Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.108
      1  1.108     pooka /*	$NetBSD: vm.c,v 1.108 2011/01/22 13:13:46 pooka Exp $	*/
      2    1.1     pooka 
      3    1.1     pooka /*
      4   1.76     pooka  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5    1.1     pooka  *
      6   1.76     pooka  * Development of this software was supported by
      7   1.76     pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8   1.76     pooka  * The Helsinki University of Technology.
      9    1.1     pooka  *
     10    1.1     pooka  * Redistribution and use in source and binary forms, with or without
     11    1.1     pooka  * modification, are permitted provided that the following conditions
     12    1.1     pooka  * are met:
     13    1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     14    1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     15    1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     17    1.1     pooka  *    documentation and/or other materials provided with the distribution.
     18    1.1     pooka  *
     19    1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20    1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21    1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22    1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23    1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24    1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25    1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26    1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27    1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28    1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29    1.1     pooka  * SUCH DAMAGE.
     30    1.1     pooka  */
     31    1.1     pooka 
     32    1.1     pooka /*
     33   1.88     pooka  * Virtual memory emulation routines.
     34    1.1     pooka  */
     35    1.1     pooka 
     36    1.1     pooka /*
     37    1.5     pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38    1.1     pooka  * for each page.  phys_addr would fit the job description better,
     39    1.1     pooka  * except that it will create unnecessary lossage on some platforms
     40    1.1     pooka  * due to not being a pointer type.
     41    1.1     pooka  */
     42    1.1     pooka 
     43   1.48     pooka #include <sys/cdefs.h>
     44  1.108     pooka __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.108 2011/01/22 13:13:46 pooka Exp $");
     45   1.48     pooka 
     46    1.1     pooka #include <sys/param.h>
     47   1.40     pooka #include <sys/atomic.h>
     48   1.80     pooka #include <sys/buf.h>
     49   1.80     pooka #include <sys/kernel.h>
     50   1.67     pooka #include <sys/kmem.h>
     51   1.69     pooka #include <sys/mman.h>
     52    1.1     pooka #include <sys/null.h>
     53    1.1     pooka #include <sys/vnode.h>
     54    1.1     pooka 
     55   1.34     pooka #include <machine/pmap.h>
     56   1.34     pooka 
     57   1.34     pooka #include <rump/rumpuser.h>
     58   1.34     pooka 
     59    1.1     pooka #include <uvm/uvm.h>
     60   1.56     pooka #include <uvm/uvm_ddb.h>
     61   1.88     pooka #include <uvm/uvm_pdpolicy.h>
     62    1.1     pooka #include <uvm/uvm_prot.h>
     63   1.58        he #include <uvm/uvm_readahead.h>
     64    1.1     pooka 
     65   1.13     pooka #include "rump_private.h"
     66   1.91     pooka #include "rump_vfs_private.h"
     67    1.1     pooka 
     68   1.25        ad kmutex_t uvm_pageqlock;
     69   1.88     pooka kmutex_t uvm_swap_data_lock;
     70   1.25        ad 
     71    1.1     pooka struct uvmexp uvmexp;
     72  1.100  uebayasi int *uvmexp_pagesize;
     73  1.100  uebayasi int *uvmexp_pagemask;
     74  1.100  uebayasi int *uvmexp_pageshift;
     75    1.7     pooka struct uvm uvm;
     76    1.1     pooka 
     77    1.1     pooka struct vm_map rump_vmmap;
     78   1.50     pooka static struct vm_map_kernel kmem_map_store;
     79   1.50     pooka struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     80    1.1     pooka 
     81   1.35     pooka static struct vm_map_kernel kernel_map_store;
     82   1.35     pooka struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     83   1.35     pooka 
     84   1.80     pooka static unsigned int pdaemon_waiters;
     85   1.80     pooka static kmutex_t pdaemonmtx;
     86   1.80     pooka static kcondvar_t pdaemoncv, oomwait;
     87   1.80     pooka 
     88   1.91     pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     89   1.84     pooka static unsigned long curphysmem;
     90   1.92     pooka static unsigned long dddlim;		/* 90% of memory limit used */
     91   1.92     pooka #define NEED_PAGEDAEMON() \
     92   1.92     pooka     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
     93   1.92     pooka 
     94   1.92     pooka /*
     95   1.92     pooka  * Try to free two pages worth of pages from objects.
     96   1.92     pooka  * If this succesfully frees a full page cache page, we'll
     97   1.92     pooka  * free the released page plus PAGE_SIZE/sizeof(vm_page).
     98   1.92     pooka  */
     99   1.92     pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    100   1.92     pooka 
    101   1.92     pooka /*
    102   1.92     pooka  * Keep a list of least recently used pages.  Since the only way a
    103   1.92     pooka  * rump kernel can "access" a page is via lookup, we put the page
    104   1.92     pooka  * at the back of queue every time a lookup for it is done.  If the
    105   1.92     pooka  * page is in front of this global queue and we're short of memory,
    106   1.92     pooka  * it's a candidate for pageout.
    107   1.92     pooka  */
    108   1.92     pooka static struct pglist vmpage_lruqueue;
    109   1.92     pooka static unsigned vmpage_onqueue;
    110   1.84     pooka 
    111   1.89     pooka static int
    112   1.96     rmind pg_compare_key(void *ctx, const void *n, const void *key)
    113   1.89     pooka {
    114   1.89     pooka 	voff_t a = ((const struct vm_page *)n)->offset;
    115   1.89     pooka 	voff_t b = *(const voff_t *)key;
    116   1.89     pooka 
    117   1.89     pooka 	if (a < b)
    118   1.96     rmind 		return -1;
    119   1.96     rmind 	else if (a > b)
    120   1.89     pooka 		return 1;
    121   1.89     pooka 	else
    122   1.89     pooka 		return 0;
    123   1.89     pooka }
    124   1.89     pooka 
    125   1.89     pooka static int
    126   1.96     rmind pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    127   1.89     pooka {
    128   1.89     pooka 
    129   1.96     rmind 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    130   1.89     pooka }
    131   1.89     pooka 
    132   1.96     rmind const rb_tree_ops_t uvm_page_tree_ops = {
    133   1.89     pooka 	.rbto_compare_nodes = pg_compare_nodes,
    134   1.89     pooka 	.rbto_compare_key = pg_compare_key,
    135   1.96     rmind 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    136   1.96     rmind 	.rbto_context = NULL
    137   1.89     pooka };
    138   1.89     pooka 
    139    1.1     pooka /*
    140    1.1     pooka  * vm pages
    141    1.1     pooka  */
    142    1.1     pooka 
    143   1.90     pooka static int
    144   1.90     pooka pgctor(void *arg, void *obj, int flags)
    145   1.90     pooka {
    146   1.90     pooka 	struct vm_page *pg = obj;
    147   1.90     pooka 
    148   1.90     pooka 	memset(pg, 0, sizeof(*pg));
    149  1.103     pooka 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    150  1.103     pooka 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    151  1.103     pooka 	return pg->uanon == NULL;
    152   1.90     pooka }
    153   1.90     pooka 
    154   1.90     pooka static void
    155   1.90     pooka pgdtor(void *arg, void *obj)
    156   1.90     pooka {
    157   1.90     pooka 	struct vm_page *pg = obj;
    158   1.90     pooka 
    159   1.90     pooka 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    160   1.90     pooka }
    161   1.90     pooka 
    162   1.90     pooka static struct pool_cache pagecache;
    163   1.90     pooka 
    164   1.92     pooka /*
    165   1.92     pooka  * Called with the object locked.  We don't support anons.
