_p() is not available in rump,
    707  1.191       chs 		 * and rump doesn't support amaps anyway.
    708  1.191       chs 		 */
    709  1.191       chs 		KASSERT(rw_write_held(pg->uobject->vmobjlock));
    710  1.191       chs #endif
    711   1.22     pooka 		KASSERT(pg->flags & PG_BUSY);
    712  1.191       chs 
    713  1.191       chs 		if (pg->flags & PG_PAGEOUT) {
    714  1.191       chs 			pg->flags &= ~PG_PAGEOUT;
    715  1.191       chs 			pg->flags |= PG_RELEASED;
    716  1.191       chs 			pageout_done++;
    717  1.191       chs 			atomic_inc_uint(&uvmexp.pdfreed);
    718  1.191       chs 		}
    719  1.186        ad 		if (pg->flags & PG_RELEASED) {
    720  1.191       chs 			KASSERT(pg->uobject != NULL ||
    721  1.191       chs 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
    722  1.191       chs 			pg->flags &= ~PG_RELEASED;
    723   1.36     pooka 			uvm_pagefree(pg);
    724  1.186        ad 		} else {
    725  1.191       chs 			KASSERT((pg->flags & PG_FAKE) == 0);
    726  1.187        ad 			pg->flags &= ~PG_BUSY;
    727  1.186        ad 			uvm_pagelock(pg);
    728  1.187        ad 			uvm_pagewakeup(pg);
    729  1.186        ad 			uvm_pageunlock(pg);
    730  1.191       chs 			UVM_PAGE_OWN(pg, NULL);
    731  1.186        ad 		}
    732  1.186        ad 	}
    733  1.191       chs 	if (pageout_done != 0) {
    734  1.191       chs 		uvm_pageout_done(pageout_done);
    735  1.191       chs 	}
    736  1.186        ad }
    737  1.186        ad 
    738  1.186        ad void
    739  1.186        ad uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
    740  1.186        ad {
    741  1.186        ad 
    742  1.186        ad 	KASSERT(rw_lock_held(lock));
    743  1.186        ad 	KASSERT((pg->flags & PG_BUSY) != 0);
    744  1.186        ad 
    745  1.186        ad 	mutex_enter(&pg->interlock);
    746  1.186        ad 	pg->pqflags |= PQ_WANTED;
    747  1.186        ad 	rw_exit(lock);
    748  1.186        ad 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
    749  1.186        ad }
    750  1.186        ad 
    751  1.186        ad void
    752  1.187        ad uvm_pagewakeup(struct vm_page *pg)
    753  1.186        ad {
    754  1.186        ad 
    755  1.186        ad 	KASSERT(mutex_owned(&pg->interlock));
    756  1.186        ad 
    757  1.186        ad 	if ((pg->pqflags & PQ_WANTED) != 0) {
    758  1.186        ad 		pg->pqflags &= ~PQ_WANTED;
    759  1.186        ad 		wakeup(pg);
    760   1.22     pooka 	}
    761   1.22     pooka }
    762   1.22     pooka 
    763   1.22     pooka void
    764    1.7     pooka uvm_estimatepageable(int *active, int *inactive)
    765    1.7     pooka {
    766    1.7     pooka 
    767   1.19     pooka 	/* XXX: guessing game */
    768   1.19     pooka 	*active = 1024;
    769   1.19     pooka 	*inactive = 1024;
    770    1.7     pooka }
    771    1.7     pooka 
    772   1.41     pooka int
    773   1.41     pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    774   1.41     pooka {
    775   1.41     pooka 
    776   1.41     pooka 	panic("%s: unimplemented", __func__);
    777   1.41     pooka }
    778   1.41     pooka 
    779   1.41     pooka void
    780   1.41     pooka uvm_unloan(void *v, int npages, int flags)
    781   1.41     pooka {
    782   1.41     pooka 
    783   1.41     pooka 	panic("%s: unimplemented", __func__);
    784   1.41     pooka }
    785   1.41     pooka 
    786   1.43     pooka int
    787   1.43     pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    788   1.43     pooka 	struct vm_page **opp)
    789   1.43     pooka {
    790   1.43     pooka 
    791   1.72     pooka 	return EBUSY;
    792   1.43     pooka }
    793   1.43     pooka 
    794  1.116       mrg struct vm_page *
    795  1.116       mrg uvm_loanbreak(struct vm_page *pg)
    796  1.116       mrg {
    797  1.116       mrg 
    798  1.116       mrg 	panic("%s: unimplemented", __func__);
    799  1.116       mrg }
    800  1.116       mrg 
    801  1.116       mrg void
    802  1.116       mrg ubc_purge(struct uvm_object *uobj)
    803  1.116       mrg {
    804  1.116       mrg 
    805  1.116       mrg }
    806  1.116       mrg 
    807   1.68     pooka vaddr_t
    808  1.168    martin uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
    809   1.68     pooka {
    810   1.68     pooka 
    811   1.68     pooka 	return 0;
    812   1.68     pooka }
    813   1.68     pooka 
    814   1.71     pooka int
    815   1.71     pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    816   1.71     pooka 	vm_prot_t prot, bool set_max)
    817   1.71     pooka {
    818   1.71     pooka 
    819   1.71     pooka 	return EOPNOTSUPP;
    820   1.71     pooka }
    821   1.71     pooka 
    822  1.171    martin int
    823  1.171    martin uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
    824  1.171    martin     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
    825  1.171    martin     uvm_flag_t flags)
    826  1.171    martin {
    827  1.171    martin 
    828  1.172    martin 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
    829  1.172    martin 	return *startp != 0 ? 0 : ENOMEM;
    830  1.172    martin }
