Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.107.2.3
      1  1.107.2.3    bouyer /*	$NetBSD: vm.c,v 1.107.2.3 2011/03/05 15:10:50 bouyer Exp $	*/
      2        1.1     pooka 
      3        1.1     pooka /*
      4       1.76     pooka  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5        1.1     pooka  *
      6       1.76     pooka  * Development of this software was supported by
      7       1.76     pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8       1.76     pooka  * The Helsinki University of Technology.
      9        1.1     pooka  *
     10        1.1     pooka  * Redistribution and use in source and binary forms, with or without
     11        1.1     pooka  * modification, are permitted provided that the following conditions
     12        1.1     pooka  * are met:
     13        1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     14        1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     15        1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     17        1.1     pooka  *    documentation and/or other materials provided with the distribution.
     18        1.1     pooka  *
     19        1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20        1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21        1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22        1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23        1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24        1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25        1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26        1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27        1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28        1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29        1.1     pooka  * SUCH DAMAGE.
     30        1.1     pooka  */
     31        1.1     pooka 
     32        1.1     pooka /*
     33       1.88     pooka  * Virtual memory emulation routines.
     34        1.1     pooka  */
     35        1.1     pooka 
     36        1.1     pooka /*
     37        1.5     pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38        1.1     pooka  * for each page.  phys_addr would fit the job description better,
     39        1.1     pooka  * except that it will create unnecessary lossage on some platforms
     40        1.1     pooka  * due to not being a pointer type.
     41        1.1     pooka  */
     42        1.1     pooka 
     43       1.48     pooka #include <sys/cdefs.h>
     44  1.107.2.3    bouyer __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.107.2.3 2011/03/05 15:10:50 bouyer Exp $");
     45       1.48     pooka 
     46        1.1     pooka #include <sys/param.h>
     47       1.40     pooka #include <sys/atomic.h>
     48       1.80     pooka #include <sys/buf.h>
     49       1.80     pooka #include <sys/kernel.h>
     50       1.67     pooka #include <sys/kmem.h>
     51       1.69     pooka #include <sys/mman.h>
     52        1.1     pooka #include <sys/null.h>
     53        1.1     pooka #include <sys/vnode.h>
     54        1.1     pooka 
     55       1.34     pooka #include <machine/pmap.h>
     56       1.34     pooka 
     57       1.34     pooka #include <rump/rumpuser.h>
     58       1.34     pooka 
     59        1.1     pooka #include <uvm/uvm.h>
     60       1.56     pooka #include <uvm/uvm_ddb.h>
     61       1.88     pooka #include <uvm/uvm_pdpolicy.h>
     62        1.1     pooka #include <uvm/uvm_prot.h>
     63       1.58        he #include <uvm/uvm_readahead.h>
     64        1.1     pooka 
     65       1.13     pooka #include "rump_private.h"
     66       1.91     pooka #include "rump_vfs_private.h"
     67        1.1     pooka 
     68       1.25        ad kmutex_t uvm_pageqlock;
     69       1.88     pooka kmutex_t uvm_swap_data_lock;
     70       1.25        ad 
     71        1.1     pooka struct uvmexp uvmexp;
     72        1.7     pooka struct uvm uvm;
     73        1.1     pooka 
     74  1.107.2.3    bouyer #ifdef __uvmexp_pagesize
     75  1.107.2.3    bouyer int *uvmexp_pagesize = &uvmexp.pagesize;
     76  1.107.2.3    bouyer int *uvmexp_pagemask = &uvmexp.pagemask;
     77  1.107.2.3    bouyer int *uvmexp_pageshift = &uvmexp.pageshift;
     78  1.107.2.3    bouyer #endif
     79  1.107.2.3    bouyer 
     80        1.1     pooka struct vm_map rump_vmmap;
     81       1.50     pooka static struct vm_map_kernel kmem_map_store;
     82       1.50     pooka struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     83        1.1     pooka 
     84       1.35     pooka static struct vm_map_kernel kernel_map_store;
     85       1.35     pooka struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     86       1.35     pooka 
     87       1.80     pooka static unsigned int pdaemon_waiters;
     88       1.80     pooka static kmutex_t pdaemonmtx;
     89       1.80     pooka static kcondvar_t pdaemoncv, oomwait;
     90       1.80     pooka 
     91       1.91     pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     92       1.84     pooka static unsigned long curphysmem;
     93       1.92     pooka static unsigned long dddlim;		/* 90% of memory limit used */
     94       1.92     pooka #define NEED_PAGEDAEMON() \
     95       1.92     pooka     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
     96       1.92     pooka 
     97       1.92     pooka /*
     98       1.92     pooka  * Try to free two pages worth of pages from objects.
     99       1.92     pooka  * If this succesfully frees a full page cache page, we'll
    100       1.92     pooka  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    101       1.92     pooka  */
    102       1.92     pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    103       1.92     pooka 
    104       1.92     pooka /*
    105       1.92     pooka  * Keep a list of least recently used pages.  Since the only way a
    106       1.92     pooka  * rump kernel can "access" a page is via lookup, we put the page
    107       1.92     pooka  * at the back of queue every time a lookup for it is done.  If the
    108       1.92     pooka  * page is in front of this global queue and we're short of memory,
    109       1.92     pooka  * it's a candidate for pageout.
    110       1.92     pooka  */
    111       1.92     pooka static struct pglist vmpage_lruqueue;
    112       1.92     pooka static unsigned vmpage_onqueue;
    113       1.84     pooka 
    114       1.89     pooka static int
    115       1.96     rmind pg_compare_key(void *ctx, const void *n, const void *key)
    116       1.89     pooka {
    117       1.89     pooka 	voff_t a = ((const struct vm_page *)n)->offset;
    118       1.89     pooka 	voff_t b = *(const voff_t *)key;
    119       1.89     pooka 
    120       1.89     pooka 	if (a < b)
    121       1.96     rmind 		return -1;
    122       1.96     rmind 	else if (a > b)
    123       1.89     pooka 		return 1;
    124       1.89     pooka 	else
    125       1.89     pooka 		return 0;
    126       1.89     pooka }
    127       1.89     pooka 
    128       1.89     pooka static int
    129       1.96     rmind pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    130       1.89     pooka {
    131       1.89     pooka 
    132       1.96     rmind 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    133       1.89     pooka }
    134       1.89     pooka 
    135       1.96     rmind const rb_tree_ops_t uvm_page_tree_ops = {
    136       1.89     pooka 	.rbto_compare_nodes = pg_compare_nodes,
    137       1.89     pooka 	.rbto_compare_key = pg_compare_key,
    138       1.96     rmind 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    139       1.96     rmind 	.rbto_context = NULL
    140       1.89     pooka };
    141       1.89     pooka 
    142        1.1     pooka /*
    143        1.1     pooka  * vm pages
    144        1.1     pooka  */
    145        1.1     pooka 
    146       1.90     pooka static int
    147       1.90     pooka pgctor(void *arg, void *obj, int flags)
    148       1.90     pooka {
    149       1.90     pooka 	struct vm_page *pg = obj;
    150       1.90     pooka 
    151       1.90     pooka 	memset(pg, 0, sizeof(*pg));
    152      1.103     pooka 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    153      1.103     pooka 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    154      1.103     pooka 	return pg->uanon == NULL;
    155       1.90     pooka }
    156       1.90     pooka 
    157       1.90     pooka static void
    158       1.90     pooka pgdtor(void *arg, void *obj)
    159       1.90     pooka {
    160       1.90     pooka 	struct vm_page *pg = obj;
    161       1.90     pooka 
    162       1.90     pooka 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    163       1.90     pooka }
    164       1.90     pooka 
    165       1.90     pooka static struct pool_cache pagecache;
    166       1.90     pooka 
    167       1.92     pooka /*
    168       1.92     pooka  * Called with the object locked.  We don't support anons.
