Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.102
      1  1.102     pooka /*	$NetBSD: vm.c,v 1.102 2010/11/22 20:42:19 pooka Exp $	*/
      2    1.1     pooka 
      3    1.1     pooka /*
      4   1.76     pooka  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5    1.1     pooka  *
      6   1.76     pooka  * Development of this software was supported by
      7   1.76     pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8   1.76     pooka  * The Helsinki University of Technology.
      9    1.1     pooka  *
     10    1.1     pooka  * Redistribution and use in source and binary forms, with or without
     11    1.1     pooka  * modification, are permitted provided that the following conditions
     12    1.1     pooka  * are met:
     13    1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     14    1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     15    1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     17    1.1     pooka  *    documentation and/or other materials provided with the distribution.
     18    1.1     pooka  *
     19    1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20    1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21    1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22    1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23    1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24    1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25    1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26    1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27    1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28    1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29    1.1     pooka  * SUCH DAMAGE.
     30    1.1     pooka  */
     31    1.1     pooka 
     32    1.1     pooka /*
     33   1.88     pooka  * Virtual memory emulation routines.
     34    1.1     pooka  */
     35    1.1     pooka 
     36    1.1     pooka /*
     37    1.5     pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38    1.1     pooka  * for each page.  phys_addr would fit the job description better,
     39    1.1     pooka  * except that it will create unnecessary lossage on some platforms
     40    1.1     pooka  * due to not being a pointer type.
     41    1.1     pooka  */
     42    1.1     pooka 
     43   1.48     pooka #include <sys/cdefs.h>
     44  1.102     pooka __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.102 2010/11/22 20:42:19 pooka Exp $");
     45   1.48     pooka 
     46    1.1     pooka #include <sys/param.h>
     47   1.40     pooka #include <sys/atomic.h>
     48   1.80     pooka #include <sys/buf.h>
     49   1.80     pooka #include <sys/kernel.h>
     50   1.67     pooka #include <sys/kmem.h>
     51   1.69     pooka #include <sys/mman.h>
     52    1.1     pooka #include <sys/null.h>
     53    1.1     pooka #include <sys/vnode.h>
     54    1.1     pooka 
     55   1.34     pooka #include <machine/pmap.h>
     56   1.34     pooka 
     57   1.34     pooka #include <rump/rumpuser.h>
     58   1.34     pooka 
     59    1.1     pooka #include <uvm/uvm.h>
     60   1.56     pooka #include <uvm/uvm_ddb.h>
     61   1.88     pooka #include <uvm/uvm_pdpolicy.h>
     62    1.1     pooka #include <uvm/uvm_prot.h>
     63   1.58        he #include <uvm/uvm_readahead.h>
     64    1.1     pooka 
     65   1.13     pooka #include "rump_private.h"
     66   1.91     pooka #include "rump_vfs_private.h"
     67    1.1     pooka 
     68   1.25        ad kmutex_t uvm_pageqlock;
     69   1.88     pooka kmutex_t uvm_swap_data_lock;
     70   1.25        ad 
     71    1.1     pooka struct uvmexp uvmexp;
     72  1.100  uebayasi int *uvmexp_pagesize;
     73  1.100  uebayasi int *uvmexp_pagemask;
     74  1.100  uebayasi int *uvmexp_pageshift;
     75    1.7     pooka struct uvm uvm;
     76    1.1     pooka 
     77    1.1     pooka struct vm_map rump_vmmap;
     78   1.50     pooka static struct vm_map_kernel kmem_map_store;
     79   1.50     pooka struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     80    1.1     pooka 
     81   1.35     pooka static struct vm_map_kernel kernel_map_store;
     82   1.35     pooka struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     83   1.35     pooka 
     84   1.80     pooka static unsigned int pdaemon_waiters;
     85   1.80     pooka static kmutex_t pdaemonmtx;
     86   1.80     pooka static kcondvar_t pdaemoncv, oomwait;
     87   1.80     pooka 
     88   1.91     pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     89   1.84     pooka static unsigned long curphysmem;
     90   1.92     pooka static unsigned long dddlim;		/* 90% of memory limit used */
     91   1.92     pooka #define NEED_PAGEDAEMON() \
     92   1.92     pooka     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
     93   1.92     pooka 
     94   1.92     pooka /*
     95   1.92     pooka  * Try to free two pages worth of pages from objects.
     96   1.92     pooka  * If this succesfully frees a full page cache page, we'll
     97   1.92     pooka  * free the released page plus PAGE_SIZE/sizeof(vm_page).
     98   1.92     pooka  */
     99   1.92     pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    100   1.92     pooka 
    101   1.92     pooka /*
    102   1.92     pooka  * Keep a list of least recently used pages.  Since the only way a
    103   1.92     pooka  * rump kernel can "access" a page is via lookup, we put the page
    104   1.92     pooka  * at the back of queue every time a lookup for it is done.  If the
    105   1.92     pooka  * page is in front of this global queue and we're short of memory,
    106   1.92     pooka  * it's a candidate for pageout.