    166   1.92     pooka  */
    167    1.1     pooka struct vm_page *
    168   1.76     pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    169   1.76     pooka 	int flags, int strat, int free_list)
    170    1.1     pooka {
    171    1.1     pooka 	struct vm_page *pg;
    172    1.1     pooka 
    173   1.92     pooka 	KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
    174   1.92     pooka 	KASSERT(anon == NULL);
    175   1.92     pooka 
    176  1.103     pooka 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    177  1.104     pooka 	if (__predict_false(pg == NULL)) {
    178  1.103     pooka 		return NULL;
    179  1.104     pooka 	}
    180  1.103     pooka 
    181    1.1     pooka 	pg->offset = off;
    182    1.5     pooka 	pg->uobject = uobj;
    183    1.1     pooka 
    184   1.22     pooka 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    185   1.90     pooka 	if (flags & UVM_PGA_ZERO) {
    186   1.90     pooka 		uvm_pagezero(pg);
    187   1.90     pooka 	}
    188    1.1     pooka 
    189   1.31        ad 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    190   1.96     rmind 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    191   1.89     pooka 
    192   1.92     pooka 	/*
    193   1.93     pooka 	 * Don't put anons on the LRU page queue.  We can't flush them
    194   1.93     pooka 	 * (there's no concept of swap in a rump kernel), so no reason
    195   1.93     pooka 	 * to bother with them.
    196   1.92     pooka 	 */
    197   1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    198   1.92     pooka 		atomic_inc_uint(&vmpage_onqueue);
    199   1.92     pooka 		mutex_enter(&uvm_pageqlock);
    200   1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    201   1.92     pooka 		mutex_exit(&uvm_pageqlock);
    202   1.92     pooka 	}
    203   1.92     pooka 
    204   1.59     pooka 	uobj->uo_npages++;
    205   1.21     pooka 
    206    1.1     pooka 	return pg;
    207    1.1     pooka }
    208    1.1     pooka 
    209   1.21     pooka /*
    210   1.21     pooka  * Release a page.
    211   1.21     pooka  *
    212   1.22     pooka  * Called with the vm object locked.
    213   1.21     pooka  */
    214    1.1     pooka void
    215   1.22     pooka uvm_pagefree(struct vm_page *pg)
    216    1.1     pooka {
    217    1.5     pooka 	struct uvm_object *uobj = pg->uobject;
    218    1.1     pooka 
    219   1.92     pooka 	KASSERT(mutex_owned(&uvm_pageqlock));
    220   1.95     pooka 	KASSERT(mutex_owned(&uobj->vmobjlock));
    221   1.92     pooka 
    222   1.22     pooka 	if (pg->flags & PG_WANTED)
    223   1.22     pooka 		wakeup(pg);
    224   1.22     pooka 
    225   1.92     pooka 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    226   1.92     pooka 
    227   1.59     pooka 	uobj->uo_npages--;
    228   1.96     rmind 	rb_tree_remove_node(&uobj->rb_tree, pg);
    229   1.92     pooka 
    230   1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    231   1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    232   1.92     pooka 		atomic_dec_uint(&vmpage_onqueue);
    233   1.92     pooka 	}
    234   1.92     pooka 
    235   1.90     pooka 	pool_cache_put(&pagecache, pg);
    236    1.1     pooka }
    237    1.1     pooka 
    238   1.15     pooka void
    239   1.61     pooka uvm_pagezero(struct vm_page *pg)
    240   1.15     pooka {
    241   1.15     pooka 
    242   1.61     pooka 	pg->flags &= ~PG_CLEAN;
    243   1.61     pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    244   1.15     pooka }
    245   1.15     pooka 
    246    1.1     pooka /*
    247    1.1     pooka  * Misc routines
    248    1.1     pooka  */
    249    1.1     pooka 
    250   1.61     pooka static kmutex_t pagermtx;
    251   1.61     pooka 
    252    1.1     pooka void
    253   1.79     pooka uvm_init(void)
    254    1.1     pooka {
    255   1.84     pooka 	char buf[64];
    256   1.84     pooka 	int error;
    257   1.84     pooka 
    258   1.84     pooka 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    259  1.105     pooka 		unsigned long tmp;
    260  1.105     pooka 		char *ep;
    261  1.105     pooka 		int mult;
    262  1.105     pooka 
    263  1.105     pooka 		tmp = strtoll(buf, &ep, 10);
    264  1.105     pooka 		if (strlen(ep) > 1)
    265  1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    266  1.105     pooka 
    267  1.105     pooka 		/* mini-dehumanize-number */
    268  1.105     pooka 		mult = 1;
    269  1.105     pooka 		switch (*ep) {
    270  1.105     pooka 		case 'k':
    271  1.105     pooka 			mult = 1024;
    272  1.105     pooka 			break;
    273  1.105     pooka 		case 'm':
    274  1.105     pooka 			mult = 1024*1024;
    275  1.105     pooka 			break;
    276  1.105     pooka 		case 'g':
    277  1.105     pooka 			mult = 1024*1024*1024;
    278  1.105     pooka 			break;
    279  1.105     pooka 		case 0:
    280  1.105     pooka 			break;
    281  1.105     pooka 		default:
    282  1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    283  1.105     pooka 		}
    284  1.105     pooka 		rump_physmemlimit = tmp * mult;
    285  1.105     pooka 
    286  1.105     pooka 		if (rump_physmemlimit / mult != tmp)
    287  1.105     pooka 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    288   1.84     pooka 		/* it's not like we'd get far with, say, 1 byte, but ... */
    289   1.91     pooka 		if (rump_physmemlimit == 0)
    290  1.105     pooka 			panic("uvm_init: no memory");
    291  1.105     pooka 
    292   1.84     pooka #define HUMANIZE_BYTES 9
    293   1.84     pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    294   1.91     pooka 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    295   1.84     pooka #undef HUMANIZE_BYTES
    296   1.92     pooka 		dddlim = 9 * (rump_physmemlimit / 10);
    297   1.84     pooka 	} else {
    298   1.84     pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    299   1.84     pooka 	}
    300   1.84     pooka 	aprint_verbose("total memory = %s\n", buf);
    301    1.1     pooka 
    302   1.92     pooka 	TAILQ_INIT(&vmpage_lruqueue);
    303   1.92     pooka 
    304   1.84     pooka 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    305   1.21     pooka 
    306   1.61     pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    307   1.25        ad 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    308   1.88     pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    309   1.35     pooka 
    310   1.80     pooka 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    311   1.80     pooka 	cv_init(&pdaemoncv, "pdaemon");
    312   1.80     pooka 	cv_init(&oomwait, "oomwait");
