vm.c revision 1.111 1 1.111 pooka /* $NetBSD: vm.c,v 1.111 2011/02/10 14:46:45 pooka Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.76 pooka * Copyright (c) 2007-2010 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.76 pooka * Development of this software was supported by
7 1.76 pooka * The Finnish Cultural Foundation and the Research Foundation of
8 1.76 pooka * The Helsinki University of Technology.
9 1.1 pooka *
10 1.1 pooka * Redistribution and use in source and binary forms, with or without
11 1.1 pooka * modification, are permitted provided that the following conditions
12 1.1 pooka * are met:
13 1.1 pooka * 1. Redistributions of source code must retain the above copyright
14 1.1 pooka * notice, this list of conditions and the following disclaimer.
15 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer in the
17 1.1 pooka * documentation and/or other materials provided with the distribution.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka */
31 1.1 pooka
32 1.1 pooka /*
33 1.88 pooka * Virtual memory emulation routines.
34 1.1 pooka */
35 1.1 pooka
36 1.1 pooka /*
37 1.5 pooka * XXX: we abuse pg->uanon for the virtual address of the storage
38 1.1 pooka * for each page. phys_addr would fit the job description better,
39 1.1 pooka * except that it will create unnecessary lossage on some platforms
40 1.1 pooka * due to not being a pointer type.
41 1.1 pooka */
42 1.1 pooka
43 1.48 pooka #include <sys/cdefs.h>
44 1.111 pooka __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.111 2011/02/10 14:46:45 pooka Exp $");
45 1.48 pooka
46 1.1 pooka #include <sys/param.h>
47 1.40 pooka #include <sys/atomic.h>
48 1.80 pooka #include <sys/buf.h>
49 1.80 pooka #include <sys/kernel.h>
50 1.67 pooka #include <sys/kmem.h>
51 1.69 pooka #include <sys/mman.h>
52 1.1 pooka #include <sys/null.h>
53 1.1 pooka #include <sys/vnode.h>
54 1.1 pooka
55 1.34 pooka #include <machine/pmap.h>
56 1.34 pooka
57 1.34 pooka #include <rump/rumpuser.h>
58 1.34 pooka
59 1.1 pooka #include <uvm/uvm.h>
60 1.56 pooka #include <uvm/uvm_ddb.h>
61 1.88 pooka #include <uvm/uvm_pdpolicy.h>
62 1.1 pooka #include <uvm/uvm_prot.h>
63 1.58 he #include <uvm/uvm_readahead.h>
64 1.1 pooka
65 1.13 pooka #include "rump_private.h"
66 1.91 pooka #include "rump_vfs_private.h"
67 1.1 pooka
68 1.25 ad kmutex_t uvm_pageqlock;
69 1.88 pooka kmutex_t uvm_swap_data_lock;
70 1.25 ad
71 1.1 pooka struct uvmexp uvmexp;
72 1.100 uebayasi int *uvmexp_pagesize;
73 1.100 uebayasi int *uvmexp_pagemask;
74 1.100 uebayasi int *uvmexp_pageshift;
75 1.7 pooka struct uvm uvm;
76 1.1 pooka
77 1.1 pooka struct vm_map rump_vmmap;
78 1.50 pooka static struct vm_map_kernel kmem_map_store;
79 1.50 pooka struct vm_map *kmem_map = &kmem_map_store.vmk_map;
80 1.1 pooka
81 1.35 pooka static struct vm_map_kernel kernel_map_store;
82 1.35 pooka struct vm_map *kernel_map = &kernel_map_store.vmk_map;
83 1.35 pooka
84 1.80 pooka static unsigned int pdaemon_waiters;
85 1.80 pooka static kmutex_t pdaemonmtx;
86 1.80 pooka static kcondvar_t pdaemoncv, oomwait;
87 1.80 pooka
88 1.91 pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
89 1.84 pooka static unsigned long curphysmem;
90 1.92 pooka static unsigned long dddlim; /* 90% of memory limit used */
91 1.92 pooka #define NEED_PAGEDAEMON() \
92 1.92 pooka (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
93 1.92 pooka
94 1.92 pooka /*
95 1.92 pooka * Try to free two pages worth of pages from objects.