    107   1.92     pooka  */
    108   1.92     pooka static struct pglist vmpage_lruqueue;
    109   1.92     pooka static unsigned vmpage_onqueue;
    110   1.84     pooka 
    111   1.89     pooka static int
    112   1.96     rmind pg_compare_key(void *ctx, const void *n, const void *key)
    113   1.89     pooka {
    114   1.89     pooka 	voff_t a = ((const struct vm_page *)n)->offset;
    115   1.89     pooka 	voff_t b = *(const voff_t *)key;
    116   1.89     pooka 
    117   1.89     pooka 	if (a < b)
    118   1.96     rmind 		return -1;
    119   1.96     rmind 	else if (a > b)
    120   1.89     pooka 		return 1;
    121   1.89     pooka 	else
    122   1.89     pooka 		return 0;
    123   1.89     pooka }
    124   1.89     pooka 
    125   1.89     pooka static int
    126   1.96     rmind pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    127   1.89     pooka {
    128   1.89     pooka 
    129   1.96     rmind 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    130   1.89     pooka }
    131   1.89     pooka 
    132   1.96     rmind const rb_tree_ops_t uvm_page_tree_ops = {
    133   1.89     pooka 	.rbto_compare_nodes = pg_compare_nodes,
    134   1.89     pooka 	.rbto_compare_key = pg_compare_key,
    135   1.96     rmind 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    136   1.96     rmind 	.rbto_context = NULL
    137   1.89     pooka };
    138   1.89     pooka 
    139    1.1     pooka /*
    140    1.1     pooka  * vm pages
    141    1.1     pooka  */
    142    1.1     pooka 
    143   1.90     pooka static int
    144   1.90     pooka pgctor(void *arg, void *obj, int flags)
    145   1.90     pooka {
    146   1.90     pooka 	struct vm_page *pg = obj;
    147   1.90     pooka 
    148   1.90     pooka 	memset(pg, 0, sizeof(*pg));
    149   1.90     pooka 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE, true, "pgalloc");
    150   1.90     pooka 	return 0;
    151   1.90     pooka }
    152   1.90     pooka 
    153   1.90     pooka static void
    154   1.90     pooka pgdtor(void *arg, void *obj)
    155   1.90     pooka {
    156   1.90     pooka 	struct vm_page *pg = obj;
    157   1.90     pooka 
    158   1.90     pooka 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    159   1.90     pooka }
    160   1.90     pooka 
    161   1.90     pooka static struct pool_cache pagecache;
    162   1.90     pooka 
    163   1.92     pooka /*
    164   1.92     pooka  * Called with the object locked.  We don't support anons.
    165   1.92     pooka  */
    166    1.1     pooka struct vm_page *
    167   1.76     pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    168   1.76     pooka 	int flags, int strat, int free_list)
    169    1.1     pooka {
    170    1.1     pooka 	struct vm_page *pg;
    171    1.1     pooka 
    172   1.92     pooka 	KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
    173   1.92     pooka 	KASSERT(anon == NULL);
    174   1.92     pooka 
    175   1.90     pooka 	pg = pool_cache_get(&pagecache, PR_WAITOK);
    176    1.1     pooka 	pg->offset = off;
    177    1.5     pooka 	pg->uobject = uobj;
    178    1.1     pooka 
    179   1.22     pooka 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    180   1.90     pooka 	if (flags & UVM_PGA_ZERO) {
    181   1.90     pooka 		uvm_pagezero(pg);
    182   1.90     pooka 	}
    183    1.1     pooka 
    184   1.31        ad 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    185   1.96     rmind 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    186   1.89     pooka 
    187   1.92     pooka 	/*
    188   1.93     pooka 	 * Don't put anons on the LRU page queue.  We can't flush them
    189   1.93     pooka 	 * (there's no concept of swap in a rump kernel), so no reason
    190   1.93     pooka 	 * to bother with them.
    191   1.92     pooka 	 */
    192   1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    193   1.92     pooka 		atomic_inc_uint(&vmpage_onqueue);
    194   1.92     pooka 		mutex_enter(&uvm_pageqlock);
    195   1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    196   1.92     pooka 		mutex_exit(&uvm_pageqlock);
    197   1.92     pooka 	}
    198   1.92     pooka 
    199   1.59     pooka 	uobj->uo_npages++;
    200   1.21     pooka 
    201    1.1     pooka 	return pg;
    202    1.1     pooka }
    203    1.1     pooka 
    204   1.21     pooka /*
    205   1.21     pooka  * Release a page.
    206   1.21     pooka  *
    207   1.22     pooka  * Called with the vm object locked.
    208   1.21     pooka  */
    209    1.1     pooka void
    210   1.22     pooka uvm_pagefree(struct vm_page *pg)
    211    1.1     pooka {
    212    1.5     pooka 	struct uvm_object *uobj = pg->uobject;
    213    1.1     pooka 
    214   1.92     pooka 	KASSERT(mutex_owned(&uvm_pageqlock));
    215   1.95     pooka 	KASSERT(mutex_owned(&uobj->vmobjlock));
    216   1.92     pooka 
    217   1.22     pooka 	if (pg->flags & PG_WANTED)
    218   1.22     pooka 		wakeup(pg);
    219   1.22     pooka 
    220   1.92     pooka 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    221   1.92     pooka 
    222   1.59     pooka 	uobj->uo_npages--;
    223   1.96     rmind 	rb_tree_remove_node(&uobj->rb_tree, pg);
    224   1.92     pooka 
    225   1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    226   1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    227   1.92     pooka 		atomic_dec_uint(&vmpage_onqueue);
    228   1.92     pooka 	}
    229   1.92     pooka 
    230   1.90     pooka 	pool_cache_put(&pagecache, pg);
    231    1.1     pooka }
    232    1.1     pooka 
    233   1.15     pooka void
    234   1.61     pooka uvm_pagezero(struct vm_page *pg)
    235   1.15     pooka {
    236   1.15     pooka 
    237   1.61     pooka 	pg->flags &= ~PG_CLEAN;
    238   1.61     pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    239   1.15     pooka }
    240   1.15     pooka 
    241    1.1     pooka /*
    242    1.1     pooka  * Misc routines
    243    1.1     pooka  */
    244    1.1     pooka 
    245   1.61     pooka static kmutex_t pagermtx;
    246   1.61     pooka 
    247    1.1     pooka void
    248   1.79     pooka uvm_init(void)
    249    1.1     pooka {
    250   1.84     pooka 	char buf[64];
    251   1.84     pooka 	int error;
    252   1.84     pooka 
    253   1.84     pooka 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    254   1.91     pooka 		rump_physmemlimit = strtoll(buf, NULL, 10);
    255   1.84     pooka 		/* it's not like we'd get far with, say, 1 byte, but ... */
    256   1.91     pooka 		if (rump_physmemlimit == 0)
    257   1.84     pooka 			panic("uvm_init: no memory available");
    258   1.84     pooka #define HUMANIZE_BYTES 9
    259   1.84     pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    260   1.91     pooka 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    261   1.84     pooka #undef HUMANIZE_BYTES