    169       1.92     pooka  */
    170        1.1     pooka struct vm_page *
    171       1.76     pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    172       1.76     pooka 	int flags, int strat, int free_list)
    173        1.1     pooka {
    174        1.1     pooka 	struct vm_page *pg;
    175        1.1     pooka 
    176       1.92     pooka 	KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
    177       1.92     pooka 	KASSERT(anon == NULL);
    178       1.92     pooka 
    179      1.103     pooka 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    180      1.104     pooka 	if (__predict_false(pg == NULL)) {
    181      1.103     pooka 		return NULL;
    182      1.104     pooka 	}
    183      1.103     pooka 
    184        1.1     pooka 	pg->offset = off;
    185        1.5     pooka 	pg->uobject = uobj;
    186        1.1     pooka 
    187       1.22     pooka 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    188       1.90     pooka 	if (flags & UVM_PGA_ZERO) {
    189       1.90     pooka 		uvm_pagezero(pg);
    190       1.90     pooka 	}
    191        1.1     pooka 
    192       1.31        ad 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    193       1.96     rmind 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    194       1.89     pooka 
    195       1.92     pooka 	/*
    196       1.93     pooka 	 * Don't put anons on the LRU page queue.  We can't flush them
    197       1.93     pooka 	 * (there's no concept of swap in a rump kernel), so no reason
    198       1.93     pooka 	 * to bother with them.
    199       1.92     pooka 	 */
    200       1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    201       1.92     pooka 		atomic_inc_uint(&vmpage_onqueue);
    202       1.92     pooka 		mutex_enter(&uvm_pageqlock);
    203       1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    204       1.92     pooka 		mutex_exit(&uvm_pageqlock);
    205       1.92     pooka 	}
    206       1.92     pooka 
    207       1.59     pooka 	uobj->uo_npages++;
    208       1.21     pooka 
    209        1.1     pooka 	return pg;
    210        1.1     pooka }
    211        1.1     pooka 
    212       1.21     pooka /*
    213       1.21     pooka  * Release a page.
    214       1.21     pooka  *
    215       1.22     pooka  * Called with the vm object locked.
    216       1.21     pooka  */
    217        1.1     pooka void
    218       1.22     pooka uvm_pagefree(struct vm_page *pg)
    219        1.1     pooka {
    220        1.5     pooka 	struct uvm_object *uobj = pg->uobject;
    221        1.1     pooka 
    222       1.92     pooka 	KASSERT(mutex_owned(&uvm_pageqlock));
    223       1.95     pooka 	KASSERT(mutex_owned(&uobj->vmobjlock));
    224       1.92     pooka 
    225       1.22     pooka 	if (pg->flags & PG_WANTED)
    226       1.22     pooka 		wakeup(pg);
    227       1.22     pooka 
    228       1.92     pooka 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    229       1.92     pooka 
    230       1.59     pooka 	uobj->uo_npages--;
    231       1.96     rmind 	rb_tree_remove_node(&uobj->rb_tree, pg);
    232       1.92     pooka 
    233       1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    234       1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    235       1.92     pooka 		atomic_dec_uint(&vmpage_onqueue);
    236       1.92     pooka 	}
    237       1.92     pooka 
    238       1.90     pooka 	pool_cache_put(&pagecache, pg);
    239        1.1     pooka }
    240        1.1     pooka 
    241       1.15     pooka void
    242       1.61     pooka uvm_pagezero(struct vm_page *pg)
    243       1.15     pooka {
    244       1.15     pooka 
    245       1.61     pooka 	pg->flags &= ~PG_CLEAN;
    246       1.61     pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    247       1.15     pooka }
    248       1.15     pooka 
    249        1.1     pooka /*
    250        1.1     pooka  * Misc routines
    251        1.1     pooka  */
    252        1.1     pooka 
    253       1.61     pooka static kmutex_t pagermtx;
    254       1.61     pooka 
    255        1.1     pooka void
    256       1.79     pooka uvm_init(void)
    257        1.1     pooka {
    258       1.84     pooka 	char buf[64];
    259       1.84     pooka 	int error;
    260       1.84     pooka 
    261       1.84     pooka 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    262      1.105     pooka 		unsigned long tmp;
    263      1.105     pooka 		char *ep;
    264      1.105     pooka 		int mult;
    265      1.105     pooka 
    266  1.107.2.1    bouyer 		tmp = strtoul(buf, &ep, 10);
    267      1.105     pooka 		if (strlen(ep) > 1)
    268      1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    269      1.105     pooka 
    270      1.105     pooka 		/* mini-dehumanize-number */
    271      1.105     pooka 		mult = 1;
    272      1.105     pooka 		switch (*ep) {
    273      1.105     pooka 		case 'k':
    274      1.105     pooka 			mult = 1024;
    275      1.105     pooka 			break;
    276      1.105     pooka 		case 'm':
    277      1.105     pooka 			mult = 1024*1024;
    278      1.105     pooka 			break;
    279      1.105     pooka 		case 'g':
    280      1.105     pooka 			mult = 1024*1024*1024;
    281      1.105     pooka 			break;
    282      1.105     pooka 		case 0:
    283      1.105     pooka 			break;
    284      1.105     pooka 		default:
    285      1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    286      1.105     pooka 		}
    287      1.105     pooka 		rump_physmemlimit = tmp * mult;
    288      1.105     pooka 
    289      1.105     pooka 		if (rump_physmemlimit / mult != tmp)
    290      1.105     pooka 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    291       1.84     pooka 		/* it's not like we'd get far with, say, 1 byte, but ... */
    292       1.91     pooka 		if (rump_physmemlimit == 0)
    293      1.105     pooka 			panic("uvm_init: no memory");
    294      1.105     pooka 
    295       1.84     pooka #define HUMANIZE_BYTES 9
    296       1.84     pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    297       1.91     pooka 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    298       1.84     pooka #undef HUMANIZE_BYTES
    299       1.92     pooka 		dddlim = 9 * (rump_physmemlimit / 10);
    300       1.84     pooka 	} else {
    301       1.84     pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    302       1.84     pooka 	}
    303       1.84     pooka 	aprint_verbose("total memory = %s\n", buf);
    304        1.1     pooka 
    305       1.92     pooka 	TAILQ_INIT(&vmpage_lruqueue);
    306       1.92     pooka 
    307       1.84     pooka 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    308       1.21     pooka 
    309  1.107.2.3    bouyer #ifndef __uvmexp_pagesize
    310  1.107.2.3    bouyer 	uvmexp.pagesize = PAGE_SIZE;
    311  1.107.2.3    bouyer 	uvmexp.pagemask = PAGE_MASK;
    312  1.107.2.3    bouyer 	uvmexp.pageshift = PAGE_SHIFT;
    313  1.107.2.3    bouyer #else
    314  1.107.2.3    bouyer #define FAKE_PAGE_SHIFT 12
    315  1.107.2.3    bouyer 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    316  1.107.2.3    bouyer 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    317  1.107.2.3    bouyer 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    318  1.107.2.3    bouyer #undef FAKE_PAGE_SHIFT
    319  1.107.2.3    bouyer #endif
    320  1.107.2.3    bouyer 