96 1.92 pooka * If this succesfully frees a full page cache page, we'll
97 1.92 pooka * free the released page plus PAGE_SIZE/sizeof(vm_page).
98 1.92 pooka */
99 1.92 pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
100 1.92 pooka
101 1.92 pooka /*
102 1.92 pooka * Keep a list of least recently used pages. Since the only way a
103 1.92 pooka * rump kernel can "access" a page is via lookup, we put the page
104 1.92 pooka * at the back of queue every time a lookup for it is done. If the
105 1.92 pooka * page is in front of this global queue and we're short of memory,
106 1.92 pooka * it's a candidate for pageout.
107 1.92 pooka */
108 1.92 pooka static struct pglist vmpage_lruqueue;
109 1.92 pooka static unsigned vmpage_onqueue;
110 1.84 pooka
111 1.89 pooka static int
112 1.96 rmind pg_compare_key(void *ctx, const void *n, const void *key)
113 1.89 pooka {
114 1.89 pooka voff_t a = ((const struct vm_page *)n)->offset;
115 1.89 pooka voff_t b = *(const voff_t *)key;
116 1.89 pooka
117 1.89 pooka if (a < b)
118 1.96 rmind return -1;
119 1.96 rmind else if (a > b)
120 1.89 pooka return 1;
121 1.89 pooka else
122 1.89 pooka return 0;
123 1.89 pooka }
124 1.89 pooka
125 1.89 pooka static int
126 1.96 rmind pg_compare_nodes(void *ctx, const void *n1, const void *n2)
127 1.89 pooka {
128 1.89 pooka
129 1.96 rmind return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
130 1.89 pooka }
131 1.89 pooka
132 1.96 rmind const rb_tree_ops_t uvm_page_tree_ops = {
133 1.89 pooka .rbto_compare_nodes = pg_compare_nodes,
134 1.89 pooka .rbto_compare_key = pg_compare_key,
135 1.96 rmind .rbto_node_offset = offsetof(struct vm_page, rb_node),
136 1.96 rmind .rbto_context = NULL
137 1.89 pooka };
138 1.89 pooka
139 1.1 pooka /*
140 1.1 pooka * vm pages
141 1.1 pooka */
142 1.1 pooka
143 1.90 pooka static int
144 1.90 pooka pgctor(void *arg, void *obj, int flags)
145 1.90 pooka {
146 1.90 pooka struct vm_page *pg = obj;
147 1.90 pooka
148 1.90 pooka memset(pg, 0, sizeof(*pg));
149 1.103 pooka pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
150 1.103 pooka (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
151 1.103 pooka return pg->uanon == NULL;
152 1.90 pooka }
153 1.90 pooka
154 1.90 pooka static void
155 1.90 pooka pgdtor(void *arg, void *obj)
156 1.90 pooka {
157 1.90 pooka struct vm_page *pg = obj;
158 1.90 pooka
159 1.90 pooka rump_hyperfree(pg->uanon, PAGE_SIZE);
160 1.90 pooka }
161 1.90 pooka
162 1.90 pooka static struct pool_cache pagecache;
163 1.90 pooka
164 1.92 pooka /*
165 1.92 pooka * Called with the object locked. We don't support anons.
166 1.92 pooka */
167 1.1 pooka struct vm_page *
168 1.76 pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
169 1.76 pooka int flags, int strat, int free_list)
170 1.1 pooka {
171 1.1 pooka struct vm_page *pg;
172 1.1 pooka
173 1.92 pooka KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
174 1.92 pooka KASSERT(anon == NULL);
175 1.92 pooka
176 1.103 pooka pg = pool_cache_get(&pagecache, PR_NOWAIT);
177 1.104 pooka if (__predict_false(pg == NULL)) {
178 1.103 pooka return NULL;
179 1.104 pooka }
180 1.103 pooka
181 1.1 pooka pg->offset = off;
182 1.5 pooka pg->uobject = uobj;
183 1.1 pooka
184 1.22 pooka pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
185 1.90 pooka if (flags & UVM_PGA_ZERO) {
186 1.90 pooka uvm_pagezero(pg);
187 1.90 pooka }
188 1.1 pooka
189 1.31 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
190 1.96 rmind (void)rb_tree_insert_node(&uobj->rb_tree, pg);
191 1.89 pooka
192 1.92 pooka /*
193 1.93 pooka * Don't put anons on the LRU page queue. We can't flush them
194 1.93 pooka * (there's no concept of swap in a rump kernel), so no reason
195 1.93 pooka * to bother with them.