    262   1.92     pooka 		dddlim = 9 * (rump_physmemlimit / 10);
    263   1.84     pooka 	} else {
    264   1.84     pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    265   1.84     pooka 	}
    266   1.84     pooka 	aprint_verbose("total memory = %s\n", buf);
    267    1.1     pooka 
    268   1.92     pooka 	TAILQ_INIT(&vmpage_lruqueue);
    269   1.92     pooka 
    270   1.84     pooka 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    271   1.21     pooka 
    272   1.61     pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    273   1.25        ad 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    274   1.88     pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    275   1.35     pooka 
    276   1.80     pooka 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    277   1.80     pooka 	cv_init(&pdaemoncv, "pdaemon");
    278   1.80     pooka 	cv_init(&oomwait, "oomwait");
    279   1.80     pooka 
    280   1.50     pooka 	kernel_map->pmap = pmap_kernel();
    281   1.35     pooka 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    282   1.50     pooka 	kmem_map->pmap = pmap_kernel();
    283   1.50     pooka 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    284   1.90     pooka 
    285   1.90     pooka 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    286   1.90     pooka 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    287    1.1     pooka }
    288    1.1     pooka 
    289   1.83     pooka void
    290   1.83     pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    291   1.83     pooka {
    292   1.83     pooka 
    293   1.83     pooka 	vm->vm_map.pmap = pmap_kernel();
    294   1.83     pooka 	vm->vm_refcnt = 1;
    295   1.83     pooka }
    296    1.1     pooka 
    297    1.1     pooka void
    298    1.7     pooka uvm_pagewire(struct vm_page *pg)
    299    1.7     pooka {
    300    1.7     pooka 
    301    1.7     pooka 	/* nada */
    302    1.7     pooka }
    303    1.7     pooka 
    304    1.7     pooka void
    305    1.7     pooka uvm_pageunwire(struct vm_page *pg)
    306    1.7     pooka {
    307    1.7     pooka 
    308    1.7     pooka 	/* nada */
    309    1.7     pooka }
    310    1.7     pooka 
    311   1.83     pooka /* where's your schmonz now? */
    312   1.83     pooka #define PUNLIMIT(a)	\
    313   1.83     pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    314   1.83     pooka void
    315   1.83     pooka uvm_init_limits(struct proc *p)
    316   1.83     pooka {
    317   1.83     pooka 
    318   1.83     pooka 	PUNLIMIT(RLIMIT_STACK);
    319   1.83     pooka 	PUNLIMIT(RLIMIT_DATA);
    320   1.83     pooka 	PUNLIMIT(RLIMIT_RSS);
    321   1.83     pooka 	PUNLIMIT(RLIMIT_AS);
    322   1.83     pooka 	/* nice, cascade */
    323   1.83     pooka }
    324   1.83     pooka #undef PUNLIMIT
    325   1.83     pooka 
    326   1.69     pooka /*
    327   1.69     pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    328   1.69     pooka  * We probably should grow some more assertables to make sure we're
    329   1.69     pooka  * not satisfying anything we shouldn't be satisfying.  At least we
    330   1.69     pooka  * should make sure it's the local machine we're mmapping ...
    331   1.69     pooka  */
    332   1.49     pooka int
    333   1.49     pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    334   1.49     pooka 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    335   1.49     pooka {
    336   1.69     pooka 	void *uaddr;
    337   1.69     pooka 	int error;
    338   1.49     pooka 
    339   1.69     pooka 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    340   1.69     pooka 		panic("uvm_mmap() variant unsupported");
    341   1.69     pooka 	if (flags != (MAP_PRIVATE | MAP_ANON))
    342   1.69     pooka 		panic("uvm_mmap() variant unsupported");
    343   1.98     pooka 
    344   1.69     pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    345   1.69     pooka 	if (*addr != 0)
    346   1.69     pooka 		panic("uvm_mmap() variant unsupported");
    347   1.69     pooka 
    348  1.101     pooka 	if (curproc->p_vmspace == vmspace_kernel()) {
    349   1.98     pooka 		uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    350   1.98     pooka 	} else {
    351  1.102     pooka 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
    352  1.102     pooka 		    size, &uaddr);
    353   1.98     pooka 	}
    354   1.69     pooka 	if (uaddr == NULL)
    355   1.69     pooka 		return error;
    356   1.69     pooka 
    357   1.69     pooka 	*addr = (vaddr_t)uaddr;
    358   1.69     pooka 	return 0;
    359   1.49     pooka }
    360   1.49     pooka 
    361   1.61     pooka struct pagerinfo {
    362   1.61     pooka 	vaddr_t pgr_kva;
    363   1.61     pooka 	int pgr_npages;
    364   1.61     pooka 	struct vm_page **pgr_pgs;
    365   1.61     pooka 	bool pgr_read;
    366   1.61     pooka 
    367   1.61     pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    368   1.61     pooka };
    369   1.61     pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    370   1.61     pooka 
    371   1.61     pooka /*
    372   1.61     pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    373   1.61     pooka  * and copy page contents there.  Not optimal or even strictly
    374   1.61     pooka  * correct (the caller might modify the page contents after mapping
    375   1.61     pooka  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    376   1.61     pooka  */
    377    1.7     pooka vaddr_t
    378   1.61     pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    379    1.7     pooka {
    380   1.61     pooka 	struct pagerinfo *pgri;
    381   1.61     pooka 	vaddr_t curkva;
    382   1.61     pooka 	int i;
    383   1.61     pooka 
    384   1.61     pooka 	/* allocate structures */
    385   1.61     pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    386   1.61     pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    387   1.61     pooka 	pgri->pgr_npages = npages;
    388   1.61     pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    389   1.61     pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    390   1.61     pooka 
    391   1.61     pooka 	/* copy contents to "mapped" memory */
    392   1.61     pooka 	for (i = 0, curkva = pgri->pgr_kva;
    393   1.61     pooka 	    i < npages;
    394   1.61     pooka 	    i++, curkva += PAGE_SIZE) {
    395   1.61     pooka 		/*
    396   1.61     pooka 		 * We need to copy the previous contents of the pages to
    397   1.61     pooka 		 * the window even if we are reading from the
    398   1.61     pooka 		 * device, since the device might not fill the contents of
    399   1.61     pooka 		 * the full mapped range and we will end up corrupting
    400   1.61     pooka 		 * data when we unmap the window.