    321       1.61     pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    322       1.25        ad 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    323       1.88     pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    324       1.35     pooka 
    325       1.80     pooka 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    326       1.80     pooka 	cv_init(&pdaemoncv, "pdaemon");
    327       1.80     pooka 	cv_init(&oomwait, "oomwait");
    328       1.80     pooka 
    329       1.50     pooka 	kernel_map->pmap = pmap_kernel();
    330       1.35     pooka 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    331       1.50     pooka 	kmem_map->pmap = pmap_kernel();
    332       1.50     pooka 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    333       1.90     pooka 
    334       1.90     pooka 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    335       1.90     pooka 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    336        1.1     pooka }
    337        1.1     pooka 
    338       1.83     pooka void
    339       1.83     pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    340       1.83     pooka {
    341       1.83     pooka 
    342       1.83     pooka 	vm->vm_map.pmap = pmap_kernel();
    343       1.83     pooka 	vm->vm_refcnt = 1;
    344       1.83     pooka }
    345        1.1     pooka 
    346        1.1     pooka void
    347        1.7     pooka uvm_pagewire(struct vm_page *pg)
    348        1.7     pooka {
    349        1.7     pooka 
    350        1.7     pooka 	/* nada */
    351        1.7     pooka }
    352        1.7     pooka 
    353        1.7     pooka void
    354        1.7     pooka uvm_pageunwire(struct vm_page *pg)
    355        1.7     pooka {
    356        1.7     pooka 
    357        1.7     pooka 	/* nada */
    358        1.7     pooka }
    359        1.7     pooka 
    360  1.107.2.1    bouyer /*
    361  1.107.2.1    bouyer  * The uvm reclaim hook is not currently necessary because it is
    362  1.107.2.1    bouyer  * used only by ZFS and implements exactly the same functionality
    363  1.107.2.1    bouyer  * as the kva reclaim hook which we already run in the pagedaemon
    364  1.107.2.1    bouyer  * (rump vm does not have a concept of uvm_map(), so we cannot
    365  1.107.2.1    bouyer  * reclaim kva it when a mapping operation fails due to insufficient
    366  1.107.2.1    bouyer  * available kva).
    367  1.107.2.1    bouyer  */
    368      1.107      haad void
    369      1.107      haad uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook_entry)
    370      1.107      haad {
    371      1.107      haad 
    372      1.107      haad }
    373  1.107.2.1    bouyer __strong_alias(uvm_reclaim_hook_del,uvm_reclaim_hook_add);
    374      1.107      haad 
    375       1.83     pooka /* where's your schmonz now? */
    376       1.83     pooka #define PUNLIMIT(a)	\
    377       1.83     pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    378       1.83     pooka void
    379       1.83     pooka uvm_init_limits(struct proc *p)
    380       1.83     pooka {
    381       1.83     pooka 
    382       1.83     pooka 	PUNLIMIT(RLIMIT_STACK);
    383       1.83     pooka 	PUNLIMIT(RLIMIT_DATA);
    384       1.83     pooka 	PUNLIMIT(RLIMIT_RSS);
    385       1.83     pooka 	PUNLIMIT(RLIMIT_AS);
    386       1.83     pooka 	/* nice, cascade */
    387       1.83     pooka }
    388       1.83     pooka #undef PUNLIMIT
    389       1.83     pooka 
    390       1.69     pooka /*
    391       1.69     pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    392       1.69     pooka  * We probably should grow some more assertables to make sure we're
    393      1.103     pooka  * not satisfying anything we shouldn't be satisfying.
    394       1.69     pooka  */
    395       1.49     pooka int
    396       1.49     pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    397       1.49     pooka 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    398       1.49     pooka {
    399       1.69     pooka 	void *uaddr;
    400       1.69     pooka 	int error;
    401       1.49     pooka 
    402       1.69     pooka 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    403       1.69     pooka 		panic("uvm_mmap() variant unsupported");
    404       1.69     pooka 	if (flags != (MAP_PRIVATE | MAP_ANON))
    405       1.69     pooka 		panic("uvm_mmap() variant unsupported");
    406       1.98     pooka 
    407       1.69     pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    408       1.69     pooka 	if (*addr != 0)
    409       1.69     pooka 		panic("uvm_mmap() variant unsupported");
    410       1.69     pooka 
    411      1.106     pooka 	if (RUMP_LOCALPROC_P(curproc)) {
    412       1.98     pooka 		uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    413       1.98     pooka 	} else {
    414      1.102     pooka 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
    415      1.102     pooka 		    size, &uaddr);
    416       1.98     pooka 	}
    417       1.69     pooka 	if (uaddr == NULL)
    418       1.69     pooka 		return error;
    419       1.69     pooka 
    420       1.69     pooka 	*addr = (vaddr_t)uaddr;
    421       1.69     pooka 	return 0;
    422       1.49     pooka }
    423       1.49     pooka 
    424       1.61     pooka struct pagerinfo {
    425       1.61     pooka 	vaddr_t pgr_kva;
    426       1.61     pooka 	int pgr_npages;
    427       1.61     pooka 	struct vm_page **pgr_pgs;
    428       1.61     pooka 	bool pgr_read;
    429       1.61     pooka 
    430       1.61     pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    431       1.61     pooka };
    432       1.61     pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    433       1.61     pooka 
    434       1.61     pooka /*
    435       1.61     pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    436       1.61     pooka  * and copy page contents there.  Not optimal or even strictly
    437       1.61     pooka  * correct (the caller might modify the page contents after mapping
    438       1.61     pooka  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    439       1.61     pooka  */
    440        1.7     pooka vaddr_t
    441       1.61     pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    442        1.7     pooka {
    443       1.61     pooka 	struct pagerinfo *pgri;
    444       1.61     pooka 	vaddr_t curkva;
    445       1.61     pooka 	int i;
    446       1.61     pooka 
    447       1.61     pooka 	/* allocate structures */
    448       1.61     pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    449       1.61     pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    450       1.61     pooka 	pgri->pgr_npages = npages;
    451       1.61     pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    452       1.61     pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    453       1.61     pooka 
    454       1.61     pooka 	/* copy contents to "mapped" memory */
    455       1.61     pooka 	for (i = 0, curkva = pgri->pgr_kva;
    456       1.61     pooka 	    i < npages;
    457       1.61     pooka 	    i++, curkva += PAGE_SIZE) {
    458       1.61     pooka 		/*
    459       1.61     pooka 		 * We need to copy the previous contents of the pages to
    460       1.61     pooka 		 * the window even if we are reading from the
    461       1.61     pooka 		 * device, since the device might not fill the contents of
    462       1.61     pooka 		 * the full mapped range and we will end up corrupting
    463       1.61     pooka 		 * data when we unmap the window.