196 1.92 pooka */
197 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
198 1.92 pooka atomic_inc_uint(&vmpage_onqueue);
199 1.92 pooka mutex_enter(&uvm_pageqlock);
200 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
201 1.92 pooka mutex_exit(&uvm_pageqlock);
202 1.92 pooka }
203 1.92 pooka
204 1.59 pooka uobj->uo_npages++;
205 1.21 pooka
206 1.1 pooka return pg;
207 1.1 pooka }
208 1.1 pooka
209 1.21 pooka /*
210 1.21 pooka * Release a page.
211 1.21 pooka *
212 1.22 pooka * Called with the vm object locked.
213 1.21 pooka */
214 1.1 pooka void
215 1.22 pooka uvm_pagefree(struct vm_page *pg)
216 1.1 pooka {
217 1.5 pooka struct uvm_object *uobj = pg->uobject;
218 1.1 pooka
219 1.92 pooka KASSERT(mutex_owned(&uvm_pageqlock));
220 1.95 pooka KASSERT(mutex_owned(&uobj->vmobjlock));
221 1.92 pooka
222 1.22 pooka if (pg->flags & PG_WANTED)
223 1.22 pooka wakeup(pg);
224 1.22 pooka
225 1.92 pooka TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
226 1.92 pooka
227 1.59 pooka uobj->uo_npages--;
228 1.96 rmind rb_tree_remove_node(&uobj->rb_tree, pg);
229 1.92 pooka
230 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
231 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
232 1.92 pooka atomic_dec_uint(&vmpage_onqueue);
233 1.92 pooka }
234 1.92 pooka
235 1.90 pooka pool_cache_put(&pagecache, pg);
236 1.1 pooka }
237 1.1 pooka
238 1.15 pooka void
239 1.61 pooka uvm_pagezero(struct vm_page *pg)
240 1.15 pooka {
241 1.15 pooka
242 1.61 pooka pg->flags &= ~PG_CLEAN;
243 1.61 pooka memset((void *)pg->uanon, 0, PAGE_SIZE);
244 1.15 pooka }
245 1.15 pooka
246 1.1 pooka /*
247 1.1 pooka * Misc routines
248 1.1 pooka */
249 1.1 pooka
250 1.61 pooka static kmutex_t pagermtx;
251 1.61 pooka
252 1.1 pooka void
253 1.79 pooka uvm_init(void)
254 1.1 pooka {
255 1.84 pooka char buf[64];
256 1.84 pooka int error;
257 1.84 pooka
258 1.84 pooka if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
259 1.105 pooka unsigned long tmp;
260 1.105 pooka char *ep;
261 1.105 pooka int mult;
262 1.105 pooka
263 1.109 pooka tmp = strtoul(buf, &ep, 10);
264 1.105 pooka if (strlen(ep) > 1)
265 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
266 1.105 pooka
267 1.105 pooka /* mini-dehumanize-number */
268 1.105 pooka mult = 1;
269 1.105 pooka switch (*ep) {
270 1.105 pooka case 'k':
271 1.105 pooka mult = 1024;
272 1.105 pooka break;
273 1.105 pooka case 'm':
274 1.105 pooka mult = 1024*1024;
275 1.105 pooka break;
276 1.105 pooka case 'g':
277 1.105 pooka mult = 1024*1024*1024;
278 1.105 pooka break;
279 1.105 pooka case 0:
280 1.105 pooka break;
281 1.105 pooka default:
282 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
283 1.105 pooka }
284 1.105 pooka rump_physmemlimit = tmp * mult;
285 1.105 pooka
286 1.105 pooka if (rump_physmemlimit / mult != tmp)
287 1.105 pooka panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
288 1.84 pooka /* it's not like we'd get far with, say, 1 byte, but ... */
289 1.91 pooka if (rump_physmemlimit == 0)
290 1.105 pooka panic("uvm_init: no memory");
291 1.105 pooka
292 1.84 pooka #define HUMANIZE_BYTES 9
293 1.84 pooka CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