    401   1.61     pooka 		 */
    402   1.61     pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    403   1.61     pooka 		pgri->pgr_pgs[i] = pgs[i];
    404   1.61     pooka 	}
    405   1.61     pooka 
    406   1.61     pooka 	mutex_enter(&pagermtx);
    407   1.61     pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    408   1.61     pooka 	mutex_exit(&pagermtx);
    409    1.7     pooka 
    410   1.61     pooka 	return pgri->pgr_kva;
    411    1.7     pooka }
    412    1.7     pooka 
    413   1.61     pooka /*
    414   1.61     pooka  * map out the pager window.  return contents from VA to page storage
    415   1.61     pooka  * and free structures.
    416   1.61     pooka  *
    417   1.61     pooka  * Note: does not currently support partial frees
    418   1.61     pooka  */
    419   1.61     pooka void
    420   1.61     pooka uvm_pagermapout(vaddr_t kva, int npages)
    421    1.7     pooka {
    422   1.61     pooka 	struct pagerinfo *pgri;
    423   1.61     pooka 	vaddr_t curkva;
    424   1.61     pooka 	int i;
    425    1.7     pooka 
    426   1.61     pooka 	mutex_enter(&pagermtx);
    427   1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    428   1.61     pooka 		if (pgri->pgr_kva == kva)
    429   1.61     pooka 			break;
    430   1.61     pooka 	}
    431   1.61     pooka 	KASSERT(pgri);
    432   1.61     pooka 	if (pgri->pgr_npages != npages)
    433   1.61     pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    434   1.61     pooka 	LIST_REMOVE(pgri, pgr_entries);
    435   1.61     pooka 	mutex_exit(&pagermtx);
    436   1.61     pooka 
    437   1.61     pooka 	if (pgri->pgr_read) {
    438   1.61     pooka 		for (i = 0, curkva = pgri->pgr_kva;
    439   1.61     pooka 		    i < pgri->pgr_npages;
    440   1.61     pooka 		    i++, curkva += PAGE_SIZE) {
    441   1.61     pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    442   1.21     pooka 		}
    443   1.21     pooka 	}
    444   1.10     pooka 
    445   1.61     pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    446   1.61     pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    447   1.61     pooka 	kmem_free(pgri, sizeof(*pgri));
    448    1.7     pooka }
    449    1.7     pooka 
    450   1.61     pooka /*
    451   1.61     pooka  * convert va in pager window to page structure.
    452   1.61     pooka  * XXX: how expensive is this (global lock, list traversal)?
    453   1.61     pooka  */
    454   1.14     pooka struct vm_page *
    455   1.14     pooka uvm_pageratop(vaddr_t va)
    456   1.14     pooka {
    457   1.61     pooka 	struct pagerinfo *pgri;
    458   1.61     pooka 	struct vm_page *pg = NULL;
    459   1.61     pooka 	int i;
    460   1.14     pooka 
    461   1.61     pooka 	mutex_enter(&pagermtx);
    462   1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    463   1.61     pooka 		if (pgri->pgr_kva <= va
    464   1.61     pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    465   1.21     pooka 			break;
    466   1.61     pooka 	}
    467   1.61     pooka 	if (pgri) {
    468   1.61     pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    469   1.61     pooka 		pg = pgri->pgr_pgs[i];
    470   1.61     pooka 	}
    471   1.61     pooka 	mutex_exit(&pagermtx);
    472   1.21     pooka 
    473   1.61     pooka 	return pg;
    474   1.61     pooka }
    475   1.15     pooka 
    476   1.97     pooka /*
    477   1.97     pooka  * Called with the vm object locked.
    478   1.97     pooka  *
    479   1.97     pooka  * Put vnode object pages at the end of the access queue to indicate
    480   1.97     pooka  * they have been recently accessed and should not be immediate
    481   1.97     pooka  * candidates for pageout.  Do not do this for lookups done by
    482   1.97     pooka  * the pagedaemon to mimic pmap_kentered mappings which don't track
    483   1.97     pooka  * access information.
    484   1.97     pooka  */
    485   1.61     pooka struct vm_page *
    486   1.61     pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    487   1.61     pooka {
    488   1.92     pooka 	struct vm_page *pg;
    489   1.97     pooka 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    490   1.61     pooka 
    491   1.96     rmind 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    492   1.97     pooka 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    493   1.92     pooka 		mutex_enter(&uvm_pageqlock);
    494   1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    495   1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    496   1.92     pooka 		mutex_exit(&uvm_pageqlock);
    497   1.92     pooka 	}
    498   1.92     pooka 
    499   1.92     pooka 	return pg;
    500   1.14     pooka }
    501   1.14     pooka 
    502    1.7     pooka void
    503   1.22     pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    504   1.22     pooka {
    505   1.22     pooka 	struct vm_page *pg;
    506   1.22     pooka 	int i;
    507   1.22     pooka 
    508   1.94     pooka 	KASSERT(npgs > 0);
    509   1.94     pooka 	KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
    510   1.94     pooka 
    511   1.22     pooka 	for (i = 0; i < npgs; i++) {
    512   1.22     pooka 		pg = pgs[i];
    513   1.22     pooka 		if (pg == NULL)
    514   1.22     pooka 			continue;
    515   1.22     pooka 
    516   1.22     pooka 		KASSERT(pg->flags & PG_BUSY);
    517   1.22     pooka 		if (pg->flags & PG_WANTED)
    518   1.22     pooka 			wakeup(pg);
    519   1.36     pooka 		if (pg->flags & PG_RELEASED)
    520   1.36     pooka 			uvm_pagefree(pg);
    521   1.36     pooka 		else
    522   1.36     pooka 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    523   1.22     pooka 	}
    524   1.22     pooka }
    525   1.22     pooka 
    526   1.22     pooka void
    527    1.7     pooka uvm_estimatepageable(int *active, int *inactive)
    528    1.7     pooka {
    529    1.7     pooka 
    530   1.19     pooka 	/* XXX: guessing game */
    531   1.19     pooka 	*active = 1024;
    532   1.19     pooka 	*inactive = 1024;
    533    1.7     pooka }
    534    1.7     pooka 
    535   1.39     pooka struct vm_map_kernel *
    536   1.39     pooka vm_map_to_kernel(struct vm_map *map)
    537   1.39     pooka {
    538   1.39     pooka 
    539   1.39     pooka 	return (struct vm_map_kernel *)map;
    540   1.39     pooka }
    541   1.39     pooka 
    542   1.41     pooka bool
    543   1.41     pooka vm_map_starved_p(struct vm_map *map)
    544   1.41     pooka {
    545   1.41     pooka 
    546   1.80     pooka 	if (map->flags & VM_MAP_WANTVA)
    547   1.80     pooka 		return true;
    548   1.80     pooka 
    549   1.41     pooka 	return false;
    550   1.41     pooka }
    551   1.41     pooka 
    552   1.41     pooka int
    553   1.41     pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    554   1.41     pooka {
    555   1.41     pooka 
    556   1.41     pooka 	panic("%s: unimplemented", __func__);
    557   1.41     pooka }
    558   1.41     pooka 
    559   1.41     pooka void
    560   1.41     pooka uvm_unloan(void *v, int npages, int flags)
    561   1.41     pooka {
    562   1.41     pooka 
    563   1.41     pooka 	panic("%s: unimplemented", __func__);
    564   1.41     pooka }
    565   1.41     pooka 
    566   1.43     pooka int
    567   1.43     pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    568   1.43     pooka 	struct vm_page **opp)
    569   1.43     pooka {
    570   1.43     pooka 
    571   1.72     pooka 	return EBUSY;
    572   1.43     pooka }
    573   1.43     pooka 
    574   1.73     pooka #ifdef DEBUGPRINT
    575   1.56     pooka void
    576   1.56     pooka uvm_object_printit(struct uvm_object *uobj, bool full,
    577   1.56     pooka 	void (*pr)(const char *, ...))