    464       1.61     pooka 		 */
    465       1.61     pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    466       1.61     pooka 		pgri->pgr_pgs[i] = pgs[i];
    467       1.61     pooka 	}
    468       1.61     pooka 
    469       1.61     pooka 	mutex_enter(&pagermtx);
    470       1.61     pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    471       1.61     pooka 	mutex_exit(&pagermtx);
    472        1.7     pooka 
    473       1.61     pooka 	return pgri->pgr_kva;
    474        1.7     pooka }
    475        1.7     pooka 
    476       1.61     pooka /*
    477       1.61     pooka  * map out the pager window.  return contents from VA to page storage
    478       1.61     pooka  * and free structures.
    479       1.61     pooka  *
    480       1.61     pooka  * Note: does not currently support partial frees
    481       1.61     pooka  */
    482       1.61     pooka void
    483       1.61     pooka uvm_pagermapout(vaddr_t kva, int npages)
    484        1.7     pooka {
    485       1.61     pooka 	struct pagerinfo *pgri;
    486       1.61     pooka 	vaddr_t curkva;
    487       1.61     pooka 	int i;
    488        1.7     pooka 
    489       1.61     pooka 	mutex_enter(&pagermtx);
    490       1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    491       1.61     pooka 		if (pgri->pgr_kva == kva)
    492       1.61     pooka 			break;
    493       1.61     pooka 	}
    494       1.61     pooka 	KASSERT(pgri);
    495       1.61     pooka 	if (pgri->pgr_npages != npages)
    496       1.61     pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    497       1.61     pooka 	LIST_REMOVE(pgri, pgr_entries);
    498       1.61     pooka 	mutex_exit(&pagermtx);
    499       1.61     pooka 
    500       1.61     pooka 	if (pgri->pgr_read) {
    501       1.61     pooka 		for (i = 0, curkva = pgri->pgr_kva;
    502       1.61     pooka 		    i < pgri->pgr_npages;
    503       1.61     pooka 		    i++, curkva += PAGE_SIZE) {
    504       1.61     pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    505       1.21     pooka 		}
    506       1.21     pooka 	}
    507       1.10     pooka 
    508       1.61     pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    509       1.61     pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    510       1.61     pooka 	kmem_free(pgri, sizeof(*pgri));
    511        1.7     pooka }
    512        1.7     pooka 
    513       1.61     pooka /*
    514       1.61     pooka  * convert va in pager window to page structure.
    515       1.61     pooka  * XXX: how expensive is this (global lock, list traversal)?
    516       1.61     pooka  */
    517       1.14     pooka struct vm_page *
    518       1.14     pooka uvm_pageratop(vaddr_t va)
    519       1.14     pooka {
    520       1.61     pooka 	struct pagerinfo *pgri;
    521       1.61     pooka 	struct vm_page *pg = NULL;
    522       1.61     pooka 	int i;
    523       1.14     pooka 
    524       1.61     pooka 	mutex_enter(&pagermtx);
    525       1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    526       1.61     pooka 		if (pgri->pgr_kva <= va
    527       1.61     pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    528       1.21     pooka 			break;
    529       1.61     pooka 	}
    530       1.61     pooka 	if (pgri) {
    531       1.61     pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    532       1.61     pooka 		pg = pgri->pgr_pgs[i];
    533       1.61     pooka 	}
    534       1.61     pooka 	mutex_exit(&pagermtx);
    535       1.21     pooka 
    536       1.61     pooka 	return pg;
    537       1.61     pooka }
    538       1.15     pooka 
    539       1.97     pooka /*
    540       1.97     pooka  * Called with the vm object locked.
    541       1.97     pooka  *
    542       1.97     pooka  * Put vnode object pages at the end of the access queue to indicate
    543       1.97     pooka  * they have been recently accessed and should not be immediate
    544       1.97     pooka  * candidates for pageout.  Do not do this for lookups done by
    545       1.97     pooka  * the pagedaemon to mimic pmap_kentered mappings which don't track
    546       1.97     pooka  * access information.
    547       1.97     pooka  */
    548       1.61     pooka struct vm_page *
    549       1.61     pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    550       1.61     pooka {
    551       1.92     pooka 	struct vm_page *pg;
    552       1.97     pooka 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    553       1.61     pooka 
    554       1.96     rmind 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    555       1.97     pooka 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    556       1.92     pooka 		mutex_enter(&uvm_pageqlock);
    557       1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    558       1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    559       1.92     pooka 		mutex_exit(&uvm_pageqlock);
    560       1.92     pooka 	}
    561       1.92     pooka 
    562       1.92     pooka 	return pg;
    563       1.14     pooka }
    564       1.14     pooka 
    565        1.7     pooka void
    566       1.22     pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    567       1.22     pooka {
    568       1.22     pooka 	struct vm_page *pg;
    569       1.22     pooka 	int i;
    570       1.22     pooka 
    571       1.94     pooka 	KASSERT(npgs > 0);
    572       1.94     pooka 	KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
    573       1.94     pooka 
    574       1.22     pooka 	for (i = 0; i < npgs; i++) {
    575       1.22     pooka 		pg = pgs[i];
    576       1.22     pooka 		if (pg == NULL)
    577       1.22     pooka 			continue;
    578       1.22     pooka 
    579       1.22     pooka 		KASSERT(pg->flags & PG_BUSY);
    580       1.22     pooka 		if (pg->flags & PG_WANTED)
    581       1.22     pooka 			wakeup(pg);
    582       1.36     pooka 		if (pg->flags & PG_RELEASED)
    583       1.36     pooka 			uvm_pagefree(pg);
    584       1.36     pooka 		else
    585       1.36     pooka 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    586       1.22     pooka 	}
    587       1.22     pooka }
    588       1.22     pooka 
    589       1.22     pooka void
    590        1.7     pooka uvm_estimatepageable(int *active, int *inactive)
    591        1.7     pooka {
    592        1.7     pooka 
    593       1.19     pooka 	/* XXX: guessing game */
    594       1.19     pooka 	*active = 1024;
    595       1.19     pooka 	*inactive = 1024;
    596        1.7     pooka }
    597        1.7     pooka 
    598       1.39     pooka struct vm_map_kernel *
    599       1.39     pooka vm_map_to_kernel(struct vm_map *map)
    600       1.39     pooka {
    601       1.39     pooka 
    602       1.39     pooka 	return (struct vm_map_kernel *)map;
    603       1.39     pooka }
    604       1.39     pooka 
    605       1.41     pooka bool
    606       1.41     pooka vm_map_starved_p(struct vm_map *map)
    607       1.41     pooka {
    608       1.41     pooka 
    609       1.80     pooka 	if (map->flags & VM_MAP_WANTVA)
    610       1.80     pooka 		return true;
    611       1.80     pooka 
    612       1.41     pooka 	return false;
    613       1.41     pooka }
    614       1.41     pooka 
    615       1.41     pooka int
    616       1.41     pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    617       1.41     pooka {
    618       1.41     pooka 
    619       1.41     pooka 	panic("%s: unimplemented", __func__);
    620       1.41     pooka }
    621       1.41     pooka 
    622       1.41     pooka void
    623       1.41     pooka uvm_unloan(void *v, int npages, int flags)
    624       1.41     pooka {
    625       1.41     pooka 
    626       1.41     pooka 	panic("%s: unimplemented", __func__);
    627       1.41     pooka }
    628       1.41     pooka 
    629       1.43     pooka int
    630       1.43     pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    631       1.43     pooka 	struct vm_page **opp)
    632       1.43     pooka {
    633       1.43     pooka 
    634       1.72     pooka 	return EBUSY;
    635       1.43     pooka }
    636       1.43     pooka 
    637       1.73     pooka #ifdef DEBUGPRINT
    638       1.56     pooka void
    639       1.56     pooka uvm_object_printit(struct uvm_object *uobj, bool full,
    640       1.56     pooka 	void (*pr)(const char *, ...))