    313   1.80     pooka 
    314   1.50     pooka 	kernel_map->pmap = pmap_kernel();
    315   1.35     pooka 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    316   1.50     pooka 	kmem_map->pmap = pmap_kernel();
    317   1.50     pooka 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    318   1.90     pooka 
    319   1.90     pooka 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    320   1.90     pooka 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    321    1.1     pooka }
    322    1.1     pooka 
    323   1.83     pooka void
    324   1.83     pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    325   1.83     pooka {
    326   1.83     pooka 
    327   1.83     pooka 	vm->vm_map.pmap = pmap_kernel();
    328   1.83     pooka 	vm->vm_refcnt = 1;
    329   1.83     pooka }
    330    1.1     pooka 
    331    1.1     pooka void
    332    1.7     pooka uvm_pagewire(struct vm_page *pg)
    333    1.7     pooka {
    334    1.7     pooka 
    335    1.7     pooka 	/* nada */
    336    1.7     pooka }
    337    1.7     pooka 
    338    1.7     pooka void
    339    1.7     pooka uvm_pageunwire(struct vm_page *pg)
    340    1.7     pooka {
    341    1.7     pooka 
    342    1.7     pooka 	/* nada */
    343    1.7     pooka }
    344    1.7     pooka 
    345  1.108     pooka /*
    346  1.108     pooka  * The uvm reclaim hook is not currently necessary because it is
    347  1.108     pooka  * used only by ZFS and implements exactly the same functionality
    348  1.108     pooka  * as the kva reclaim hook which we already run in the pagedaemon
    349  1.108     pooka  * (rump vm does not have a concept of uvm_map(), so we cannot
    350  1.108     pooka  * reclaim kva it when a mapping operation fails due to insufficient
    351  1.108     pooka  * available kva).
    352  1.108     pooka  */
    353  1.107      haad void
    354  1.107      haad uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook_entry)
    355  1.107      haad {
    356  1.107      haad 
    357  1.107      haad }
    358  1.108     pooka __strong_alias(uvm_reclaim_hook_del,uvm_reclaim_hook_add);
    359  1.107      haad 
    360   1.83     pooka /* where's your schmonz now? */
    361   1.83     pooka #define PUNLIMIT(a)	\
    362   1.83     pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    363   1.83     pooka void
    364   1.83     pooka uvm_init_limits(struct proc *p)
    365   1.83     pooka {
    366   1.83     pooka 
    367   1.83     pooka 	PUNLIMIT(RLIMIT_STACK);
    368   1.83     pooka 	PUNLIMIT(RLIMIT_DATA);
    369   1.83     pooka 	PUNLIMIT(RLIMIT_RSS);
    370   1.83     pooka 	PUNLIMIT(RLIMIT_AS);
    371   1.83     pooka 	/* nice, cascade */
    372   1.83     pooka }
    373   1.83     pooka #undef PUNLIMIT
    374   1.83     pooka 
    375   1.69     pooka /*
    376   1.69     pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    377   1.69     pooka  * We probably should grow some more assertables to make sure we're
    378  1.103     pooka  * not satisfying anything we shouldn't be satisfying.
    379   1.69     pooka  */
    380   1.49     pooka int
    381   1.49     pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    382   1.49     pooka 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    383   1.49     pooka {
    384   1.69     pooka 	void *uaddr;
    385   1.69     pooka 	int error;
    386   1.49     pooka 
    387   1.69     pooka 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    388   1.69     pooka 		panic("uvm_mmap() variant unsupported");
    389   1.69     pooka 	if (flags != (MAP_PRIVATE | MAP_ANON))
    390   1.69     pooka 		panic("uvm_mmap() variant unsupported");
    391   1.98     pooka 
    392   1.69     pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    393   1.69     pooka 	if (*addr != 0)
    394   1.69     pooka 		panic("uvm_mmap() variant unsupported");
    395   1.69     pooka 
    396  1.106     pooka 	if (RUMP_LOCALPROC_P(curproc)) {
    397   1.98     pooka 		uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    398   1.98     pooka 	} else {
    399  1.102     pooka 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
    400  1.102     pooka 		    size, &uaddr);
    401   1.98     pooka 	}
    402   1.69     pooka 	if (uaddr == NULL)
    403   1.69     pooka 		return error;
    404   1.69     pooka 
    405   1.69     pooka 	*addr = (vaddr_t)uaddr;
    406   1.69     pooka 	return 0;
    407   1.49     pooka }
    408   1.49     pooka 
    409   1.61     pooka struct pagerinfo {
    410   1.61     pooka 	vaddr_t pgr_kva;
    411   1.61     pooka 	int pgr_npages;
    412   1.61     pooka 	struct vm_page **pgr_pgs;
    413   1.61     pooka 	bool pgr_read;
    414   1.61     pooka 
    415   1.61     pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    416   1.61     pooka };
    417   1.61     pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    418   1.61     pooka 
    419   1.61     pooka /*
    420   1.61     pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    421   1.61     pooka  * and copy page contents there.  Not optimal or even strictly
    422   1.61     pooka  * correct (the caller might modify the page contents after mapping
    423   1.61     pooka  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    424   1.61     pooka  */
    425    1.7     pooka vaddr_t
    426   1.61     pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    427    1.7     pooka {
    428   1.61     pooka 	struct pagerinfo *pgri;
    429   1.61     pooka 	vaddr_t curkva;
    430   1.61     pooka 	int i;
    431   1.61     pooka 
    432   1.61     pooka 	/* allocate structures */
    433   1.61     pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    434   1.61     pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    435   1.61     pooka 	pgri->pgr_npages = npages;
    436   1.61     pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    437   1.61     pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    438   1.61     pooka 
    439   1.61     pooka 	/* copy contents to "mapped" memory */
    440   1.61     pooka 	for (i = 0, curkva = pgri->pgr_kva;
    441   1.61     pooka 	    i < npages;
    442   1.61     pooka 	    i++, curkva += PAGE_SIZE) {
    443   1.61     pooka 		/*
    444   1.61     pooka 		 * We need to copy the previous contents of the pages to
    445   1.61     pooka 		 * the window even if we are reading from the
    446   1.61     pooka 		 * device, since the device might not fill the contents of
    447   1.61     pooka 		 * the full mapped range and we will end up corrupting
    448   1.61     pooka 		 * data when we unmap the window.