294 1.91 pooka format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
295 1.84 pooka #undef HUMANIZE_BYTES
296 1.92 pooka dddlim = 9 * (rump_physmemlimit / 10);
297 1.84 pooka } else {
298 1.84 pooka strlcpy(buf, "unlimited (host limit)", sizeof(buf));
299 1.84 pooka }
300 1.84 pooka aprint_verbose("total memory = %s\n", buf);
301 1.1 pooka
302 1.92 pooka TAILQ_INIT(&vmpage_lruqueue);
303 1.92 pooka
304 1.84 pooka uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
305 1.21 pooka
306 1.61 pooka mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
307 1.25 ad mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
308 1.88 pooka mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
309 1.35 pooka
310 1.80 pooka mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
311 1.80 pooka cv_init(&pdaemoncv, "pdaemon");
312 1.80 pooka cv_init(&oomwait, "oomwait");
313 1.80 pooka
314 1.50 pooka kernel_map->pmap = pmap_kernel();
315 1.35 pooka callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
316 1.50 pooka kmem_map->pmap = pmap_kernel();
317 1.50 pooka callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
318 1.90 pooka
319 1.90 pooka pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
320 1.90 pooka "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
321 1.1 pooka }
322 1.1 pooka
323 1.83 pooka void
324 1.83 pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
325 1.83 pooka {
326 1.83 pooka
327 1.83 pooka vm->vm_map.pmap = pmap_kernel();
328 1.83 pooka vm->vm_refcnt = 1;
329 1.83 pooka }
330 1.1 pooka
331 1.1 pooka void
332 1.7 pooka uvm_pagewire(struct vm_page *pg)
333 1.7 pooka {
334 1.7 pooka
335 1.7 pooka /* nada */
336 1.7 pooka }
337 1.7 pooka
338 1.7 pooka void
339 1.7 pooka uvm_pageunwire(struct vm_page *pg)
340 1.7 pooka {
341 1.7 pooka
342 1.7 pooka /* nada */
343 1.7 pooka }
344 1.7 pooka
345 1.108 pooka /*
346 1.108 pooka * The uvm reclaim hook is not currently necessary because it is
347 1.108 pooka * used only by ZFS and implements exactly the same functionality
348 1.108 pooka * as the kva reclaim hook which we already run in the pagedaemon
349 1.108 pooka * (rump vm does not have a concept of uvm_map(), so we cannot
350 1.108 pooka * reclaim kva it when a mapping operation fails due to insufficient
351 1.108 pooka * available kva).
352 1.108 pooka */
353 1.107 haad void
354 1.107 haad uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook_entry)
355 1.107 haad {
356 1.107 haad
357 1.107 haad }
358 1.108 pooka __strong_alias(uvm_reclaim_hook_del,uvm_reclaim_hook_add);
359 1.107 haad
360 1.83 pooka /* where's your schmonz now? */
361 1.83 pooka #define PUNLIMIT(a) \
362 1.83 pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
363 1.83 pooka void
364 1.83 pooka uvm_init_limits(struct proc *p)
365 1.83 pooka {
366 1.83 pooka
367 1.83 pooka PUNLIMIT(RLIMIT_STACK);
368 1.83 pooka PUNLIMIT(RLIMIT_DATA);
369 1.83 pooka PUNLIMIT(RLIMIT_RSS);
370 1.83 pooka PUNLIMIT(RLIMIT_AS);
371 1.83 pooka /* nice, cascade */
372 1.83 pooka }
373 1.83 pooka #undef PUNLIMIT
374 1.83 pooka
375 1.69 pooka /*
376 1.69 pooka * This satisfies the "disgusting mmap hack" used by proplib.