    641       1.56     pooka {
    642       1.56     pooka 
    643       1.75     pooka 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    644       1.56     pooka }
    645       1.73     pooka #endif
    646       1.56     pooka 
    647       1.68     pooka vaddr_t
    648       1.68     pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    649       1.68     pooka {
    650       1.68     pooka 
    651       1.68     pooka 	return 0;
    652       1.68     pooka }
    653       1.68     pooka 
    654       1.71     pooka int
    655       1.71     pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    656       1.71     pooka 	vm_prot_t prot, bool set_max)
    657       1.71     pooka {
    658       1.71     pooka 
    659       1.71     pooka 	return EOPNOTSUPP;
    660       1.71     pooka }
    661       1.71     pooka 
    662        1.9     pooka /*
    663       1.12     pooka  * UVM km
    664       1.12     pooka  */
    665       1.12     pooka 
    666       1.12     pooka vaddr_t
    667       1.12     pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    668       1.12     pooka {
    669       1.82     pooka 	void *rv, *desired = NULL;
    670       1.50     pooka 	int alignbit, error;
    671       1.50     pooka 
    672       1.82     pooka #ifdef __x86_64__
    673       1.82     pooka 	/*
    674       1.82     pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    675       1.82     pooka 	 * This is because NetBSD kernel modules are compiled
    676       1.82     pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    677       1.82     pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    678       1.82     pooka 	 * anywhere except the lowest or highest 2GB, it will not
    679       1.82     pooka 	 * work.  Since userspace does not have access to the highest
    680       1.82     pooka 	 * 2GB, use the lowest 2GB.
    681       1.82     pooka 	 *
    682       1.82     pooka 	 * Note: this assumes the rump kernel resides in
    683       1.82     pooka 	 * the lowest 2GB as well.
    684       1.82     pooka 	 *
    685       1.82     pooka 	 * Note2: yes, it's a quick hack, but since this the only
    686       1.82     pooka 	 * place where we care about the map we're allocating from,
    687       1.82     pooka 	 * just use a simple "if" instead of coming up with a fancy
    688       1.82     pooka 	 * generic solution.
    689       1.82     pooka 	 */
    690       1.82     pooka 	extern struct vm_map *module_map;
    691       1.82     pooka 	if (map == module_map) {
    692       1.82     pooka 		desired = (void *)(0x80000000 - size);
    693       1.82     pooka 	}
    694       1.82     pooka #endif
    695       1.82     pooka 
    696       1.50     pooka 	alignbit = 0;
    697       1.50     pooka 	if (align) {
    698       1.50     pooka 		alignbit = ffs(align)-1;
    699       1.50     pooka 	}
    700       1.50     pooka 
    701       1.82     pooka 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    702       1.81     pooka 	    &error);
    703       1.50     pooka 	if (rv == NULL) {
    704       1.50     pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    705       1.50     pooka 			return 0;
    706       1.50     pooka 		else
    707       1.50     pooka 			panic("uvm_km_alloc failed");
    708       1.50     pooka 	}
    709       1.12     pooka 
    710       1.50     pooka 	if (flags & UVM_KMF_ZERO)
    711       1.12     pooka 		memset(rv, 0, size);
    712       1.12     pooka 
    713       1.12     pooka 	return (vaddr_t)rv;
    714       1.12     pooka }
    715       1.12     pooka 
    716       1.12     pooka void
    717       1.12     pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    718       1.12     pooka {
    719       1.12     pooka 
    720       1.50     pooka 	rumpuser_unmap((void *)vaddr, size);
    721       1.12     pooka }
    722       1.12     pooka 
    723       1.12     pooka struct vm_map *
    724       1.12     pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    725       1.12     pooka 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    726       1.12     pooka {
    727       1.12     pooka 
    728       1.12     pooka 	return (struct vm_map *)417416;
    729       1.12     pooka }
    730       1.40     pooka 
    731       1.40     pooka vaddr_t
    732       1.40     pooka uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    733       1.40     pooka {
    734       1.40     pooka 
    735       1.80     pooka 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    736       1.80     pooka 	    waitok, "kmalloc");
    737       1.40     pooka }
    738       1.40     pooka 
    739       1.40     pooka void
    740       1.40     pooka uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    741       1.40     pooka {
    742       1.40     pooka 
    743       1.84     pooka 	rump_hyperfree((void *)addr, PAGE_SIZE);
    744       1.50     pooka }
    745       1.50     pooka 
    746       1.50     pooka vaddr_t
    747       1.50     pooka uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    748       1.50     pooka {
    749       1.50     pooka 
    750       1.77     pooka 	return uvm_km_alloc_poolpage(map, waitok);
    751       1.50     pooka }
    752       1.50     pooka 
    753       1.50     pooka void
    754       1.50     pooka uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    755       1.50     pooka {
    756       1.50     pooka 
    757       1.77     pooka 	uvm_km_free_poolpage(map, vaddr);
    758       1.40     pooka }
    759       1.57     pooka 
    760       1.74     pooka void
    761       1.74     pooka uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    762       1.74     pooka {
    763       1.74     pooka 
    764       1.74     pooka 	/* we eventually maybe want some model for available memory */
    765       1.74     pooka }
    766       1.74     pooka 
    767       1.57     pooka /*
    768      1.102     pooka  * VM space locking routines.  We don't really have to do anything,
    769      1.102     pooka  * since the pages are always "wired" (both local and remote processes).
    770       1.57     pooka  */
    771       1.57     pooka int
    772       1.57     pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    773       1.57     pooka {
    774       1.57     pooka 
    775       1.57     pooka 	return 0;
    776       1.57     pooka }
    777       1.57     pooka 
    778       1.57     pooka void
    779       1.57     pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    780       1.57     pooka {
    781       1.57     pooka 
    782       1.57     pooka }
    783       1.57     pooka 
    784      1.102     pooka /*
    785      1.102     pooka  * For the local case the buffer mappers don't need to do anything.