    578   1.56     pooka {
    579   1.56     pooka 
    580   1.75     pooka 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    581   1.56     pooka }
    582   1.73     pooka #endif
    583   1.56     pooka 
    584   1.68     pooka vaddr_t
    585   1.68     pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    586   1.68     pooka {
    587   1.68     pooka 
    588   1.68     pooka 	return 0;
    589   1.68     pooka }
    590   1.68     pooka 
    591   1.71     pooka int
    592   1.71     pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    593   1.71     pooka 	vm_prot_t prot, bool set_max)
    594   1.71     pooka {
    595   1.71     pooka 
    596   1.71     pooka 	return EOPNOTSUPP;
    597   1.71     pooka }
    598   1.71     pooka 
    599    1.9     pooka /*
    600   1.12     pooka  * UVM km
    601   1.12     pooka  */
    602   1.12     pooka 
    603   1.12     pooka vaddr_t
    604   1.12     pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    605   1.12     pooka {
    606   1.82     pooka 	void *rv, *desired = NULL;
    607   1.50     pooka 	int alignbit, error;
    608   1.50     pooka 
    609   1.82     pooka #ifdef __x86_64__
    610   1.82     pooka 	/*
    611   1.82     pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    612   1.82     pooka 	 * This is because NetBSD kernel modules are compiled
    613   1.82     pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    614   1.82     pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    615   1.82     pooka 	 * anywhere except the lowest or highest 2GB, it will not
    616   1.82     pooka 	 * work.  Since userspace does not have access to the highest
    617   1.82     pooka 	 * 2GB, use the lowest 2GB.
    618   1.82     pooka 	 *
    619   1.82     pooka 	 * Note: this assumes the rump kernel resides in
    620   1.82     pooka 	 * the lowest 2GB as well.
    621   1.82     pooka 	 *
    622   1.82     pooka 	 * Note2: yes, it's a quick hack, but since this the only
    623   1.82     pooka 	 * place where we care about the map we're allocating from,
    624   1.82     pooka 	 * just use a simple "if" instead of coming up with a fancy
    625   1.82     pooka 	 * generic solution.
    626   1.82     pooka 	 */
    627   1.82     pooka 	extern struct vm_map *module_map;
    628   1.82     pooka 	if (map == module_map) {
    629   1.82     pooka 		desired = (void *)(0x80000000 - size);
    630   1.82     pooka 	}
    631   1.82     pooka #endif
    632   1.82     pooka 
    633   1.50     pooka 	alignbit = 0;
    634   1.50     pooka 	if (align) {
    635   1.50     pooka 		alignbit = ffs(align)-1;
    636   1.50     pooka 	}
    637   1.50     pooka 
    638   1.82     pooka 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    639   1.81     pooka 	    &error);
    640   1.50     pooka 	if (rv == NULL) {
    641   1.50     pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    642   1.50     pooka 			return 0;
    643   1.50     pooka 		else
    644   1.50     pooka 			panic("uvm_km_alloc failed");
    645   1.50     pooka 	}
    646   1.12     pooka 
    647   1.50     pooka 	if (flags & UVM_KMF_ZERO)
    648   1.12     pooka 		memset(rv, 0, size);
    649   1.12     pooka 
    650   1.12     pooka 	return (vaddr_t)rv;
    651   1.12     pooka }
    652   1.12     pooka 
    653   1.12     pooka void
    654   1.12     pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    655   1.12     pooka {
    656   1.12     pooka 
    657   1.50     pooka 	rumpuser_unmap((void *)vaddr, size);
    658   1.12     pooka }
    659   1.12     pooka 
    660   1.12     pooka struct vm_map *
    661   1.12     pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    662   1.12     pooka 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    663   1.12     pooka {
    664   1.12     pooka 
    665   1.12     pooka 	return (struct vm_map *)417416;
    666   1.12     pooka }
    667   1.40     pooka 
    668   1.40     pooka vaddr_t
    669   1.40     pooka uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    670   1.40     pooka {
    671   1.40     pooka 
    672   1.80     pooka 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    673   1.80     pooka 	    waitok, "kmalloc");
    674   1.40     pooka }
    675   1.40     pooka 
    676   1.40     pooka void
    677   1.40     pooka uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    678   1.40     pooka {
    679   1.40     pooka 
    680   1.84     pooka 	rump_hyperfree((void *)addr, PAGE_SIZE);
    681   1.50     pooka }
    682   1.50     pooka 
    683   1.50     pooka vaddr_t
    684   1.50     pooka uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    685   1.50     pooka {
    686   1.50     pooka 
    687   1.77     pooka 	return uvm_km_alloc_poolpage(map, waitok);
    688   1.50     pooka }
    689   1.50     pooka 
    690   1.50     pooka void
    691   1.50     pooka uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    692   1.50     pooka {
    693   1.50     pooka 
    694   1.77     pooka 	uvm_km_free_poolpage(map, vaddr);
    695   1.40     pooka }
    696   1.57     pooka 
    697   1.74     pooka void
    698   1.74     pooka uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    699   1.74     pooka {
    700   1.74     pooka 
    701   1.74     pooka 	/* we eventually maybe want some model for available memory */
    702   1.74     pooka }
    703   1.74     pooka 
    704   1.57     pooka /*
    705  1.102     pooka  * VM space locking routines.  We don't really have to do anything,
    706  1.102     pooka  * since the pages are always "wired" (both local and remote processes).