    831  1.172    martin 
    832  1.172    martin void
    833  1.172    martin uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
    834  1.172    martin {
    835  1.172    martin 
    836  1.172    martin 	rump_hyperfree((void*)start, end-start);
    837  1.171    martin }
    838  1.171    martin 
    839  1.171    martin 
    840    1.9     pooka /*
    841   1.12     pooka  * UVM km
    842   1.12     pooka  */
    843   1.12     pooka 
    844   1.12     pooka vaddr_t
    845   1.12     pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    846   1.12     pooka {
    847   1.82     pooka 	void *rv, *desired = NULL;
    848   1.50     pooka 	int alignbit, error;
    849   1.50     pooka 
    850   1.82     pooka #ifdef __x86_64__
    851   1.82     pooka 	/*
    852   1.82     pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    853   1.82     pooka 	 * This is because NetBSD kernel modules are compiled
    854   1.82     pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    855   1.82     pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    856   1.82     pooka 	 * anywhere except the lowest or highest 2GB, it will not
    857   1.82     pooka 	 * work.  Since userspace does not have access to the highest
    858   1.82     pooka 	 * 2GB, use the lowest 2GB.
    859   1.82     pooka 	 *
    860   1.82     pooka 	 * Note: this assumes the rump kernel resides in
    861   1.82     pooka 	 * the lowest 2GB as well.
    862   1.82     pooka 	 *
    863   1.82     pooka 	 * Note2: yes, it's a quick hack, but since this the only
    864   1.82     pooka 	 * place where we care about the map we're allocating from,
    865   1.82     pooka 	 * just use a simple "if" instead of coming up with a fancy
    866   1.82     pooka 	 * generic solution.
    867   1.82     pooka 	 */
    868   1.82     pooka 	if (map == module_map) {
    869   1.82     pooka 		desired = (void *)(0x80000000 - size);
    870   1.82     pooka 	}
    871   1.82     pooka #endif
    872   1.82     pooka 
    873  1.130     pooka 	if (__predict_false(map == module_map)) {
    874  1.130     pooka 		alignbit = 0;
    875  1.130     pooka 		if (align) {
    876  1.130     pooka 			alignbit = ffs(align)-1;
    877  1.130     pooka 		}
    878  1.142     pooka 		error = rumpuser_anonmmap(desired, size, alignbit,
    879  1.142     pooka 		    flags & UVM_KMF_EXEC, &rv);
    880  1.130     pooka 	} else {
    881  1.142     pooka 		error = rumpuser_malloc(size, align, &rv);
    882   1.50     pooka 	}
    883   1.50     pooka 
    884  1.142     pooka 	if (error) {
    885   1.50     pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    886   1.50     pooka 			return 0;
    887   1.50     pooka 		else
    888   1.50     pooka 			panic("uvm_km_alloc failed");
    889   1.50     pooka 	}
    890   1.12     pooka 
    891   1.50     pooka 	if (flags & UVM_KMF_ZERO)
    892   1.12     pooka 		memset(rv, 0, size);
    893   1.12     pooka 
    894   1.12     pooka 	return (vaddr_t)rv;
    895   1.12     pooka }
    896   1.12     pooka 
    897   1.12     pooka void
    898   1.12     pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    899   1.12     pooka {
    900   1.12     pooka 
    901  1.130     pooka 	if (__predict_false(map == module_map))
    902  1.130     pooka 		rumpuser_unmap((void *)vaddr, size);
    903  1.130     pooka 	else
    904  1.138     pooka 		rumpuser_free((void *)vaddr, size);
    905   1.12     pooka }
    906   1.12     pooka 
    907  1.170  christos int
    908  1.170  christos uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
    909  1.170  christos {
    910  1.170  christos 	return 0;
    911  1.170  christos }
    912  1.170  christos 
    913   1.12     pooka struct vm_map *
    914   1.12     pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    915  1.121      para 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    916   1.12     pooka {
    917   1.12     pooka 
    918   1.12     pooka 	return (struct vm_map *)417416;
    919   1.12     pooka }
    920   1.40     pooka 
    921  1.121      para int
    922  1.121      para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    923  1.121      para     vmem_addr_t *addr)
    924   1.40     pooka {
    925  1.121      para 	vaddr_t va;
    926  1.121      para 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    927  1.121      para 	    (flags & VM_SLEEP), "kmalloc");
    928   1.40     pooka 
    929  1.121      para 	if (va) {
    930  1.121      para 		*addr = va;
    931  1.121      para 		return 0;
    932  1.121      para 	} else {
    933  1.121      para 		return ENOMEM;
    934  1.121      para 	}
    935   1.40     pooka }
    936   1.40     pooka 
    937   1.40     pooka void
    938  1.121      para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    939   1.40     pooka {
    940   1.40     pooka 
    941  1.121      para 	rump_hyperfree((void *)addr, size);
    942   1.74     pooka }
    943   1.74     pooka 
    944   1.57     pooka /*
    945  1.102     pooka  * VM space locking routines.  We don't really have to do anything,
    946  1.102     pooka  * since the pages are always "wired" (both local and remote processes).