    786      1.102     pooka  * For the remote case we need to reserve space and copy data in or
    787      1.102     pooka  * out, depending on B_READ/B_WRITE.
    788      1.102     pooka  */
    789  1.107.2.2    bouyer int
    790       1.57     pooka vmapbuf(struct buf *bp, vsize_t len)
    791       1.57     pooka {
    792  1.107.2.2    bouyer 	int error = 0;
    793       1.57     pooka 
    794       1.57     pooka 	bp->b_saveaddr = bp->b_data;
    795      1.102     pooka 
    796      1.102     pooka 	/* remote case */
    797      1.106     pooka 	if (!RUMP_LOCALPROC_P(curproc)) {
    798      1.102     pooka 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    799      1.102     pooka 		if (BUF_ISWRITE(bp)) {
    800  1.107.2.2    bouyer 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    801  1.107.2.2    bouyer 			if (error) {
    802  1.107.2.2    bouyer 				rump_hyperfree(bp->b_data, len);
    803  1.107.2.2    bouyer 				bp->b_data = bp->b_saveaddr;
    804  1.107.2.2    bouyer 				bp->b_saveaddr = 0;
    805  1.107.2.2    bouyer 			}
    806      1.102     pooka 		}
    807      1.102     pooka 	}
    808  1.107.2.2    bouyer 
    809  1.107.2.2    bouyer 	return error;
    810       1.57     pooka }
    811       1.57     pooka 
    812       1.57     pooka void
    813       1.57     pooka vunmapbuf(struct buf *bp, vsize_t len)
    814       1.57     pooka {
    815       1.57     pooka 
    816      1.102     pooka 	/* remote case */
    817      1.106     pooka 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    818      1.102     pooka 		if (BUF_ISREAD(bp)) {
    819  1.107.2.2    bouyer 			bp->b_error = copyout_proc(bp->b_proc,
    820      1.102     pooka 			    bp->b_data, bp->b_saveaddr, len);
    821      1.102     pooka 		}
    822      1.102     pooka 		rump_hyperfree(bp->b_data, len);
    823      1.102     pooka 	}
    824      1.102     pooka 
    825       1.57     pooka 	bp->b_data = bp->b_saveaddr;
    826       1.57     pooka 	bp->b_saveaddr = 0;
    827       1.57     pooka }
    828       1.61     pooka 
    829       1.61     pooka void
    830       1.83     pooka uvmspace_addref(struct vmspace *vm)
    831       1.83     pooka {
    832       1.83     pooka 
    833       1.83     pooka 	/*
    834      1.103     pooka 	 * No dynamically allocated vmspaces exist.
    835       1.83     pooka 	 */
    836       1.83     pooka }
    837       1.83     pooka 
    838       1.83     pooka void
    839       1.66     pooka uvmspace_free(struct vmspace *vm)
    840       1.66     pooka {
    841       1.66     pooka 
    842       1.66     pooka 	/* nothing for now */
    843       1.66     pooka }
    844       1.66     pooka 
    845       1.61     pooka /*
    846       1.61     pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    847       1.61     pooka  */
    848       1.61     pooka 
    849       1.61     pooka void
    850       1.61     pooka uvm_pageactivate(struct vm_page *pg)
    851       1.61     pooka {
    852       1.61     pooka 
    853       1.61     pooka 	/* nada */
    854       1.61     pooka }
    855       1.61     pooka 
    856       1.61     pooka void
    857       1.61     pooka uvm_pagedeactivate(struct vm_page *pg)
    858       1.61     pooka {
    859       1.61     pooka 
    860       1.61     pooka 	/* nada */
    861       1.61     pooka }
    862       1.61     pooka 
    863       1.61     pooka void
    864       1.61     pooka uvm_pagedequeue(struct vm_page *pg)
    865       1.61     pooka {
    866       1.61     pooka 
    867       1.61     pooka 	/* nada*/
    868       1.61     pooka }
    869       1.61     pooka 
    870       1.61     pooka void
    871       1.61     pooka uvm_pageenqueue(struct vm_page *pg)
    872       1.61     pooka {
    873       1.61     pooka 
    874       1.61     pooka 	/* nada */
    875       1.61     pooka }
    876       1.80     pooka 
    877       1.88     pooka void
    878       1.88     pooka uvmpdpol_anfree(struct vm_anon *an)
    879       1.88     pooka {
    880       1.88     pooka 
    881       1.88     pooka 	/* nada */
    882       1.88     pooka }
    883       1.88     pooka 
    884       1.80     pooka /*
    885       1.99  uebayasi  * Physical address accessors.
    886       1.99  uebayasi  */
    887       1.99  uebayasi 
    888       1.99  uebayasi struct vm_page *
    889       1.99  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    890       1.99  uebayasi {
    891       1.99  uebayasi 
    892       1.99  uebayasi 	return NULL;
    893       1.99  uebayasi }
    894       1.99  uebayasi 
    895       1.99  uebayasi paddr_t
    896       1.99  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
    897       1.99  uebayasi {
    898       1.99  uebayasi 
    899       1.99  uebayasi 	return 0;
    900       1.99  uebayasi }
    901       1.99  uebayasi 
    902       1.99  uebayasi /*
    903       1.80     pooka  * Routines related to the Page Baroness.