    707   1.57     pooka  */
    708   1.57     pooka int
    709   1.57     pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    710   1.57     pooka {
    711   1.57     pooka 
    712   1.57     pooka 	return 0;
    713   1.57     pooka }
    714   1.57     pooka 
    715   1.57     pooka void
    716   1.57     pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    717   1.57     pooka {
    718   1.57     pooka 
    719   1.57     pooka }
    720   1.57     pooka 
    721  1.102     pooka /*
    722  1.102     pooka  * For the local case the buffer mappers don't need to do anything.
    723  1.102     pooka  * For the remote case we need to reserve space and copy data in or
    724  1.102     pooka  * out, depending on B_READ/B_WRITE.
    725  1.102     pooka  */
    726   1.57     pooka void
    727   1.57     pooka vmapbuf(struct buf *bp, vsize_t len)
    728   1.57     pooka {
    729   1.57     pooka 
    730   1.57     pooka 	bp->b_saveaddr = bp->b_data;
    731  1.102     pooka 
    732  1.102     pooka 	/* remote case */
    733  1.102     pooka 	if (curproc->p_vmspace != vmspace_kernel()) {
    734  1.102     pooka 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    735  1.102     pooka 		if (BUF_ISWRITE(bp)) {
    736  1.102     pooka 			copyin(bp->b_saveaddr, bp->b_data, len);
    737  1.102     pooka 		}
    738  1.102     pooka 	}
    739   1.57     pooka }
    740   1.57     pooka 
    741   1.57     pooka void
    742   1.57     pooka vunmapbuf(struct buf *bp, vsize_t len)
    743   1.57     pooka {
    744   1.57     pooka 
    745  1.102     pooka 	/* remote case */
    746  1.102     pooka 	if (bp->b_proc->p_vmspace != vmspace_kernel()) {
    747  1.102     pooka 		if (BUF_ISREAD(bp)) {
    748  1.102     pooka 			copyout_proc(bp->b_proc,
    749  1.102     pooka 			    bp->b_data, bp->b_saveaddr, len);
    750  1.102     pooka 		}
    751  1.102     pooka 		rump_hyperfree(bp->b_data, len);
    752  1.102     pooka 	}
    753  1.102     pooka 
    754   1.57     pooka 	bp->b_data = bp->b_saveaddr;
    755   1.57     pooka 	bp->b_saveaddr = 0;
    756   1.57     pooka }
    757   1.61     pooka 
    758   1.61     pooka void
    759   1.83     pooka uvmspace_addref(struct vmspace *vm)
    760   1.83     pooka {
    761   1.83     pooka 
    762   1.83     pooka 	/*
    763   1.83     pooka 	 * there is only vmspace0.  we're not planning on
    764   1.83     pooka 	 * feeding it to the fishes.
    765   1.83     pooka 	 */
    766   1.83     pooka }
    767   1.83     pooka 
    768   1.83     pooka void
    769   1.66     pooka uvmspace_free(struct vmspace *vm)
    770   1.66     pooka {
    771   1.66     pooka 
    772   1.66     pooka 	/* nothing for now */
    773   1.66     pooka }
    774   1.66     pooka 
    775   1.61     pooka /*
    776   1.61     pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    777   1.61     pooka  */
    778   1.61     pooka 
    779   1.61     pooka void
    780   1.61     pooka uvm_pageactivate(struct vm_page *pg)
    781   1.61     pooka {
    782   1.61     pooka 
    783   1.61     pooka 	/* nada */
    784   1.61     pooka }
    785   1.61     pooka 
    786   1.61     pooka void
    787   1.61     pooka uvm_pagedeactivate(struct vm_page *pg)
    788   1.61     pooka {
    789   1.61     pooka 
    790   1.61     pooka 	/* nada */
    791   1.61     pooka }
    792   1.61     pooka 
    793   1.61     pooka void
    794   1.61     pooka uvm_pagedequeue(struct vm_page *pg)
    795   1.61     pooka {
    796   1.61     pooka 
    797   1.61     pooka 	/* nada*/
    798   1.61     pooka }
    799   1.61     pooka 
    800   1.61     pooka void
    801   1.61     pooka uvm_pageenqueue(struct vm_page *pg)
    802   1.61     pooka {
    803   1.61     pooka 
    804   1.61     pooka 	/* nada */
    805   1.61     pooka }
    806   1.80     pooka 
    807   1.88     pooka void
    808   1.88     pooka uvmpdpol_anfree(struct vm_anon *an)
    809   1.88     pooka {
    810   1.88     pooka 
    811   1.88     pooka 	/* nada */
    812   1.88     pooka }
    813   1.88     pooka 
    814   1.80     pooka /*
    815   1.99  uebayasi  * Physical address accessors.
    816   1.99  uebayasi  */
    817   1.99  uebayasi 
    818   1.99  uebayasi struct vm_page *
    819   1.99  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    820   1.99  uebayasi {
    821   1.99  uebayasi 
    822   1.99  uebayasi 	return NULL;
    823   1.99  uebayasi }
    824   1.99  uebayasi 
    825   1.99  uebayasi paddr_t
    826   1.99  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
    827   1.99  uebayasi {
    828   1.99  uebayasi 
    829   1.99  uebayasi 	return 0;
    830   1.99  uebayasi }
    831   1.99  uebayasi 
    832   1.99  uebayasi /*
    833   1.80     pooka  * Routines related to the Page Baroness.