    947   1.57     pooka  */
    948   1.57     pooka int
    949   1.57     pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    950   1.57     pooka {
    951   1.57     pooka 
    952   1.57     pooka 	return 0;
    953   1.57     pooka }
    954   1.57     pooka 
    955   1.57     pooka void
    956   1.57     pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    957   1.57     pooka {
    958   1.57     pooka 
    959   1.57     pooka }
    960   1.57     pooka 
    961  1.102     pooka /*
    962  1.102     pooka  * For the local case the buffer mappers don't need to do anything.
    963  1.102     pooka  * For the remote case we need to reserve space and copy data in or
    964  1.102     pooka  * out, depending on B_READ/B_WRITE.
    965  1.102     pooka  */
    966  1.111     pooka int
    967   1.57     pooka vmapbuf(struct buf *bp, vsize_t len)
    968   1.57     pooka {
    969  1.111     pooka 	int error = 0;
    970   1.57     pooka 
    971   1.57     pooka 	bp->b_saveaddr = bp->b_data;
    972  1.102     pooka 
    973  1.102     pooka 	/* remote case */
    974  1.106     pooka 	if (!RUMP_LOCALPROC_P(curproc)) {
    975  1.102     pooka 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    976  1.102     pooka 		if (BUF_ISWRITE(bp)) {
    977  1.111     pooka 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    978  1.111     pooka 			if (error) {
    979  1.111     pooka 				rump_hyperfree(bp->b_data, len);
    980  1.111     pooka 				bp->b_data = bp->b_saveaddr;
    981  1.111     pooka 				bp->b_saveaddr = 0;
    982  1.111     pooka 			}
    983  1.102     pooka 		}
    984  1.102     pooka 	}
    985  1.111     pooka 
    986  1.111     pooka 	return error;
    987   1.57     pooka }
    988   1.57     pooka 
    989   1.57     pooka void
    990   1.57     pooka vunmapbuf(struct buf *bp, vsize_t len)
    991   1.57     pooka {
    992   1.57     pooka 
    993  1.102     pooka 	/* remote case */
    994  1.106     pooka 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    995  1.102     pooka 		if (BUF_ISREAD(bp)) {
    996  1.110     pooka 			bp->b_error = copyout_proc(bp->b_proc,
    997  1.102     pooka 			    bp->b_data, bp->b_saveaddr, len);
    998  1.102     pooka 		}
    999  1.102     pooka 		rump_hyperfree(bp->b_data, len);
   1000  1.102     pooka 	}
   1001  1.102     pooka 
   1002   1.57     pooka 	bp->b_data = bp->b_saveaddr;
   1003   1.57     pooka 	bp->b_saveaddr = 0;
   1004   1.57     pooka }
   1005   1.61     pooka 
   1006   1.61     pooka void
   1007   1.83     pooka uvmspace_addref(struct vmspace *vm)
   1008   1.83     pooka {
   1009   1.83     pooka 
   1010   1.83     pooka 	/*
   1011  1.103     pooka 	 * No dynamically allocated vmspaces exist.