    449   1.61     pooka 		 */
    450   1.61     pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    451   1.61     pooka 		pgri->pgr_pgs[i] = pgs[i];
    452   1.61     pooka 	}
    453   1.61     pooka 
    454   1.61     pooka 	mutex_enter(&pagermtx);
    455   1.61     pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    456   1.61     pooka 	mutex_exit(&pagermtx);
    457    1.7     pooka 
    458   1.61     pooka 	return pgri->pgr_kva;
    459    1.7     pooka }
    460    1.7     pooka 
    461   1.61     pooka /*
    462   1.61     pooka  * map out the pager window.  return contents from VA to page storage
    463   1.61     pooka  * and free structures.
    464   1.61     pooka  *
    465   1.61     pooka  * Note: does not currently support partial frees
    466   1.61     pooka  */
    467   1.61     pooka void
    468   1.61     pooka uvm_pagermapout(vaddr_t kva, int npages)
    469    1.7     pooka {
    470   1.61     pooka 	struct pagerinfo *pgri;
    471   1.61     pooka 	vaddr_t curkva;
    472   1.61     pooka 	int i;
    473    1.7     pooka 
    474   1.61     pooka 	mutex_enter(&pagermtx);
    475   1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    476   1.61     pooka 		if (pgri->pgr_kva == kva)
    477   1.61     pooka 			break;
    478   1.61     pooka 	}
    479   1.61     pooka 	KASSERT(pgri);
    480   1.61     pooka 	if (pgri->pgr_npages != npages)
    481   1.61     pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    482   1.61     pooka 	LIST_REMOVE(pgri, pgr_entries);
    483   1.61     pooka 	mutex_exit(&pagermtx);
    484   1.61     pooka 
    485   1.61     pooka 	if (pgri->pgr_read) {
    486   1.61     pooka 		for (i = 0, curkva = pgri->pgr_kva;
    487   1.61     pooka 		    i < pgri->pgr_npages;
    488   1.61     pooka 		    i++, curkva += PAGE_SIZE) {
    489   1.61     pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    490   1.21     pooka 		}
    491   1.21     pooka 	}
    492   1.10     pooka 
    493   1.61     pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    494   1.61     pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    495   1.61     pooka 	kmem_free(pgri, sizeof(*pgri));
    496    1.7     pooka }
    497    1.7     pooka 
    498   1.61     pooka /*
    499   1.61     pooka  * convert va in pager window to page structure.
    500   1.61     pooka  * XXX: how expensive is this (global lock, list traversal)?
    501   1.61     pooka  */
    502   1.14     pooka struct vm_page *
    503   1.14     pooka uvm_pageratop(vaddr_t va)
    504   1.14     pooka {
    505   1.61     pooka 	struct pagerinfo *pgri;
    506   1.61     pooka 	struct vm_page *pg = NULL;
    507   1.61     pooka 	int i;
    508   1.14     pooka 
    509   1.61     pooka 	mutex_enter(&pagermtx);
    510   1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    511   1.61     pooka 		if (pgri->pgr_kva <= va
    512   1.61     pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    513   1.21     pooka 			break;
    514   1.61     pooka 	}
    515   1.61     pooka 	if (pgri) {
    516   1.61     pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    517   1.61     pooka 		pg = pgri->pgr_pgs[i];
    518   1.61     pooka 	}
    519   1.61     pooka 	mutex_exit(&pagermtx);
    520   1.21     pooka 
    521   1.61     pooka 	return pg;
    522   1.61     pooka }
    523   1.15     pooka 
    524   1.97     pooka /*
    525   1.97     pooka  * Called with the vm object locked.
    526   1.97     pooka  *
    527   1.97     pooka  * Put vnode object pages at the end of the access queue to indicate
    528   1.97     pooka  * they have been recently accessed and should not be immediate
    529   1.97     pooka  * candidates for pageout.  Do not do this for lookups done by
    530   1.97     pooka  * the pagedaemon to mimic pmap_kentered mappings which don't track
    531   1.97     pooka  * access information.
    532   1.97     pooka  */
    533   1.61     pooka struct vm_page *
    534   1.61     pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    535   1.61     pooka {
    536   1.92     pooka 	struct vm_page *pg;
    537   1.97     pooka 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    538   1.61     pooka 
    539   1.96     rmind 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    540   1.97     pooka 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    541   1.92     pooka 		mutex_enter(&uvm_pageqlock);
    542   1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    543   1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    544   1.92     pooka 		mutex_exit(&uvm_pageqlock);
    545   1.92     pooka 	}
    546   1.92     pooka 
    547   1.92     pooka 	return pg;
    548   1.14     pooka }
    549   1.14     pooka 
    550    1.7     pooka void
    551   1.22     pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    552   1.22     pooka {
    553   1.22     pooka 	struct vm_page *pg;
    554   1.22     pooka 	int i;
    555   1.22     pooka 
    556   1.94     pooka 	KASSERT(npgs > 0);
    557   1.94     pooka 	KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
    558   1.94     pooka 
    559   1.22     pooka 	for (i = 0; i < npgs; i++) {
    560   1.22     pooka 		pg = pgs[i];
    561   1.22     pooka 		if (pg == NULL)
    562   1.22     pooka 			continue;
    563   1.22     pooka 
    564   1.22     pooka 		KASSERT(pg->flags & PG_BUSY);
    565   1.22     pooka 		if (pg->flags & PG_WANTED)
    566   1.22     pooka 			wakeup(pg);
    567   1.36     pooka 		if (pg->flags & PG_RELEASED)
    568   1.36     pooka 			uvm_pagefree(pg);
    569   1.36     pooka 		else
    570   1.36     pooka 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    571   1.22     pooka 	}
    572   1.22     pooka }
    573   1.22     pooka 
    574   1.22     pooka void
    575    1.7     pooka uvm_estimatepageable(int *active, int *inactive)
    576    1.7     pooka {
    577    1.7     pooka 
    578   1.19     pooka 	/* XXX: guessing game */
    579   1.19     pooka 	*active = 1024;
    580   1.19     pooka 	*inactive = 1024;
    581    1.7     pooka }
    582    1.7     pooka 
    583   1.39     pooka struct vm_map_kernel *
    584   1.39     pooka vm_map_to_kernel(struct vm_map *map)
    585   1.39     pooka {
    586   1.39     pooka 
    587   1.39     pooka 	return (struct vm_map_kernel *)map;
    588   1.39     pooka }
    589   1.39     pooka 
    590   1.41     pooka bool
    591   1.41     pooka vm_map_starved_p(struct vm_map *map)
    592   1.41     pooka {
    593   1.41     pooka 
    594   1.80     pooka 	if (map->flags & VM_MAP_WANTVA)
    595   1.80     pooka 		return true;
    596   1.80     pooka 
    597   1.41     pooka 	return false;
    598   1.41     pooka }
    599   1.41     pooka 
    600   1.41     pooka int
    601   1.41     pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    602   1.41     pooka {
    603   1.41     pooka 
    604   1.41     pooka 	panic("%s: unimplemented", __func__);
    605   1.41     pooka }
    606   1.41     pooka 
    607   1.41     pooka void
    608   1.41     pooka uvm_unloan(void *v, int npages, int flags)
    609   1.41     pooka {
    610   1.41     pooka 
    611   1.41     pooka 	panic("%s: unimplemented", __func__);
    612   1.41     pooka }
    613   1.41     pooka 
    614   1.43     pooka int
    615   1.43     pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    616   1.43     pooka 	struct vm_page **opp)
    617   1.43     pooka {
    618   1.43     pooka 
    619   1.72     pooka 	return EBUSY;
    620   1.43     pooka }
    621   1.43     pooka 
    622   1.73     pooka #ifdef DEBUGPRINT
    623   1.56     pooka void
    624   1.56     pooka uvm_object_printit(struct uvm_object *uobj, bool full,
    625   1.56     pooka 	void (*pr)(const char *, ...))