    834   1.80     pooka  */
    835   1.80     pooka 
    836   1.80     pooka void
    837   1.80     pooka uvm_wait(const char *msg)
    838   1.80     pooka {
    839   1.80     pooka 
    840   1.80     pooka 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    841   1.80     pooka 		panic("pagedaemon out of memory");
    842   1.80     pooka 	if (__predict_false(rump_threads == 0))
    843   1.80     pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    844   1.80     pooka 
    845   1.80     pooka 	mutex_enter(&pdaemonmtx);
    846   1.80     pooka 	pdaemon_waiters++;
    847   1.80     pooka 	cv_signal(&pdaemoncv);
    848   1.80     pooka 	cv_wait(&oomwait, &pdaemonmtx);
    849   1.80     pooka 	mutex_exit(&pdaemonmtx);
    850   1.80     pooka }
    851   1.80     pooka 
    852   1.80     pooka void
    853   1.80     pooka uvm_pageout_start(int npages)
    854   1.80     pooka {
    855   1.80     pooka 
    856   1.80     pooka 	/* we don't have the heuristics */
    857   1.80     pooka }
    858   1.80     pooka 
    859   1.80     pooka void
    860   1.80     pooka uvm_pageout_done(int npages)
    861   1.80     pooka {
    862   1.80     pooka 
    863   1.80     pooka 	/* could wakeup waiters, but just let the pagedaemon do it */
    864   1.80     pooka }
    865   1.80     pooka 
    866   1.95     pooka static bool
    867   1.95     pooka processpage(struct vm_page *pg)
    868   1.95     pooka {
    869   1.95     pooka 	struct uvm_object *uobj;
    870   1.95     pooka 
    871   1.95     pooka 	uobj = pg->uobject;
    872   1.95     pooka 	if (mutex_tryenter(&uobj->vmobjlock)) {
    873   1.95     pooka 		if ((pg->flags & PG_BUSY) == 0) {
    874   1.95     pooka 			mutex_exit(&uvm_pageqlock);
    875   1.95     pooka 			uobj->pgops->pgo_put(uobj, pg->offset,
    876   1.95     pooka 			    pg->offset + PAGE_SIZE,
    877   1.95     pooka 			    PGO_CLEANIT|PGO_FREE);
    878   1.95     pooka 			KASSERT(!mutex_owned(&uobj->vmobjlock));
    879   1.95     pooka 			return true;
    880   1.95     pooka 		} else {
    881   1.95     pooka 			mutex_exit(&uobj->vmobjlock);
    882   1.95     pooka 		}
    883   1.95     pooka 	}
    884   1.95     pooka 
    885   1.95     pooka 	return false;
    886   1.95     pooka }
    887   1.95     pooka 
    888   1.80     pooka /*
    889   1.92     pooka  * The Diabolical pageDaemon Director (DDD).
    890   1.80     pooka  */
    891   1.80     pooka void
    892   1.80     pooka uvm_pageout(void *arg)
    893   1.80     pooka {
    894   1.92     pooka 	struct vm_page *pg;
    895   1.80     pooka 	struct pool *pp, *pp_first;
    896   1.80     pooka 	uint64_t where;
    897   1.80     pooka 	int timo = 0;
    898   1.92     pooka 	int cleaned, skip, skipped;
    899   1.92     pooka 	bool succ = false;
    900   1.80     pooka 
    901   1.80     pooka 	mutex_enter(&pdaemonmtx);
    902   1.80     pooka 	for (;;) {
    903   1.92     pooka 		if (succ) {
    904   1.92     pooka 			kernel_map->flags &= ~VM_MAP_WANTVA;
    905   1.95     pooka 			kmem_map->flags &= ~VM_MAP_WANTVA;
    906   1.92     pooka 			timo = 0;
    907   1.95     pooka 			if (pdaemon_waiters) {
    908   1.95     pooka 				pdaemon_waiters = 0;
    909   1.95     pooka 				cv_broadcast(&oomwait);
    910   1.95     pooka 			}
    911   1.92     pooka 		}
    912   1.92     pooka 		succ = false;
    913   1.92     pooka 
    914   1.95     pooka 		cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
    915   1.80     pooka 		uvmexp.pdwoke++;
    916   1.92     pooka 
    917   1.92     pooka 		/* tell the world that we are hungry */
    918   1.80     pooka 		kernel_map->flags |= VM_MAP_WANTVA;
    919   1.92     pooka 		kmem_map->flags |= VM_MAP_WANTVA;
    920   1.92     pooka 
    921   1.92     pooka 		if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
    922   1.92     pooka 			continue;
    923   1.80     pooka 		mutex_exit(&pdaemonmtx);
    924   1.80     pooka 
    925   1.92     pooka 		/*
    926   1.92     pooka 		 * step one: reclaim the page cache.  this should give
    927   1.92     pooka 		 * us the biggest earnings since whole pages are released
    928   1.92     pooka 		 * into backing memory.
    929   1.92     pooka 		 */
    930   1.92     pooka 		pool_cache_reclaim(&pagecache);
    931   1.92     pooka 		if (!NEED_PAGEDAEMON()) {
    932   1.92     pooka 			succ = true;
    933   1.92     pooka 			mutex_enter(&pdaemonmtx);
    934   1.92     pooka 			continue;
    935   1.92     pooka 		}
    936   1.92     pooka 
    937   1.92     pooka 		/*
    938   1.92     pooka 		 * Ok, so that didn't help.  Next, try to hunt memory
    939   1.92     pooka 		 * by pushing out vnode pages.  The pages might contain
    940   1.92     pooka 		 * useful cached data, but we need the memory.
    941   1.92     pooka 		 */
    942   1.92     pooka 		cleaned = 0;
    943   1.92     pooka 		skip = 0;
    944   1.92     pooka  again:
    945   1.92     pooka 		mutex_enter(&uvm_pageqlock);
    946   1.92     pooka 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
    947   1.92     pooka 			skipped = 0;
    948   1.92     pooka 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
    949   1.92     pooka 
    950   1.92     pooka 				/*
    951   1.92     pooka 				 * skip over pages we _might_ have tried
    952   1.92     pooka 				 * to handle earlier.  they might not be
    953   1.92     pooka 				 * exactly the same ones, but I'm not too
    954   1.92     pooka 				 * concerned.