   1012   1.83     pooka 	 */
   1013   1.83     pooka }
   1014   1.83     pooka 
   1015   1.83     pooka void
   1016   1.66     pooka uvmspace_free(struct vmspace *vm)
   1017   1.66     pooka {
   1018   1.66     pooka 
   1019   1.66     pooka 	/* nothing for now */
   1020   1.66     pooka }
   1021   1.66     pooka 
   1022   1.61     pooka /*
   1023   1.61     pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
   1024   1.61     pooka  */
   1025   1.61     pooka 
   1026   1.61     pooka void
   1027   1.61     pooka uvm_pageactivate(struct vm_page *pg)
   1028   1.61     pooka {
   1029   1.61     pooka 
   1030   1.61     pooka 	/* nada */
   1031   1.61     pooka }
   1032   1.61     pooka 
   1033   1.61     pooka void
   1034   1.61     pooka uvm_pagedeactivate(struct vm_page *pg)
   1035   1.61     pooka {
   1036   1.61     pooka 
   1037   1.61     pooka 	/* nada */
   1038   1.61     pooka }
   1039   1.61     pooka 
   1040   1.61     pooka void
   1041   1.61     pooka uvm_pagedequeue(struct vm_page *pg)
   1042   1.61     pooka {
   1043   1.61     pooka 
   1044   1.61     pooka 	/* nada*/
   1045   1.61     pooka }
   1046   1.61     pooka 
   1047   1.61     pooka void
   1048   1.61     pooka uvm_pageenqueue(struct vm_page *pg)
   1049   1.61     pooka {
   1050   1.61     pooka 
   1051   1.61     pooka 	/* nada */
   1052   1.61     pooka }
   1053   1.80     pooka 
   1054   1.88     pooka void
   1055   1.88     pooka uvmpdpol_anfree(struct vm_anon *an)
   1056   1.88     pooka {
   1057   1.88     pooka 
   1058   1.88     pooka 	/* nada */
   1059   1.88     pooka }
   1060   1.88     pooka 
   1061   1.80     pooka /*
   1062   1.99  uebayasi  * Physical address accessors.
   1063   1.99  uebayasi  */
   1064   1.99  uebayasi 
   1065   1.99  uebayasi struct vm_page *
   1066   1.99  uebayasi uvm_phys_to_vm_page(paddr_t pa)
   1067   1.99  uebayasi {
   1068   1.99  uebayasi 
   1069   1.99  uebayasi 	return NULL;
   1070   1.99  uebayasi }
   1071   1.99  uebayasi 
   1072   1.99  uebayasi paddr_t
   1073   1.99  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
   1074   1.99  uebayasi {
   1075   1.99  uebayasi 
   1076   1.99  uebayasi 	return 0;
   1077   1.99  uebayasi }
   1078   1.99  uebayasi 
   1079  1.153     pooka vaddr_t
   1080  1.153     pooka uvm_uarea_alloc(void)
   1081  1.153     pooka {
   1082  1.153     pooka 
   1083  1.153     pooka 	/* non-zero */
   1084  1.153     pooka 	return (vaddr_t)11;
   1085  1.153     pooka }
   1086  1.153     pooka 
   1087  1.153     pooka void
   1088  1.153     pooka uvm_uarea_free(vaddr_t uarea)
   1089  1.153     pooka {
   1090  1.153     pooka 
   1091  1.153     pooka 	/* nata, so creamy */
   1092  1.153     pooka }
   1093  1.153     pooka 
   1094   1.99  uebayasi /*
   1095   1.80     pooka  * Routines related to the Page Baroness.
   1096   1.80     pooka  */
   1097   1.80     pooka 
   1098   1.80     pooka void
   1099   1.80     pooka uvm_wait(const char *msg)
   1100   1.80     pooka {
   1101   1.80     pooka 
   1102   1.80     pooka 	if (__predict_false(rump_threads == 0))
   1103   1.80     pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
   1104   1.80     pooka 
   1105  1.147     pooka 	if (curlwp == uvm.pagedaemon_lwp) {
   1106  1.147     pooka 		/* is it possible for us to later get memory? */
   1107  1.147     pooka 		if (!uvmexp.paging)
   1108  1.147     pooka 			panic("pagedaemon out of memory");
   1109  1.147     pooka 	}
   1110  1.147     pooka 
   1111   1.80     pooka 	mutex_enter(&pdaemonmtx);
   1112   1.80     pooka 	pdaemon_waiters++;
   1113   1.80     pooka 	cv_signal(&pdaemoncv);
   1114   1.80     pooka 	cv_wait(&oomwait, &pdaemonmtx);
   1115   1.80     pooka 	mutex_exit(&pdaemonmtx);
   1116   1.80     pooka }
   1117   1.80     pooka 
   1118   1.80     pooka void
   1119   1.80     pooka uvm_pageout_start(int npages)
   1120   1.80     pooka {
   1121   1.80     pooka 
   1122  1.113     pooka 	mutex_enter(&pdaemonmtx);