    626   1.56     pooka {
    627   1.56     pooka 
    628   1.75     pooka 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    629   1.56     pooka }
    630   1.73     pooka #endif
    631   1.56     pooka 
    632   1.68     pooka vaddr_t
    633   1.68     pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    634   1.68     pooka {
    635   1.68     pooka 
    636   1.68     pooka 	return 0;
    637   1.68     pooka }
    638   1.68     pooka 
    639   1.71     pooka int
    640   1.71     pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    641   1.71     pooka 	vm_prot_t prot, bool set_max)
    642   1.71     pooka {
    643   1.71     pooka 
    644   1.71     pooka 	return EOPNOTSUPP;
    645   1.71     pooka }
    646   1.71     pooka 
    647    1.9     pooka /*
    648   1.12     pooka  * UVM km
    649   1.12     pooka  */
    650   1.12     pooka 
    651   1.12     pooka vaddr_t
    652   1.12     pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    653   1.12     pooka {
    654   1.82     pooka 	void *rv, *desired = NULL;
    655   1.50     pooka 	int alignbit, error;
    656   1.50     pooka 
    657   1.82     pooka #ifdef __x86_64__
    658   1.82     pooka 	/*
    659   1.82     pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    660   1.82     pooka 	 * This is because NetBSD kernel modules are compiled
    661   1.82     pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    662   1.82     pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    663   1.82     pooka 	 * anywhere except the lowest or highest 2GB, it will not
    664   1.82     pooka 	 * work.  Since userspace does not have access to the highest
    665   1.82     pooka 	 * 2GB, use the lowest 2GB.
    666   1.82     pooka 	 *
    667   1.82     pooka 	 * Note: this assumes the rump kernel resides in
    668   1.82     pooka 	 * the lowest 2GB as well.
    669   1.82     pooka 	 *
    670   1.82     pooka 	 * Note2: yes, it's a quick hack, but since this the only
    671   1.82     pooka 	 * place where we care about the map we're allocating from,
    672   1.82     pooka 	 * just use a simple "if" instead of coming up with a fancy
    673   1.82     pooka 	 * generic solution.
    674   1.82     pooka 	 */
    675   1.82     pooka 	extern struct vm_map *module_map;
    676   1.82     pooka 	if (map == module_map) {
    677   1.82     pooka 		desired = (void *)(0x80000000 - size);
    678   1.82     pooka 	}
    679   1.82     pooka #endif
    680   1.82     pooka 
    681   1.50     pooka 	alignbit = 0;
    682   1.50     pooka 	if (align) {
    683   1.50     pooka 		alignbit = ffs(align)-1;
    684   1.50     pooka 	}
    685   1.50     pooka 
    686   1.82     pooka 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    687   1.81     pooka 	    &error);
    688   1.50     pooka 	if (rv == NULL) {
    689   1.50     pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    690   1.50     pooka 			return 0;
    691   1.50     pooka 		else
    692   1.50     pooka 			panic("uvm_km_alloc failed");
    693   1.50     pooka 	}
    694   1.12     pooka 
    695   1.50     pooka 	if (flags & UVM_KMF_ZERO)
    696   1.12     pooka 		memset(rv, 0, size);
    697   1.12     pooka 
    698   1.12     pooka 	return (vaddr_t)rv;
    699   1.12     pooka }
    700   1.12     pooka 
    701   1.12     pooka void
    702   1.12     pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    703   1.12     pooka {
    704   1.12     pooka 
    705   1.50     pooka 	rumpuser_unmap((void *)vaddr, size);
    706   1.12     pooka }
    707   1.12     pooka 
    708   1.12     pooka struct vm_map *
    709   1.12     pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    710   1.12     pooka 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    711   1.12     pooka {
    712   1.12     pooka 
    713   1.12     pooka 	return (struct vm_map *)417416;
    714   1.12     pooka }
    715   1.40     pooka 
    716   1.40     pooka vaddr_t
    717   1.40     pooka uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    718   1.40     pooka {
    719   1.40     pooka 
    720   1.80     pooka 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    721   1.80     pooka 	    waitok, "kmalloc");
    722   1.40     pooka }
    723   1.40     pooka 
    724   1.40     pooka void
    725   1.40     pooka uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    726   1.40     pooka {
    727   1.40     pooka 
    728   1.84     pooka 	rump_hyperfree((void *)addr, PAGE_SIZE);
    729   1.50     pooka }
    730   1.50     pooka 
    731   1.50     pooka vaddr_t
    732   1.50     pooka uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    733   1.50     pooka {
    734   1.50     pooka 
    735   1.77     pooka 	return uvm_km_alloc_poolpage(map, waitok);
    736   1.50     pooka }
    737   1.50     pooka 
    738   1.50     pooka void
    739   1.50     pooka uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    740   1.50     pooka {
    741   1.50     pooka 
    742   1.77     pooka 	uvm_km_free_poolpage(map, vaddr);
    743   1.40     pooka }
    744   1.57     pooka 
    745   1.74     pooka void
    746   1.74     pooka uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    747   1.74     pooka {
    748   1.74     pooka 
    749   1.74     pooka 	/* we eventually maybe want some model for available memory */
    750   1.74     pooka }
    751   1.74     pooka 
    752   1.57     pooka /*
    753  1.102     pooka  * VM space locking routines.  We don't really have to do anything,
    754  1.102     pooka  * since the pages are always "wired" (both local and remote processes).