377 1.69 pooka * We probably should grow some more assertables to make sure we're
378 1.103 pooka * not satisfying anything we shouldn't be satisfying.
379 1.69 pooka */
380 1.49 pooka int
381 1.49 pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
382 1.49 pooka vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
383 1.49 pooka {
384 1.69 pooka void *uaddr;
385 1.69 pooka int error;
386 1.49 pooka
387 1.69 pooka if (prot != (VM_PROT_READ | VM_PROT_WRITE))
388 1.69 pooka panic("uvm_mmap() variant unsupported");
389 1.69 pooka if (flags != (MAP_PRIVATE | MAP_ANON))
390 1.69 pooka panic("uvm_mmap() variant unsupported");
391 1.98 pooka
392 1.69 pooka /* no reason in particular, but cf. uvm_default_mapaddr() */
393 1.69 pooka if (*addr != 0)
394 1.69 pooka panic("uvm_mmap() variant unsupported");
395 1.69 pooka
396 1.106 pooka if (RUMP_LOCALPROC_P(curproc)) {
397 1.98 pooka uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
398 1.98 pooka } else {
399 1.102 pooka error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
400 1.102 pooka size, &uaddr);
401 1.98 pooka }
402 1.69 pooka if (uaddr == NULL)
403 1.69 pooka return error;
404 1.69 pooka
405 1.69 pooka *addr = (vaddr_t)uaddr;
406 1.69 pooka return 0;
407 1.49 pooka }
408 1.49 pooka
409 1.61 pooka struct pagerinfo {
410 1.61 pooka vaddr_t pgr_kva;
411 1.61 pooka int pgr_npages;
412 1.61 pooka struct vm_page **pgr_pgs;
413 1.61 pooka bool pgr_read;
414 1.61 pooka
415 1.61 pooka LIST_ENTRY(pagerinfo) pgr_entries;
416 1.61 pooka };
417 1.61 pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
418 1.61 pooka
419 1.61 pooka /*
420 1.61 pooka * Pager "map" in routine. Instead of mapping, we allocate memory
421 1.61 pooka * and copy page contents there. Not optimal or even strictly
422 1.61 pooka * correct (the caller might modify the page contents after mapping
423 1.61 pooka * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
424 1.61 pooka */
425 1.7 pooka vaddr_t
426 1.61 pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
427 1.7 pooka {
428 1.61 pooka struct pagerinfo *pgri;
429 1.61 pooka vaddr_t curkva;
430 1.61 pooka int i;
431 1.61 pooka
432 1.61 pooka /* allocate structures */
433 1.61 pooka pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
434 1.61 pooka pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
435 1.61 pooka pgri->pgr_npages = npages;
436 1.61 pooka pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
437 1.61 pooka pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
438 1.61 pooka
439 1.61 pooka /* copy contents to "mapped" memory */
440 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
441 1.61 pooka i < npages;
442 1.61 pooka i++, curkva += PAGE_SIZE) {
443 1.61 pooka /*
444 1.61 pooka * We need to copy the previous contents of the pages to
445 1.61 pooka * the window even if we are reading from the
446 1.61 pooka * device, since the device might not fill the contents of
447 1.61 pooka * the full mapped range and we will end up corrupting
448 1.61 pooka * data when we unmap the window.
449 1.61 pooka */
450 1.61 pooka memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
451 1.61 pooka pgri->pgr_pgs[i] = pgs[i];
452 1.61 pooka }
453 1.61 pooka
454 1.61 pooka mutex_enter(&pagermtx);
455 1.61 pooka LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
456 1.61 pooka mutex_exit(&pagermtx);
457 1.7 pooka
458 1.61 pooka return pgri->pgr_kva;
459 1.7 pooka }
460 1.7 pooka
461 1.61 pooka /*
462 1.61 pooka * map out the pager window. return contents from VA to page storage
463 1.61 pooka * and free structures.