    904       1.80     pooka  */
    905       1.80     pooka 
    906       1.80     pooka void
    907       1.80     pooka uvm_wait(const char *msg)
    908       1.80     pooka {
    909       1.80     pooka 
    910       1.80     pooka 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    911       1.80     pooka 		panic("pagedaemon out of memory");
    912       1.80     pooka 	if (__predict_false(rump_threads == 0))
    913       1.80     pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    914       1.80     pooka 
    915       1.80     pooka 	mutex_enter(&pdaemonmtx);
    916       1.80     pooka 	pdaemon_waiters++;
    917       1.80     pooka 	cv_signal(&pdaemoncv);
    918       1.80     pooka 	cv_wait(&oomwait, &pdaemonmtx);
    919       1.80     pooka 	mutex_exit(&pdaemonmtx);
    920       1.80     pooka }
    921       1.80     pooka 
    922       1.80     pooka void
    923       1.80     pooka uvm_pageout_start(int npages)
    924       1.80     pooka {
    925       1.80     pooka 
    926  1.107.2.3    bouyer 	mutex_enter(&pdaemonmtx);
    927  1.107.2.3    bouyer 	uvmexp.paging += npages;
    928  1.107.2.3    bouyer 	mutex_exit(&pdaemonmtx);
    929       1.80     pooka }
    930       1.80     pooka 
    931       1.80     pooka void
    932       1.80     pooka uvm_pageout_done(int npages)
    933       1.80     pooka {
    934       1.80     pooka 
    935  1.107.2.3    bouyer 	if (!npages)
    936  1.107.2.3    bouyer 		return;
    937  1.107.2.3    bouyer 
    938  1.107.2.3    bouyer 	mutex_enter(&pdaemonmtx);
    939  1.107.2.3    bouyer 	KASSERT(uvmexp.paging >= npages);
    940  1.107.2.3    bouyer 	uvmexp.paging -= npages;
    941  1.107.2.3    bouyer 
    942  1.107.2.3    bouyer 	if (pdaemon_waiters) {
    943  1.107.2.3    bouyer 		pdaemon_waiters = 0;
    944  1.107.2.3    bouyer 		cv_broadcast(&oomwait);
    945  1.107.2.3    bouyer 	}
    946  1.107.2.3    bouyer 	mutex_exit(&pdaemonmtx);
    947       1.80     pooka }
    948       1.80     pooka 
    949       1.95     pooka static bool
    950      1.104     pooka processpage(struct vm_page *pg, bool *lockrunning)
    951       1.95     pooka {
    952       1.95     pooka 	struct uvm_object *uobj;
    953       1.95     pooka 
    954       1.95     pooka 	uobj = pg->uobject;
    955       1.95     pooka 	if (mutex_tryenter(&uobj->vmobjlock)) {
    956       1.95     pooka 		if ((pg->flags & PG_BUSY) == 0) {
    957       1.95     pooka 			mutex_exit(&uvm_pageqlock);
    958       1.95     pooka 			uobj->pgops->pgo_put(uobj, pg->offset,
    959       1.95     pooka 			    pg->offset + PAGE_SIZE,
    960       1.95     pooka 			    PGO_CLEANIT|PGO_FREE);
    961       1.95     pooka 			KASSERT(!mutex_owned(&uobj->vmobjlock));
    962       1.95     pooka 			return true;
    963       1.95     pooka 		} else {
    964       1.95     pooka 			mutex_exit(&uobj->vmobjlock);
    965       1.95     pooka 		}
    966      1.104     pooka 	} else if (*lockrunning == false && ncpu > 1) {
    967      1.104     pooka 		CPU_INFO_ITERATOR cii;
    968      1.104     pooka 		struct cpu_info *ci;
    969      1.104     pooka 		struct lwp *l;
    970      1.104     pooka 
    971      1.104     pooka 		l = mutex_owner(&uobj->vmobjlock);
    972      1.104     pooka 		for (CPU_INFO_FOREACH(cii, ci)) {
    973      1.104     pooka 			if (ci->ci_curlwp == l) {
    974      1.104     pooka 				*lockrunning = true;
    975      1.104     pooka 				break;
    976      1.104     pooka 			}
    977      1.104     pooka 		}
    978       1.95     pooka 	}
    979       1.95     pooka 
    980       1.95     pooka 	return false;
    981       1.95     pooka }
    982       1.95     pooka 
    983       1.80     pooka /*
    984       1.92     pooka  * The Diabolical pageDaemon Director (DDD).
    985  1.107.2.3    bouyer  *
    986  1.107.2.3    bouyer  * This routine can always use better heuristics.
    987       1.80     pooka  */
    988       1.80     pooka void
    989       1.80     pooka uvm_pageout(void *arg)
    990       1.80     pooka {
    991       1.92     pooka 	struct vm_page *pg;
    992       1.80     pooka 	struct pool *pp, *pp_first;
    993       1.80     pooka 	uint64_t where;
    994       1.92     pooka 	int cleaned, skip, skipped;
    995  1.107.2.3    bouyer 	int waspaging;
    996  1.107.2.3    bouyer 	bool succ;
    997      1.104     pooka 	bool lockrunning;
    998       1.80     pooka 
    999       1.80     pooka 	mutex_enter(&pdaemonmtx);
   1000       1.80     pooka 	for (;;) {
   1001  1.107.2.3    bouyer 		if (!NEED_PAGEDAEMON()) {
   1002       1.92     pooka 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1003       1.95     pooka 			kmem_map->flags &= ~VM_MAP_WANTVA;
   1004       1.92     pooka 		}
   1005       1.92     pooka 
   1006  1.107.2.3    bouyer 		if (pdaemon_waiters) {
   1007  1.107.2.3    bouyer 			pdaemon_waiters = 0;
   1008  1.107.2.3    bouyer 			cv_broadcast(&oomwait);
   1009      1.104     pooka 		}
   1010       1.92     pooka 
   1011  1.107.2.3    bouyer 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1012  1.107.2.3    bouyer 		uvmexp.pdwoke++;
   1013  1.107.2.3    bouyer 		waspaging = uvmexp.paging;
   1014  1.107.2.3    bouyer 
   1015       1.92     pooka 		/* tell the world that we are hungry */
   1016       1.80     pooka 		kernel_map->flags |= VM_MAP_WANTVA;
   1017       1.92     pooka 		kmem_map->flags |= VM_MAP_WANTVA;
   1018       1.80     pooka 		mutex_exit(&pdaemonmtx);
   1019       1.80     pooka 
   1020       1.92     pooka 		/*
   1021       1.92     pooka 		 * step one: reclaim the page cache.  this should give
   1022       1.92     pooka 		 * us the biggest earnings since whole pages are released
   1023       1.92     pooka 		 * into backing memory.
   1024       1.92     pooka 		 */
   1025       1.92     pooka 		pool_cache_reclaim(&pagecache);
   1026       1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1027       1.92     pooka 			mutex_enter(&pdaemonmtx);
   1028       1.92     pooka 			continue;
   1029       1.92     pooka 		}
   1030       1.92     pooka 
   1031       1.92     pooka 		/*
   1032       1.92     pooka 		 * Ok, so that didn't help.  Next, try to hunt memory
   1033       1.92     pooka 		 * by pushing out vnode pages.  The pages might contain
   1034       1.92     pooka 		 * useful cached data, but we need the memory.
   1035       1.92     pooka 		 */
   1036       1.92     pooka 		cleaned = 0;
   1037       1.92     pooka 		skip = 0;
   1038      1.104     pooka 		lockrunning = false;
   1039       1.92     pooka  again:
   1040       1.92     pooka 		mutex_enter(&uvm_pageqlock);
   1041       1.92     pooka 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1042       1.92     pooka 			skipped = 0;
   1043       1.92     pooka 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1044       1.92     pooka 
   1045       1.92     pooka 				/*
   1046       1.92     pooka 				 * skip over pages we _might_ have tried
   1047       1.92     pooka 				 * to handle earlier.  they might not be
   1048       1.92     pooka 				 * exactly the same ones, but I'm not too
   1049       1.92     pooka 				 * concerned.
   1050       1.92     pooka 				 */
   1051       1.92     pooka 				while (skipped++ < skip)
   1052       1.92     pooka 					continue;
   1053       1.92     pooka 
   1054      1.104     pooka 				if (processpage(pg, &lockrunning)) {
   1055       1.95     pooka 					cleaned++;
   1056       1.95     pooka 					goto again;
   1057       1.92     pooka 				}
   1058       1.92     pooka 
   1059       1.92     pooka 				skip++;
   1060       1.92     pooka 			}
   1061       1.92     pooka 			break;
   1062       1.92     pooka 		}
   1063       1.92     pooka 		mutex_exit(&uvm_pageqlock);
   1064       1.92     pooka 
   1065       1.92     pooka 		/*
   1066      1.104     pooka 		 * Ok, someone is running with an object lock held.