    755   1.57     pooka  */
    756   1.57     pooka int
    757   1.57     pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    758   1.57     pooka {
    759   1.57     pooka 
    760   1.57     pooka 	return 0;
    761   1.57     pooka }
    762   1.57     pooka 
    763   1.57     pooka void
    764   1.57     pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    765   1.57     pooka {
    766   1.57     pooka 
    767   1.57     pooka }
    768   1.57     pooka 
    769  1.102     pooka /*
    770  1.102     pooka  * For the local case the buffer mappers don't need to do anything.
    771  1.102     pooka  * For the remote case we need to reserve space and copy data in or
    772  1.102     pooka  * out, depending on B_READ/B_WRITE.
    773  1.102     pooka  */
    774   1.57     pooka void
    775   1.57     pooka vmapbuf(struct buf *bp, vsize_t len)
    776   1.57     pooka {
    777   1.57     pooka 
    778   1.57     pooka 	bp->b_saveaddr = bp->b_data;
    779  1.102     pooka 
    780  1.102     pooka 	/* remote case */
    781  1.106     pooka 	if (!RUMP_LOCALPROC_P(curproc)) {
    782  1.102     pooka 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    783  1.102     pooka 		if (BUF_ISWRITE(bp)) {
    784  1.102     pooka 			copyin(bp->b_saveaddr, bp->b_data, len);
    785  1.102     pooka 		}
    786  1.102     pooka 	}
    787   1.57     pooka }
    788   1.57     pooka 
    789   1.57     pooka void
    790   1.57     pooka vunmapbuf(struct buf *bp, vsize_t len)
    791   1.57     pooka {
    792   1.57     pooka 
    793  1.102     pooka 	/* remote case */
    794  1.106     pooka 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    795  1.102     pooka 		if (BUF_ISREAD(bp)) {
    796  1.102     pooka 			copyout_proc(bp->b_proc,
    797  1.102     pooka 			    bp->b_data, bp->b_saveaddr, len);
    798  1.102     pooka 		}
    799  1.102     pooka 		rump_hyperfree(bp->b_data, len);
    800  1.102     pooka 	}
    801  1.102     pooka 
    802   1.57     pooka 	bp->b_data = bp->b_saveaddr;
    803   1.57     pooka 	bp->b_saveaddr = 0;
    804   1.57     pooka }
    805   1.61     pooka 
    806   1.61     pooka void
    807   1.83     pooka uvmspace_addref(struct vmspace *vm)
    808   1.83     pooka {
    809   1.83     pooka 
    810   1.83     pooka 	/*
    811  1.103     pooka 	 * No dynamically allocated vmspaces exist.
    812   1.83     pooka 	 */
    813   1.83     pooka }
    814   1.83     pooka 
    815   1.83     pooka void
    816   1.66     pooka uvmspace_free(struct vmspace *vm)
    817   1.66     pooka {
    818   1.66     pooka 
    819   1.66     pooka 	/* nothing for now */
    820   1.66     pooka }
    821   1.66     pooka 
    822   1.61     pooka /*
    823   1.61     pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    824   1.61     pooka  */
    825   1.61     pooka 
    826   1.61     pooka void
    827   1.61     pooka uvm_pageactivate(struct vm_page *pg)
    828   1.61     pooka {
    829   1.61     pooka 
    830   1.61     pooka 	/* nada */
    831   1.61     pooka }
    832   1.61     pooka 
    833   1.61     pooka void
    834   1.61     pooka uvm_pagedeactivate(struct vm_page *pg)
    835   1.61     pooka {
    836   1.61     pooka 
    837   1.61     pooka 	/* nada */
    838   1.61     pooka }
    839   1.61     pooka 
    840   1.61     pooka void
    841   1.61     pooka uvm_pagedequeue(struct vm_page *pg)
    842   1.61     pooka {
    843   1.61     pooka 
    844   1.61     pooka 	/* nada*/
    845   1.61     pooka }
    846   1.61     pooka 
    847   1.61     pooka void
    848   1.61     pooka uvm_pageenqueue(struct vm_page *pg)
    849   1.61     pooka {
    850   1.61     pooka 
    851   1.61     pooka 	/* nada */
    852   1.61     pooka }
    853   1.80     pooka 
    854   1.88     pooka void
    855   1.88     pooka uvmpdpol_anfree(struct vm_anon *an)
    856   1.88     pooka {
    857   1.88     pooka 
    858   1.88     pooka 	/* nada */
    859   1.88     pooka }
    860   1.88     pooka 
    861   1.80     pooka /*
    862   1.99  uebayasi  * Physical address accessors.
    863   1.99  uebayasi  */
    864   1.99  uebayasi 
    865   1.99  uebayasi struct vm_page *
    866   1.99  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    867   1.99  uebayasi {
    868   1.99  uebayasi 
    869   1.99  uebayasi 	return NULL;
    870   1.99  uebayasi }
    871   1.99  uebayasi 
    872   1.99  uebayasi paddr_t
    873   1.99  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
    874   1.99  uebayasi {
    875   1.99  uebayasi 
    876   1.99  uebayasi 	return 0;
    877   1.99  uebayasi }
    878   1.99  uebayasi 
    879   1.99  uebayasi /*
    880   1.80     pooka  * Routines related to the Page Baroness.