464 1.61 pooka *
465 1.61 pooka * Note: does not currently support partial frees
466 1.61 pooka */
467 1.61 pooka void
468 1.61 pooka uvm_pagermapout(vaddr_t kva, int npages)
469 1.7 pooka {
470 1.61 pooka struct pagerinfo *pgri;
471 1.61 pooka vaddr_t curkva;
472 1.61 pooka int i;
473 1.7 pooka
474 1.61 pooka mutex_enter(&pagermtx);
475 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
476 1.61 pooka if (pgri->pgr_kva == kva)
477 1.61 pooka break;
478 1.61 pooka }
479 1.61 pooka KASSERT(pgri);
480 1.61 pooka if (pgri->pgr_npages != npages)
481 1.61 pooka panic("uvm_pagermapout: partial unmapping not supported");
482 1.61 pooka LIST_REMOVE(pgri, pgr_entries);
483 1.61 pooka mutex_exit(&pagermtx);
484 1.61 pooka
485 1.61 pooka if (pgri->pgr_read) {
486 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
487 1.61 pooka i < pgri->pgr_npages;
488 1.61 pooka i++, curkva += PAGE_SIZE) {
489 1.61 pooka memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
490 1.21 pooka }
491 1.21 pooka }
492 1.10 pooka
493 1.61 pooka kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
494 1.61 pooka kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
495 1.61 pooka kmem_free(pgri, sizeof(*pgri));
496 1.7 pooka }
497 1.7 pooka
498 1.61 pooka /*
499 1.61 pooka * convert va in pager window to page structure.
500 1.61 pooka * XXX: how expensive is this (global lock, list traversal)?
501 1.61 pooka */
502 1.14 pooka struct vm_page *
503 1.14 pooka uvm_pageratop(vaddr_t va)
504 1.14 pooka {
505 1.61 pooka struct pagerinfo *pgri;
506 1.61 pooka struct vm_page *pg = NULL;
507 1.61 pooka int i;
508 1.14 pooka
509 1.61 pooka mutex_enter(&pagermtx);
510 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
511 1.61 pooka if (pgri->pgr_kva <= va
512 1.61 pooka && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
513 1.21 pooka break;
514 1.61 pooka }
515 1.61 pooka if (pgri) {
516 1.61 pooka i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
517 1.61 pooka pg = pgri->pgr_pgs[i];
518 1.61 pooka }
519 1.61 pooka mutex_exit(&pagermtx);
520 1.21 pooka
521 1.61 pooka return pg;
522 1.61 pooka }
523 1.15 pooka
524 1.97 pooka /*
525 1.97 pooka * Called with the vm object locked.
526 1.97 pooka *
527 1.97 pooka * Put vnode object pages at the end of the access queue to indicate
528 1.97 pooka * they have been recently accessed and should not be immediate
529 1.97 pooka * candidates for pageout. Do not do this for lookups done by
530 1.97 pooka * the pagedaemon to mimic pmap_kentered mappings which don't track
531 1.97 pooka * access information.
532 1.97 pooka */
533 1.61 pooka struct vm_page *
534 1.61 pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
535 1.61 pooka {
536 1.92 pooka struct vm_page *pg;
537 1.97 pooka bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
538 1.61 pooka
539 1.96 rmind pg = rb_tree_find_node(&uobj->rb_tree, &off);
540 1.97 pooka if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
541 1.92 pooka mutex_enter(&uvm_pageqlock);
542 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
543 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
544 1.92 pooka mutex_exit(&uvm_pageqlock);
545 1.92 pooka }
546 1.92 pooka
547 1.92 pooka return pg;
548 1.14 pooka }
549 1.14 pooka
550 1.7 pooka void
551 1.22 pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
552 1.22 pooka {
553 1.22 pooka struct vm_page *pg;
554 1.22 pooka int i;
555 1.22 pooka
556 1.94 pooka KASSERT(npgs > 0);