    955   1.92     pooka 				 */
    956   1.92     pooka 				while (skipped++ < skip)
    957   1.92     pooka 					continue;
    958   1.92     pooka 
    959   1.95     pooka 				if (processpage(pg)) {
    960   1.95     pooka 					cleaned++;
    961   1.95     pooka 					goto again;
    962   1.92     pooka 				}
    963   1.92     pooka 
    964   1.92     pooka 				skip++;
    965   1.92     pooka 			}
    966   1.92     pooka 			break;
    967   1.92     pooka 		}
    968   1.92     pooka 		mutex_exit(&uvm_pageqlock);
    969   1.92     pooka 
    970   1.92     pooka 		/*
    971   1.92     pooka 		 * And of course we need to reclaim the page cache
    972   1.92     pooka 		 * again to actually release memory.
    973   1.92     pooka 		 */
    974   1.92     pooka 		pool_cache_reclaim(&pagecache);
    975   1.92     pooka 		if (!NEED_PAGEDAEMON()) {
    976   1.92     pooka 			succ = true;
    977   1.92     pooka 			mutex_enter(&pdaemonmtx);
    978   1.92     pooka 			continue;
    979   1.92     pooka 		}
    980   1.92     pooka 
    981   1.92     pooka 		/*
    982   1.92     pooka 		 * Still not there?  sleeves come off right about now.
    983   1.92     pooka 		 * First: do reclaim on kernel/kmem map.
    984   1.92     pooka 		 */
    985   1.92     pooka 		callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
    986   1.92     pooka 		    NULL);
    987   1.92     pooka 		callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
    988   1.92     pooka 		    NULL);
    989   1.92     pooka 
    990   1.92     pooka 		/*
    991   1.92     pooka 		 * And then drain the pools.  Wipe them out ... all of them.
    992   1.92     pooka 		 */
    993   1.92     pooka 
    994   1.80     pooka 		pool_drain_start(&pp_first, &where);
    995   1.80     pooka 		pp = pp_first;
    996   1.80     pooka 		for (;;) {
    997   1.91     pooka 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
    998   1.80     pooka 			succ = pool_drain_end(pp, where);
    999   1.80     pooka 			if (succ)
   1000   1.80     pooka 				break;
   1001   1.80     pooka 			pool_drain_start(&pp, &where);
   1002   1.80     pooka 			if (pp == pp_first) {
   1003   1.80     pooka 				succ = pool_drain_end(pp, where);
   1004   1.80     pooka 				break;
   1005   1.80     pooka 			}
   1006   1.80     pooka 		}
   1007   1.92     pooka 
   1008   1.92     pooka 		/*
   1009   1.92     pooka 		 * Need to use PYEC on our bag of tricks.
   1010   1.92     pooka 		 * Unfortunately, the wife just borrowed it.
   1011   1.92     pooka 		 */
   1012   1.80     pooka 
   1013   1.80     pooka 		if (!succ) {
   1014   1.80     pooka 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1015   1.80     pooka 			    "memory ... sleeping (deadlock?)\n");
   1016   1.95     pooka 			timo = hz;
   1017   1.80     pooka 		}
   1018   1.80     pooka 
   1019   1.92     pooka 		mutex_enter(&pdaemonmtx);
   1020   1.80     pooka 	}
   1021   1.80     pooka 
   1022   1.80     pooka 	panic("you can swap out any time you like, but you can never leave");
   1023   1.80     pooka }
   1024   1.80     pooka 
   1025   1.80     pooka void
   1026   1.80     pooka uvm_kick_pdaemon()
   1027   1.80     pooka {
   1028   1.80     pooka 
   1029   1.92     pooka 	/*
   1030   1.92     pooka 	 * Wake up the diabolical pagedaemon director if we are over
   1031   1.92     pooka 	 * 90% of the memory limit.  This is a complete and utter
   1032   1.92     pooka 	 * stetson-harrison decision which you are allowed to finetune.
   1033   1.92     pooka 	 * Don't bother locking.  If we have some unflushed caches,
   1034   1.92     pooka 	 * other waker-uppers will deal with the issue.
   1035   1.92     pooka 	 */
   1036   1.92     pooka 	if (NEED_PAGEDAEMON()) {
   1037   1.92     pooka 		cv_signal(&pdaemoncv);
   1038   1.92     pooka 	}
   1039   1.80     pooka }
   1040   1.80     pooka 
   1041   1.80     pooka void *
   1042   1.80     pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1043   1.80     pooka {
   1044   1.84     pooka 	unsigned long newmem;
   1045   1.80     pooka 	void *rv;
   1046   1.80     pooka 
   1047   1.92     pooka 	uvm_kick_pdaemon(); /* ouch */
   1048   1.92     pooka 
   1049   1.84     pooka 	/* first we must be within the limit */
   1050   1.84     pooka  limitagain:
   1051   1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1052   1.84     pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1053   1.91     pooka 		if (newmem > rump_physmemlimit) {
   1054   1.84     pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1055   1.84     pooka 			if (!waitok)
   1056   1.84     pooka 				return NULL;
   1057   1.84     pooka 			uvm_wait(wmsg);
   1058   1.84     pooka 			goto limitagain;
   1059   1.84     pooka 		}
   1060   1.84     pooka 	}
   1061   1.84     pooka 
   1062   1.84     pooka 	/* second, we must get something from the backend */
   1063   1.80     pooka  again:
   1064   1.80     pooka 	rv = rumpuser_malloc(howmuch, alignment);
   1065   1.80     pooka 	if (__predict_false(rv == NULL && waitok)) {
   1066   1.80     pooka 		uvm_wait(wmsg);
   1067   1.80     pooka 		goto again;
   1068   1.80     pooka 	}
   1069   1.80     pooka 
   1070   1.80     pooka 	return rv;
   1071   1.80     pooka }
   1072   1.84     pooka 
   1073   1.84     pooka void
   1074   1.84     pooka rump_hyperfree(void *what, size_t size)
   1075   1.84     pooka {
   1076   1.84     pooka 
   1077   1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1078   1.84     pooka 		atomic_add_long(&curphysmem, -size);
   1079   1.84     pooka 	}
   1080   1.84     pooka 	rumpuser_free(what);
   1081   1.84     pooka }
   1082