   1123  1.113     pooka 	uvmexp.paging += npages;
   1124  1.113     pooka 	mutex_exit(&pdaemonmtx);
   1125   1.80     pooka }
   1126   1.80     pooka 
   1127   1.80     pooka void
   1128   1.80     pooka uvm_pageout_done(int npages)
   1129   1.80     pooka {
   1130   1.80     pooka 
   1131  1.113     pooka 	if (!npages)
   1132  1.113     pooka 		return;
   1133  1.113     pooka 
   1134  1.113     pooka 	mutex_enter(&pdaemonmtx);
   1135  1.113     pooka 	KASSERT(uvmexp.paging >= npages);
   1136  1.113     pooka 	uvmexp.paging -= npages;
   1137  1.113     pooka 
   1138  1.113     pooka 	if (pdaemon_waiters) {
   1139  1.113     pooka 		pdaemon_waiters = 0;
   1140  1.113     pooka 		cv_broadcast(&oomwait);
   1141  1.113     pooka 	}
   1142  1.113     pooka 	mutex_exit(&pdaemonmtx);
   1143   1.80     pooka }
   1144   1.80     pooka 
   1145   1.95     pooka static bool
   1146  1.184        ad processpage(struct vm_page *pg)
   1147   1.95     pooka {
   1148   1.95     pooka 	struct uvm_object *uobj;
   1149   1.95     pooka 
   1150   1.95     pooka 	uobj = pg->uobject;
   1151  1.184        ad 	if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
   1152   1.95     pooka 		if ((pg->flags & PG_BUSY) == 0) {
   1153  1.174        ad 			mutex_exit(&vmpage_lruqueue_lock);
   1154   1.95     pooka 			uobj->pgops->pgo_put(uobj, pg->offset,
   1155   1.95     pooka 			    pg->offset + PAGE_SIZE,
   1156   1.95     pooka 			    PGO_CLEANIT|PGO_FREE);
   1157  1.184        ad 			KASSERT(!rw_write_held(uobj->vmobjlock));
   1158   1.95     pooka 			return true;
   1159   1.95     pooka 		} else {
   1160  1.184        ad 			rw_exit(uobj->vmobjlock);
   1161  1.104     pooka 		}
   1162   1.95     pooka 	}
   1163   1.95     pooka 
   1164   1.95     pooka 	return false;
   1165   1.95     pooka }
   1166   1.95     pooka 
   1167   1.80     pooka /*
   1168   1.92     pooka  * The Diabolical pageDaemon Director (DDD).
   1169  1.113     pooka  *
   1170  1.113     pooka  * This routine can always use better heuristics.
   1171   1.80     pooka  */
   1172   1.80     pooka void
   1173   1.80     pooka uvm_pageout(void *arg)
   1174   1.80     pooka {
   1175   1.92     pooka 	struct vm_page *pg;
   1176   1.80     pooka 	struct pool *pp, *pp_first;
   1177   1.92     pooka 	int cleaned, skip, skipped;
   1178  1.113     pooka 	bool succ;
   1179   1.80     pooka 
   1180   1.80     pooka 	mutex_enter(&pdaemonmtx);
   1181   1.80     pooka 	for (;;) {
   1182  1.113     pooka 		if (pdaemon_waiters) {
   1183  1.113     pooka 			pdaemon_waiters = 0;
   1184  1.113     pooka 			cv_broadcast(&oomwait);
   1185  1.104     pooka 		}
   1186  1.188        ad 		if (!NEED_PAGEDAEMON()) {
   1187  1.188        ad 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1188  1.188        ad 			cv_wait(&pdaemoncv, &pdaemonmtx);
   1189  1.188        ad 		}
   1190  1.113     pooka 		uvmexp.pdwoke++;
   1191  1.113     pooka 
   1192   1.92     pooka 		/* tell the world that we are hungry */
   1193   1.80     pooka 		kernel_map->flags |= VM_MAP_WANTVA;
   1194   1.80     pooka 		mutex_exit(&pdaemonmtx);
   1195   1.80     pooka 
   1196   1.92     pooka 		/*
   1197   1.92     pooka 		 * step one: reclaim the page cache.  this should give
   1198   1.92     pooka 		 * us the biggest earnings since whole pages are released
   1199   1.92     pooka 		 * into backing memory.
   1200   1.92     pooka 		 */
   1201   1.92     pooka 		pool_cache_reclaim(&pagecache);
   1202   1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1203   1.92     pooka 			mutex_enter(&pdaemonmtx);
   1204   1.92     pooka 			continue;
   1205   1.92     pooka 		}
   1206   1.92     pooka 
   1207   1.92     pooka 		/*
   1208   1.92     pooka 		 * Ok, so that didn't help.  Next, try to hunt memory
   1209   1.92     pooka 		 * by pushing out vnode pages.  The pages might contain
   1210   1.92     pooka 		 * useful cached data, but we need the memory.