    881   1.80     pooka  */
    882   1.80     pooka 
    883   1.80     pooka void
    884   1.80     pooka uvm_wait(const char *msg)
    885   1.80     pooka {
    886   1.80     pooka 
    887   1.80     pooka 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    888   1.80     pooka 		panic("pagedaemon out of memory");
    889   1.80     pooka 	if (__predict_false(rump_threads == 0))
    890   1.80     pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    891   1.80     pooka 
    892   1.80     pooka 	mutex_enter(&pdaemonmtx);
    893   1.80     pooka 	pdaemon_waiters++;
    894   1.80     pooka 	cv_signal(&pdaemoncv);
    895   1.80     pooka 	cv_wait(&oomwait, &pdaemonmtx);
    896   1.80     pooka 	mutex_exit(&pdaemonmtx);
    897   1.80     pooka }
    898   1.80     pooka 
    899   1.80     pooka void
    900   1.80     pooka uvm_pageout_start(int npages)
    901   1.80     pooka {
    902   1.80     pooka 
    903   1.80     pooka 	/* we don't have the heuristics */
    904   1.80     pooka }
    905   1.80     pooka 
    906   1.80     pooka void
    907   1.80     pooka uvm_pageout_done(int npages)
    908   1.80     pooka {
    909   1.80     pooka 
    910   1.80     pooka 	/* could wakeup waiters, but just let the pagedaemon do it */
    911   1.80     pooka }
    912   1.80     pooka 
    913   1.95     pooka static bool
    914  1.104     pooka processpage(struct vm_page *pg, bool *lockrunning)
    915   1.95     pooka {
    916   1.95     pooka 	struct uvm_object *uobj;
    917   1.95     pooka 
    918   1.95     pooka 	uobj = pg->uobject;
    919   1.95     pooka 	if (mutex_tryenter(&uobj->vmobjlock)) {
    920   1.95     pooka 		if ((pg->flags & PG_BUSY) == 0) {
    921   1.95     pooka 			mutex_exit(&uvm_pageqlock);
    922   1.95     pooka 			uobj->pgops->pgo_put(uobj, pg->offset,
    923   1.95     pooka 			    pg->offset + PAGE_SIZE,
    924   1.95     pooka 			    PGO_CLEANIT|PGO_FREE);
    925   1.95     pooka 			KASSERT(!mutex_owned(&uobj->vmobjlock));
    926   1.95     pooka 			return true;
    927   1.95     pooka 		} else {
    928   1.95     pooka 			mutex_exit(&uobj->vmobjlock);
    929   1.95     pooka 		}
    930  1.104     pooka 	} else if (*lockrunning == false && ncpu > 1) {
    931  1.104     pooka 		CPU_INFO_ITERATOR cii;
    932  1.104     pooka 		struct cpu_info *ci;
    933  1.104     pooka 		struct lwp *l;
    934  1.104     pooka 
    935  1.104     pooka 		l = mutex_owner(&uobj->vmobjlock);
    936  1.104     pooka 		for (CPU_INFO_FOREACH(cii, ci)) {
    937  1.104     pooka 			if (ci->ci_curlwp == l) {
    938  1.104     pooka 				*lockrunning = true;
    939  1.104     pooka 				break;
    940  1.104     pooka 			}
    941  1.104     pooka 		}
    942   1.95     pooka 	}
    943   1.95     pooka 
    944   1.95     pooka 	return false;
    945   1.95     pooka }
    946   1.95     pooka 
    947   1.80     pooka /*
    948   1.92     pooka  * The Diabolical pageDaemon Director (DDD).
    949   1.80     pooka  */
    950   1.80     pooka void
    951   1.80     pooka uvm_pageout(void *arg)
    952   1.80     pooka {
    953   1.92     pooka 	struct vm_page *pg;
    954   1.80     pooka 	struct pool *pp, *pp_first;
    955   1.80     pooka 	uint64_t where;
    956   1.80     pooka 	int timo = 0;
    957   1.92     pooka 	int cleaned, skip, skipped;
    958   1.92     pooka 	bool succ = false;
    959  1.104     pooka 	bool lockrunning;
    960   1.80     pooka 
    961   1.80     pooka 	mutex_enter(&pdaemonmtx);
    962   1.80     pooka 	for (;;) {
    963   1.92     pooka 		if (succ) {
    964   1.92     pooka 			kernel_map->flags &= ~VM_MAP_WANTVA;
    965   1.95     pooka 			kmem_map->flags &= ~VM_MAP_WANTVA;
    966   1.92     pooka 			timo = 0;
    967   1.95     pooka 			if (pdaemon_waiters) {
    968   1.95     pooka 				pdaemon_waiters = 0;
    969   1.95     pooka 				cv_broadcast(&oomwait);
    970   1.95     pooka 			}
    971   1.92     pooka 		}
    972   1.92     pooka 		succ = false;
    973   1.92     pooka 
    974  1.104     pooka 		if (pdaemon_waiters == 0) {
    975  1.104     pooka 			cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
    976  1.104     pooka 			uvmexp.pdwoke++;
    977  1.104     pooka 		}
    978   1.92     pooka 
    979   1.92     pooka 		/* tell the world that we are hungry */
    980   1.80     pooka 		kernel_map->flags |= VM_MAP_WANTVA;
    981   1.92     pooka 		kmem_map->flags |= VM_MAP_WANTVA;
    982   1.92     pooka 
    983   1.92     pooka 		if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
    984   1.92     pooka 			continue;
    985   1.80     pooka 		mutex_exit(&pdaemonmtx);
    986   1.80     pooka 
    987   1.92     pooka 		/*
    988   1.92     pooka 		 * step one: reclaim the page cache.  this should give
    989   1.92     pooka 		 * us the biggest earnings since whole pages are released
    990   1.92     pooka 		 * into backing memory.
    991   1.92     pooka 		 */
    992   1.92     pooka 		pool_cache_reclaim(&pagecache);
    993   1.92     pooka 		if (!NEED_PAGEDAEMON()) {
    994   1.92     pooka 			succ = true;
    995   1.92     pooka 			mutex_enter(&pdaemonmtx);
    996   1.92     pooka 			continue;
    997   1.92     pooka 		}
    998   1.92     pooka 
    999   1.92     pooka 		/*
   1000   1.92     pooka 		 * Ok, so that didn't help.  Next, try to hunt memory
   1001   1.92     pooka 		 * by pushing out vnode pages.  The pages might contain
   1002   1.92     pooka 		 * useful cached data, but we need the memory.
   1003   1.92     pooka 		 */
   1004   1.92     pooka 		cleaned = 0;
   1005   1.92     pooka 		skip = 0;
   1006  1.104     pooka 		lockrunning = false;
   1007   1.92     pooka  again:
   1008   1.92     pooka 		mutex_enter(&uvm_pageqlock);
   1009   1.92     pooka 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1010   1.92     pooka 			skipped = 0;
   1011   1.92     pooka 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1012   1.92     pooka 
   1013   1.92     pooka 				/*
   1014   1.92     pooka 				 * skip over pages we _might_ have tried
   1015   1.92     pooka 				 * to handle earlier.  they might not be
   1016   1.92     pooka 				 * exactly the same ones, but I'm not too
   1017   1.92     pooka 				 * concerned.
   1018   1.92     pooka 				 */
   1019   1.92     pooka 				while (skipped++ < skip)
   1020   1.92     pooka 					continue;
   1021   1.92     pooka 
   1022  1.104     pooka 				if (processpage(pg, &lockrunning)) {
   1023   1.95     pooka 					cleaned++;
   1024   1.95     pooka 					goto again;
   1025   1.92     pooka 				}
   1026   1.92     pooka 
   1027   1.92     pooka 				skip++;
   1028   1.92     pooka 			}
   1029   1.92     pooka 			break;
   1030   1.92     pooka 		}
   1031   1.92     pooka 		mutex_exit(&uvm_pageqlock);
   1032   1.92     pooka 
   1033   1.92     pooka 		/*
   1034  1.104     pooka 		 * Ok, someone is running with an object lock held.