   1067      1.104     pooka 		 * We want to yield the host CPU to make sure the
   1068      1.104     pooka 		 * thread is not parked on the host.  Since sched_yield()
   1069      1.104     pooka 		 * doesn't appear to do anything on NetBSD, nanosleep
   1070      1.104     pooka 		 * for the smallest possible time and hope we're back in
   1071      1.104     pooka 		 * the game soon.
   1072      1.104     pooka 		 */
   1073      1.104     pooka 		if (cleaned == 0 && lockrunning) {
   1074      1.104     pooka 			uint64_t sec, nsec;
   1075      1.104     pooka 
   1076      1.104     pooka 			sec = 0;
   1077      1.104     pooka 			nsec = 1;
   1078      1.104     pooka 			rumpuser_nanosleep(&sec, &nsec, NULL);
   1079      1.104     pooka 
   1080      1.104     pooka 			lockrunning = false;
   1081      1.104     pooka 			skip = 0;
   1082      1.104     pooka 
   1083      1.104     pooka 			/* and here we go again */
   1084      1.104     pooka 			goto again;
   1085      1.104     pooka 		}
   1086      1.104     pooka 
   1087      1.104     pooka 		/*
   1088       1.92     pooka 		 * And of course we need to reclaim the page cache
   1089       1.92     pooka 		 * again to actually release memory.
   1090       1.92     pooka 		 */
   1091       1.92     pooka 		pool_cache_reclaim(&pagecache);
   1092       1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1093       1.92     pooka 			mutex_enter(&pdaemonmtx);
   1094       1.92     pooka 			continue;
   1095       1.92     pooka 		}
   1096       1.92     pooka 
   1097       1.92     pooka 		/*
   1098       1.92     pooka 		 * Still not there?  sleeves come off right about now.
   1099       1.92     pooka 		 * First: do reclaim on kernel/kmem map.
   1100       1.92     pooka 		 */
   1101       1.92     pooka 		callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
   1102       1.92     pooka 		    NULL);
   1103       1.92     pooka 		callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
   1104       1.92     pooka 		    NULL);
   1105       1.92     pooka 
   1106       1.92     pooka 		/*
   1107       1.92     pooka 		 * And then drain the pools.  Wipe them out ... all of them.
   1108       1.92     pooka 		 */
   1109       1.92     pooka 
   1110       1.80     pooka 		pool_drain_start(&pp_first, &where);
   1111       1.80     pooka 		pp = pp_first;
   1112       1.80     pooka 		for (;;) {
   1113       1.91     pooka 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
   1114       1.80     pooka 			succ = pool_drain_end(pp, where);
   1115       1.80     pooka 			if (succ)
   1116       1.80     pooka 				break;
   1117       1.80     pooka 			pool_drain_start(&pp, &where);
   1118       1.80     pooka 			if (pp == pp_first) {
   1119       1.80     pooka 				succ = pool_drain_end(pp, where);
   1120       1.80     pooka 				break;
   1121       1.80     pooka 			}
   1122       1.80     pooka 		}
   1123       1.92     pooka 
   1124       1.92     pooka 		/*
   1125       1.92     pooka 		 * Need to use PYEC on our bag of tricks.
   1126       1.92     pooka 		 * Unfortunately, the wife just borrowed it.
   1127       1.92     pooka 		 */
   1128       1.80     pooka 
   1129  1.107.2.3    bouyer 		mutex_enter(&pdaemonmtx);
   1130  1.107.2.3    bouyer 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1131  1.107.2.3    bouyer 		    uvmexp.paging == 0) {
   1132       1.80     pooka 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1133       1.80     pooka 			    "memory ... sleeping (deadlock?)\n");
   1134  1.107.2.3    bouyer 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
   1135  1.107.2.3    bouyer 			mutex_enter(&pdaemonmtx);
   1136       1.80     pooka 		}
   1137       1.80     pooka 	}
   1138       1.80     pooka 
   1139       1.80     pooka 	panic("you can swap out any time you like, but you can never leave");
   1140       1.80     pooka }
   1141       1.80     pooka 
   1142       1.80     pooka void
   1143       1.80     pooka uvm_kick_pdaemon()
   1144       1.80     pooka {
   1145       1.80     pooka 
   1146       1.92     pooka 	/*
   1147       1.92     pooka 	 * Wake up the diabolical pagedaemon director if we are over
   1148       1.92     pooka 	 * 90% of the memory limit.  This is a complete and utter
   1149       1.92     pooka 	 * stetson-harrison decision which you are allowed to finetune.
   1150       1.92     pooka 	 * Don't bother locking.  If we have some unflushed caches,
   1151       1.92     pooka 	 * other waker-uppers will deal with the issue.
   1152       1.92     pooka 	 */
   1153       1.92     pooka 	if (NEED_PAGEDAEMON()) {
   1154       1.92     pooka 		cv_signal(&pdaemoncv);
   1155       1.92     pooka 	}
   1156       1.80     pooka }
   1157       1.80     pooka 
   1158       1.80     pooka void *
   1159       1.80     pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1160       1.80     pooka {
   1161       1.84     pooka 	unsigned long newmem;
   1162       1.80     pooka 	void *rv;
   1163       1.80     pooka 
   1164       1.92     pooka 	uvm_kick_pdaemon(); /* ouch */
   1165       1.92     pooka 
   1166       1.84     pooka 	/* first we must be within the limit */
   1167       1.84     pooka  limitagain:
   1168       1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1169       1.84     pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1170       1.91     pooka 		if (newmem > rump_physmemlimit) {
   1171       1.84     pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1172      1.103     pooka 			if (!waitok) {
   1173       1.84     pooka 				return NULL;
   1174      1.103     pooka 			}
   1175       1.84     pooka 			uvm_wait(wmsg);
   1176       1.84     pooka 			goto limitagain;
   1177       1.84     pooka 		}
   1178       1.84     pooka 	}
   1179       1.84     pooka 
   1180       1.84     pooka 	/* second, we must get something from the backend */
   1181       1.80     pooka  again:
   1182       1.80     pooka 	rv = rumpuser_malloc(howmuch, alignment);
   1183       1.80     pooka 	if (__predict_false(rv == NULL && waitok)) {
   1184       1.80     pooka 		uvm_wait(wmsg);
   1185       1.80     pooka 		goto again;
   1186       1.80     pooka 	}
   1187       1.80     pooka 
   1188       1.80     pooka 	return rv;
   1189       1.80     pooka }
   1190       1.84     pooka 
   1191       1.84     pooka void
   1192       1.84     pooka rump_hyperfree(void *what, size_t size)
   1193       1.84     pooka {
   1194       1.84     pooka 
   1195       1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1196       1.84     pooka 		atomic_add_long(&curphysmem, -size);
   1197       1.84     pooka 	}
   1198       1.84     pooka 	rumpuser_free(what);
   1199       1.84     pooka }
   1200