   1211   1.92     pooka 		 */
   1212   1.92     pooka 		cleaned = 0;
   1213   1.92     pooka 		skip = 0;
   1214   1.92     pooka  again:
   1215  1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
   1216   1.92     pooka 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1217   1.92     pooka 			skipped = 0;
   1218   1.92     pooka 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1219   1.92     pooka 
   1220   1.92     pooka 				/*
   1221   1.92     pooka 				 * skip over pages we _might_ have tried
   1222   1.92     pooka 				 * to handle earlier.  they might not be
   1223   1.92     pooka 				 * exactly the same ones, but I'm not too
   1224   1.92     pooka 				 * concerned.
   1225   1.92     pooka 				 */
   1226   1.92     pooka 				while (skipped++ < skip)
   1227   1.92     pooka 					continue;
   1228   1.92     pooka 
   1229  1.184        ad 				if (processpage(pg)) {
   1230   1.95     pooka 					cleaned++;
   1231   1.95     pooka 					goto again;
   1232   1.92     pooka 				}
   1233   1.92     pooka 
   1234   1.92     pooka 				skip++;
   1235   1.92     pooka 			}
   1236   1.92     pooka 			break;
   1237   1.92     pooka 		}
   1238  1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
   1239   1.92     pooka 
   1240   1.92     pooka 		/*
   1241   1.92     pooka 		 * And of course we need to reclaim the page cache
   1242   1.92     pooka 		 * again to actually release memory.
   1243   1.92     pooka 		 */
   1244   1.92     pooka 		pool_cache_reclaim(&pagecache);
   1245   1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1246   1.92     pooka 			mutex_enter(&pdaemonmtx);
   1247   1.92     pooka 			continue;
   1248   1.92     pooka 		}
   1249   1.92     pooka 
   1250   1.92     pooka 		/*
   1251   1.92     pooka 		 * And then drain the pools.  Wipe them out ... all of them.
   1252   1.92     pooka 		 */
   1253  1.127       jym 		for (pp_first = NULL;;) {
   1254  1.156     pooka 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1255   1.92     pooka 
   1256  1.127       jym 			succ = pool_drain(&pp);
   1257  1.127       jym 			if (succ || pp == pp_first)
   1258   1.80     pooka 				break;
   1259  1.127       jym 
   1260  1.127       jym 			if (pp_first == NULL)
   1261  1.127       jym 				pp_first = pp;
   1262   1.80     pooka 		}
   1263   1.92     pooka 
   1264   1.92     pooka 		/*
   1265   1.92     pooka 		 * Need to use PYEC on our bag of tricks.
   1266   1.92     pooka 		 * Unfortunately, the wife just borrowed it.
   1267   1.92     pooka 		 */
   1268   1.80     pooka 
   1269  1.113     pooka 		mutex_enter(&pdaemonmtx);
   1270  1.113     pooka 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1271  1.113     pooka 		    uvmexp.paging == 0) {
   1272  1.167     pooka 			kpause("pddlk", false, hz, &pdaemonmtx);
   1273   1.80     pooka 		}
   1274   1.80     pooka 	}
   1275   1.80     pooka 
   1276   1.80     pooka 	panic("you can swap out any time you like, but you can never leave");
   1277   1.80     pooka }
   1278   1.80     pooka 
   1279   1.80     pooka void
   1280   1.80     pooka uvm_kick_pdaemon()
   1281   1.80     pooka {
   1282   1.80     pooka 
   1283   1.92     pooka 	/*
   1284   1.92     pooka 	 * Wake up the diabolical pagedaemon director if we are over
   1285   1.92     pooka 	 * 90% of the memory limit.  This is a complete and utter
   1286   1.92     pooka 	 * stetson-harrison decision which you are allowed to finetune.
   1287   1.92     pooka 	 * Don't bother locking.  If we have some unflushed caches,
   1288   1.92     pooka 	 * other waker-uppers will deal with the issue.