   1035  1.104     pooka 		 * We want to yield the host CPU to make sure the
   1036  1.104     pooka 		 * thread is not parked on the host.  Since sched_yield()
   1037  1.104     pooka 		 * doesn't appear to do anything on NetBSD, nanosleep
   1038  1.104     pooka 		 * for the smallest possible time and hope we're back in
   1039  1.104     pooka 		 * the game soon.
   1040  1.104     pooka 		 */
   1041  1.104     pooka 		if (cleaned == 0 && lockrunning) {
   1042  1.104     pooka 			uint64_t sec, nsec;
   1043  1.104     pooka 
   1044  1.104     pooka 			sec = 0;
   1045  1.104     pooka 			nsec = 1;
   1046  1.104     pooka 			rumpuser_nanosleep(&sec, &nsec, NULL);
   1047  1.104     pooka 
   1048  1.104     pooka 			lockrunning = false;
   1049  1.104     pooka 			skip = 0;
   1050  1.104     pooka 
   1051  1.104     pooka 			/* and here we go again */
   1052  1.104     pooka 			goto again;
   1053  1.104     pooka 		}
   1054  1.104     pooka 
   1055  1.104     pooka 		/*
   1056   1.92     pooka 		 * And of course we need to reclaim the page cache
   1057   1.92     pooka 		 * again to actually release memory.
   1058   1.92     pooka 		 */
   1059   1.92     pooka 		pool_cache_reclaim(&pagecache);
   1060   1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1061   1.92     pooka 			succ = true;
   1062   1.92     pooka 			mutex_enter(&pdaemonmtx);
   1063   1.92     pooka 			continue;
   1064   1.92     pooka 		}
   1065   1.92     pooka 
   1066   1.92     pooka 		/*
   1067   1.92     pooka 		 * Still not there?  sleeves come off right about now.
   1068   1.92     pooka 		 * First: do reclaim on kernel/kmem map.
   1069   1.92     pooka 		 */
   1070   1.92     pooka 		callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
   1071   1.92     pooka 		    NULL);
   1072   1.92     pooka 		callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
   1073   1.92     pooka 		    NULL);
   1074   1.92     pooka 
   1075   1.92     pooka 		/*
   1076   1.92     pooka 		 * And then drain the pools.  Wipe them out ... all of them.
   1077   1.92     pooka 		 */
   1078   1.92     pooka 
   1079   1.80     pooka 		pool_drain_start(&pp_first, &where);
   1080   1.80     pooka 		pp = pp_first;
   1081   1.80     pooka 		for (;;) {
   1082   1.91     pooka 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
   1083   1.80     pooka 			succ = pool_drain_end(pp, where);
   1084   1.80     pooka 			if (succ)
   1085   1.80     pooka 				break;
   1086   1.80     pooka 			pool_drain_start(&pp, &where);
   1087   1.80     pooka 			if (pp == pp_first) {
   1088   1.80     pooka 				succ = pool_drain_end(pp, where);
   1089   1.80     pooka 				break;
   1090   1.80     pooka 			}
   1091   1.80     pooka 		}
   1092   1.92     pooka 
   1093   1.92     pooka 		/*
   1094   1.92     pooka 		 * Need to use PYEC on our bag of tricks.
   1095   1.92     pooka 		 * Unfortunately, the wife just borrowed it.
   1096   1.92     pooka 		 */
   1097   1.80     pooka 
   1098  1.104     pooka 		if (!succ && cleaned == 0) {
   1099   1.80     pooka 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1100   1.80     pooka 			    "memory ... sleeping (deadlock?)\n");
   1101   1.95     pooka 			timo = hz;
   1102   1.80     pooka 		}
   1103   1.80     pooka 
   1104   1.92     pooka 		mutex_enter(&pdaemonmtx);
   1105   1.80     pooka 	}
   1106   1.80     pooka 
   1107   1.80     pooka 	panic("you can swap out any time you like, but you can never leave");
   1108   1.80     pooka }
   1109   1.80     pooka 
   1110   1.80     pooka void
   1111   1.80     pooka uvm_kick_pdaemon()
   1112   1.80     pooka {
   1113   1.80     pooka 
   1114   1.92     pooka 	/*
   1115   1.92     pooka 	 * Wake up the diabolical pagedaemon director if we are over
   1116   1.92     pooka 	 * 90% of the memory limit.  This is a complete and utter
   1117   1.92     pooka 	 * stetson-harrison decision which you are allowed to finetune.
   1118   1.92     pooka 	 * Don't bother locking.  If we have some unflushed caches,
   1119   1.92     pooka 	 * other waker-uppers will deal with the issue.
   1120   1.92     pooka 	 */
   1121   1.92     pooka 	if (NEED_PAGEDAEMON()) {
   1122   1.92     pooka 		cv_signal(&pdaemoncv);
   1123   1.92     pooka 	}
   1124   1.80     pooka }
   1125   1.80     pooka 
   1126   1.80     pooka void *
   1127   1.80     pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1128   1.80     pooka {
   1129   1.84     pooka 	unsigned long newmem;
   1130   1.80     pooka 	void *rv;
   1131   1.80     pooka 
   1132   1.92     pooka 	uvm_kick_pdaemon(); /* ouch */
   1133   1.92     pooka 
   1134   1.84     pooka 	/* first we must be within the limit */
   1135   1.84     pooka  limitagain:
   1136   1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1137   1.84     pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1138   1.91     pooka 		if (newmem > rump_physmemlimit) {
   1139   1.84     pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1140  1.103     pooka 			if (!waitok) {
   1141   1.84     pooka 				return NULL;
   1142  1.103     pooka 			}
   1143   1.84     pooka 			uvm_wait(wmsg);
   1144   1.84     pooka 			goto limitagain;
   1145   1.84     pooka 		}
   1146   1.84     pooka 	}
   1147   1.84     pooka 
   1148   1.84     pooka 	/* second, we must get something from the backend */
   1149   1.80     pooka  again:
   1150   1.80     pooka 	rv = rumpuser_malloc(howmuch, alignment);
   1151   1.80     pooka 	if (__predict_false(rv == NULL && waitok)) {
   1152   1.80     pooka 		uvm_wait(wmsg);
   1153   1.80     pooka 		goto again;
   1154   1.80     pooka 	}
   1155   1.80     pooka 
   1156   1.80     pooka 	return rv;
   1157   1.80     pooka }
   1158   1.84     pooka 
   1159   1.84     pooka void
   1160   1.84     pooka rump_hyperfree(void *what, size_t size)
   1161   1.84     pooka {
   1162   1.84     pooka 
   1163   1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1164   1.84     pooka 		atomic_add_long(&curphysmem, -size);
   1165   1.84     pooka 	}
   1166   1.84     pooka 	rumpuser_free(what);
   1167   1.84     pooka }
   1168