557 1.94 pooka KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
558 1.94 pooka
559 1.22 pooka for (i = 0; i < npgs; i++) {
560 1.22 pooka pg = pgs[i];
561 1.22 pooka if (pg == NULL)
562 1.22 pooka continue;
563 1.22 pooka
564 1.22 pooka KASSERT(pg->flags & PG_BUSY);
565 1.22 pooka if (pg->flags & PG_WANTED)
566 1.22 pooka wakeup(pg);
567 1.36 pooka if (pg->flags & PG_RELEASED)
568 1.36 pooka uvm_pagefree(pg);
569 1.36 pooka else
570 1.36 pooka pg->flags &= ~(PG_WANTED|PG_BUSY);
571 1.22 pooka }
572 1.22 pooka }
573 1.22 pooka
574 1.22 pooka void
575 1.7 pooka uvm_estimatepageable(int *active, int *inactive)
576 1.7 pooka {
577 1.7 pooka
578 1.19 pooka /* XXX: guessing game */
579 1.19 pooka *active = 1024;
580 1.19 pooka *inactive = 1024;
581 1.7 pooka }
582 1.7 pooka
583 1.39 pooka struct vm_map_kernel *
584 1.39 pooka vm_map_to_kernel(struct vm_map *map)
585 1.39 pooka {
586 1.39 pooka
587 1.39 pooka return (struct vm_map_kernel *)map;
588 1.39 pooka }
589 1.39 pooka
590 1.41 pooka bool
591 1.41 pooka vm_map_starved_p(struct vm_map *map)
592 1.41 pooka {
593 1.41 pooka
594 1.80 pooka if (map->flags & VM_MAP_WANTVA)
595 1.80 pooka return true;
596 1.80 pooka
597 1.41 pooka return false;
598 1.41 pooka }
599 1.41 pooka
600 1.41 pooka int
601 1.41 pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
602 1.41 pooka {
603 1.41 pooka
604 1.41 pooka panic("%s: unimplemented", __func__);
605 1.41 pooka }
606 1.41 pooka
607 1.41 pooka void
608 1.41 pooka uvm_unloan(void *v, int npages, int flags)
609 1.41 pooka {
610 1.41 pooka
611 1.41 pooka panic("%s: unimplemented", __func__);
612 1.41 pooka }
613 1.41 pooka
614 1.43 pooka int
615 1.43 pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
616 1.43 pooka struct vm_page **opp)
617 1.43 pooka {
618 1.43 pooka
619 1.72 pooka return EBUSY;
620 1.43 pooka }
621 1.43 pooka
622 1.73 pooka #ifdef DEBUGPRINT
623 1.56 pooka void
624 1.56 pooka uvm_object_printit(struct uvm_object *uobj, bool full,
625 1.56 pooka void (*pr)(const char *, ...))
626 1.56 pooka {
627 1.56 pooka
628 1.75 pooka pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
629 1.56 pooka }
630 1.73 pooka #endif
631 1.56 pooka
632 1.68 pooka vaddr_t
633 1.68 pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
634 1.68 pooka {
635 1.68 pooka
636 1.68 pooka return 0;
637 1.68 pooka }
638 1.68 pooka
639 1.71 pooka int
640 1.71 pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
641 1.71 pooka vm_prot_t prot, bool set_max)
642 1.71 pooka {
643 1.71 pooka
644 1.71 pooka return EOPNOTSUPP;
645 1.71 pooka }
646 1.71 pooka
647 1.9 pooka /*
648 1.12 pooka * UVM km
649 1.12 pooka */
650 1.12 pooka
651 1.12 pooka vaddr_t
652 1.12 pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
653 1.12 pooka {
654 1.82 pooka void *rv, *desired = NULL;
655 1.50 pooka int alignbit, error;
656 1.50 pooka
657 1.82 pooka #ifdef __x86_64__
658 1.82 pooka /*
659 1.82 pooka * On amd64, allocate all module memory from the lowest 2GB.
660 1.82 pooka * This is because NetBSD kernel modules are compiled
661 1.82 pooka * with -mcmodel=kernel and reserve only 4 bytes for
662 1.82 pooka * offsets. If we load code compiled with -mcmodel=kernel
663 1.82 pooka * anywhere except the lowest or highest 2GB, it will not
664 1.82 pooka * work. Since userspace does not have access to the highest
665 1.82 pooka * 2GB, use the lowest 2GB.
666 1.82 pooka *
667 1.82 pooka * Note: this assumes the rump kernel resides in
668 1.82 pooka * the lowest 2GB as well.