   1289   1.92     pooka 	 */
   1290   1.92     pooka 	if (NEED_PAGEDAEMON()) {
   1291   1.92     pooka 		cv_signal(&pdaemoncv);
   1292   1.92     pooka 	}
   1293   1.80     pooka }
   1294   1.80     pooka 
   1295   1.80     pooka void *
   1296   1.80     pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1297   1.80     pooka {
   1298  1.150     pooka 	const unsigned long thelimit =
   1299  1.150     pooka 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1300   1.84     pooka 	unsigned long newmem;
   1301   1.80     pooka 	void *rv;
   1302  1.142     pooka 	int error;
   1303   1.80     pooka 
   1304   1.92     pooka 	uvm_kick_pdaemon(); /* ouch */
   1305   1.92     pooka 
   1306   1.84     pooka 	/* first we must be within the limit */
   1307   1.84     pooka  limitagain:
   1308  1.150     pooka 	if (thelimit != RUMPMEM_UNLIMITED) {
   1309   1.84     pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1310  1.150     pooka 		if (newmem > thelimit) {
   1311   1.84     pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1312  1.103     pooka 			if (!waitok) {
   1313   1.84     pooka 				return NULL;
   1314  1.103     pooka 			}
   1315   1.84     pooka 			uvm_wait(wmsg);
   1316   1.84     pooka 			goto limitagain;
   1317   1.84     pooka 		}
   1318   1.84     pooka 	}
   1319   1.84     pooka 
   1320   1.84     pooka 	/* second, we must get something from the backend */
   1321   1.80     pooka  again:
   1322  1.142     pooka 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1323  1.142     pooka 	if (__predict_false(error && waitok)) {
   1324   1.80     pooka 		uvm_wait(wmsg);
   1325   1.80     pooka 		goto again;
   1326   1.80     pooka 	}
   1327   1.80     pooka 
   1328   1.80     pooka 	return rv;
   1329   1.80     pooka }
   1330   1.84     pooka 
   1331   1.84     pooka void
   1332   1.84     pooka rump_hyperfree(void *what, size_t size)
   1333   1.84     pooka {
   1334   1.84     pooka 
   1335   1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1336   1.84     pooka 		atomic_add_long(&curphysmem, -size);
   1337   1.84     pooka 	}
   1338  1.138     pooka 	rumpuser_free(what, size);
   1339   1.84     pooka }
   1340  1.196  riastrad 
   1341  1.196  riastrad /*
   1342  1.196  riastrad  * UBC
   1343  1.196  riastrad  */
   1344  1.196  riastrad 
   1345  1.196  riastrad #define PAGERFLAGS (PGO_SYNCIO | PGO_NOBLOCKALLOC | PGO_NOTIMESTAMP)
   1346  1.196  riastrad 
   1347  1.196  riastrad void
   1348  1.196  riastrad ubc_zerorange(struct uvm_object *uobj, off_t off, size_t len, int flags)
   1349  1.196  riastrad {
   1350  1.196  riastrad 	struct vm_page **pgs;
   1351  1.196  riastrad 	int maxpages = MIN(32, round_page(len) >> PAGE_SHIFT);
   1352  1.196  riastrad 	int npages, i;
   1353  1.196  riastrad 
   1354  1.196  riastrad 	if (maxpages == 0)
   1355  1.196  riastrad 		return;
   1356  1.196  riastrad 
   1357  1.196  riastrad 	pgs = kmem_alloc(maxpages * sizeof(pgs), KM_SLEEP);
   1358  1.196  riastrad 	rw_enter(uobj->vmobjlock, RW_WRITER);
   1359  1.196  riastrad 	while (len) {
   1360  1.196  riastrad 		npages = MIN(maxpages, round_page(len) >> PAGE_SHIFT);
   1361  1.196  riastrad 		memset(pgs, 0, npages * sizeof(struct vm_page *));
   1362  1.196  riastrad 		(void)uobj->pgops->pgo_get(uobj, trunc_page(off),
   1363  1.196  riastrad 		    pgs, &npages, 0, VM_PROT_READ | VM_PROT_WRITE,
   1364  1.196  riastrad 		    0, PAGERFLAGS | PGO_PASTEOF);
   1365  1.196  riastrad 		KASSERT(npages > 0);
   1366  1.196  riastrad 
   1367  1.196  riastrad 		rw_enter(uobj->vmobjlock, RW_WRITER);
   1368  1.196  riastrad 		for (i = 0; i < npages; i++) {
   1369  1.196  riastrad 			struct vm_page *pg;
   1370  1.196  riastrad 			uint8_t *start;
   1371  1.196  riastrad 			size_t chunkoff, chunklen;
   1372  1.196  riastrad 
   1373  1.196  riastrad 			pg = pgs[i];
   1374  1.196  riastrad 			if (pg == NULL)
   1375  1.196  riastrad 				break;
   1376  1.196  riastrad 
   1377  1.196  riastrad 			KASSERT(pg->uobject != NULL);
   1378  1.196  riastrad 			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
   1379  1.196  riastrad 
   1380  1.196  riastrad 			chunkoff = off & PAGE_MASK;
   1381  1.196  riastrad 			chunklen = MIN(PAGE_SIZE - chunkoff, len);
   1382  1.196  riastrad 			start = (uint8_t *)pg->uanon + chunkoff;
   1383  1.196  riastrad 
   1384  1.196  riastrad 			memset(start, 0, chunklen);
   1385  1.196  riastrad 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   1386  1.196  riastrad 
   1387  1.196  riastrad 			off += chunklen;
   1388  1.196  riastrad 			len -= chunklen;
   1389  1.196  riastrad 		}
   1390  1.196  riastrad 		uvm_page_unbusy(pgs, npages);
   1391  1.196  riastrad 	}
   1392  1.196  riastrad 	rw_exit(uobj->vmobjlock);
   1393  1.196  riastrad 	kmem_free(pgs, maxpages * sizeof(pgs));
   1394  1.196  riastrad }
   1395  1.196  riastrad 
   1396  1.196  riastrad #define len2npages(off, len)						\
   1397  1.196  riastrad     ((round_page(off+len) - trunc_page(off)) >> PAGE_SHIFT)
   1398  1.196  riastrad 
   1399  1.196  riastrad int
   1400  1.196  riastrad ubc_uiomove(struct uvm_object *uobj, struct uio *uio, vsize_t todo,
   1401  1.196  riastrad 	int advice, int flags)
   1402  1.196  riastrad {
   1403  1.196  riastrad 	struct vm_page **pgs;
   1404  1.196  riastrad 	int npages = len2npages(uio->uio_offset, todo);
   1405  1.196  riastrad 	size_t pgalloc;
   1406  1.196  riastrad 	int i, rv, pagerflags;
   1407  1.196  riastrad 	vm_prot_t prot;
   1408  1.196  riastrad 
   1409  1.196  riastrad 	pgalloc = npages * sizeof(pgs);
   1410  1.196  riastrad 	pgs = kmem_alloc(pgalloc, KM_SLEEP);
   1411  1.196  riastrad 
   1412  1.196  riastrad 	pagerflags = PAGERFLAGS;
   1413  1.196  riastrad 	if (flags & UBC_WRITE)
   1414  1.196  riastrad 		pagerflags |= PGO_PASTEOF;
   1415  1.196  riastrad 	if (flags & UBC_FAULTBUSY)
   1416  1.196  riastrad 		pagerflags |= PGO_OVERWRITE;
   1417  1.196  riastrad 
   1418  1.196  riastrad 	prot = VM_PROT_READ;
   1419  1.196  riastrad 	if (flags & UBC_WRITE)
   1420  1.196  riastrad 		prot |= VM_PROT_WRITE;
   1421  1.196  riastrad 
   1422  1.196  riastrad 	rw_enter(uobj->vmobjlock, RW_WRITER);
   1423  1.196  riastrad 	do {
   1424  1.196  riastrad 		npages = len2npages(uio->uio_offset, todo);
   1425  1.196  riastrad 		memset(pgs, 0, pgalloc);
   1426  1.196  riastrad 		rv = uobj->pgops->pgo_get(uobj, trunc_page(uio->uio_offset),
   1427  1.196  riastrad 		    pgs, &npages, 0, prot, 0, pagerflags);
   1428  1.196  riastrad 		if (rv)
   1429  1.196  riastrad 			goto out;
   1430  1.196  riastrad 
   1431  1.196  riastrad 		rw_enter(uobj->vmobjlock, RW_WRITER);
   1432  1.196  riastrad 		for (i = 0; i < npages; i++) {
   1433  1.196  riastrad 			struct vm_page *pg;
   1434  1.196  riastrad 			size_t xfersize;
   1435  1.196  riastrad 			off_t pageoff;
   1436  1.196  riastrad 
   1437  1.196  riastrad 			pg = pgs[i];
   1438  1.196  riastrad 			if (pg == NULL)
   1439  1.196  riastrad 				break;
   1440  1.196  riastrad 
   1441  1.196  riastrad 			KASSERT(pg->uobject != NULL);
   1442  1.196  riastrad 			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
   1443  1.196  riastrad 			pageoff = uio->uio_offset & PAGE_MASK;
   1444  1.196  riastrad 
   1445  1.196  riastrad 			xfersize = MIN(MIN(todo, PAGE_SIZE), PAGE_SIZE-pageoff);
   1446  1.196  riastrad 			KASSERT(xfersize > 0);
   1447  1.196  riastrad 			rv = uiomove((uint8_t *)pg->uanon + pageoff,
   1448  1.196  riastrad 			    xfersize, uio);
   1449  1.196  riastrad 			if (rv) {
   1450  1.196  riastrad 				uvm_page_unbusy(pgs, npages);
   1451  1.196  riastrad 				rw_exit(uobj->vmobjlock);
   1452  1.196  riastrad 				goto out;
   1453  1.196  riastrad 			}
   1454  1.196  riastrad 			if (uio->uio_rw == UIO_WRITE) {
   1455  1.196  riastrad 				pg->flags &= ~PG_FAKE;
   1456  1.196  riastrad 				uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   1457  1.196  riastrad 			}
   1458  1.196  riastrad 			todo -= xfersize;
   1459  1.196  riastrad 		}
   1460  1.196  riastrad 		uvm_page_unbusy(pgs, npages);
   1461  1.196  riastrad 	} while (todo);
   1462  1.196  riastrad 	rw_exit(uobj->vmobjlock);
   1463  1.196  riastrad 
   1464  1.196  riastrad  out:
   1465  1.196  riastrad 	kmem_free(pgs, pgalloc);
   1466  1.196  riastrad 	return rv;
   1467  1.196  riastrad }
   1468