669 1.82 pooka *
670 1.82 pooka * Note2: yes, it's a quick hack, but since this the only
671 1.82 pooka * place where we care about the map we're allocating from,
672 1.82 pooka * just use a simple "if" instead of coming up with a fancy
673 1.82 pooka * generic solution.
674 1.82 pooka */
675 1.82 pooka extern struct vm_map *module_map;
676 1.82 pooka if (map == module_map) {
677 1.82 pooka desired = (void *)(0x80000000 - size);
678 1.82 pooka }
679 1.82 pooka #endif
680 1.82 pooka
681 1.50 pooka alignbit = 0;
682 1.50 pooka if (align) {
683 1.50 pooka alignbit = ffs(align)-1;
684 1.50 pooka }
685 1.50 pooka
686 1.82 pooka rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
687 1.81 pooka &error);
688 1.50 pooka if (rv == NULL) {
689 1.50 pooka if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
690 1.50 pooka return 0;
691 1.50 pooka else
692 1.50 pooka panic("uvm_km_alloc failed");
693 1.50 pooka }
694 1.12 pooka
695 1.50 pooka if (flags & UVM_KMF_ZERO)
696 1.12 pooka memset(rv, 0, size);
697 1.12 pooka
698 1.12 pooka return (vaddr_t)rv;
699 1.12 pooka }
700 1.12 pooka
701 1.12 pooka void
702 1.12 pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
703 1.12 pooka {
704 1.12 pooka
705 1.50 pooka rumpuser_unmap((void *)vaddr, size);
706 1.12 pooka }
707 1.12 pooka
708 1.12 pooka struct vm_map *
709 1.12 pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
710 1.12 pooka vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
711 1.12 pooka {
712 1.12 pooka
713 1.12 pooka return (struct vm_map *)417416;
714 1.12 pooka }
715 1.40 pooka
716 1.40 pooka vaddr_t
717 1.40 pooka uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
718 1.40 pooka {
719 1.40 pooka
720 1.80 pooka return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
721 1.80 pooka waitok, "kmalloc");
722 1.40 pooka }
723 1.40 pooka
724 1.40 pooka void
725 1.40 pooka uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
726 1.40 pooka {
727 1.40 pooka
728 1.84 pooka rump_hyperfree((void *)addr, PAGE_SIZE);
729 1.50 pooka }
730 1.50 pooka
731 1.50 pooka vaddr_t
732 1.50 pooka uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
733 1.50 pooka {
734 1.50 pooka
735 1.77 pooka return uvm_km_alloc_poolpage(map, waitok);
736 1.50 pooka }
737 1.50 pooka
738 1.50 pooka void
739 1.50 pooka uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
740 1.50 pooka {
741 1.50 pooka
742 1.77 pooka uvm_km_free_poolpage(map, vaddr);
743 1.40 pooka }
744 1.57 pooka
745 1.74 pooka void
746 1.74 pooka uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
747 1.74 pooka {
748 1.74 pooka
749 1.74 pooka /* we eventually maybe want some model for available memory */
750 1.74 pooka }
751 1.74 pooka
752 1.57 pooka /*
753 1.102 pooka * VM space locking routines. We don't really have to do anything,
754 1.102 pooka * since the pages are always "wired" (both local and remote processes).
755 1.57 pooka */
756 1.57 pooka int
757 1.57 pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
758 1.57 pooka {
759 1.57 pooka
760 1.57 pooka return 0;
761 1.57 pooka }
762 1.57 pooka
763 1.57 pooka void
764 1.57 pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
765 1.57 pooka {
766 1.57 pooka
767 1.57 pooka }
768 1.57 pooka
769 1.102 pooka /*
770 1.102 pooka * For the local case the buffer mappers don't need to do anything.
771 1.102 pooka * For the remote case we need to reserve space and copy data in or
772 1.102 pooka * out, depending on B_READ/B_WRITE.
773 1.102 pooka */
774 1.111 pooka int
775 1.57 pooka vmapbuf(struct buf *bp, vsize_t len)
776 1.57 pooka {
777 1.111 pooka int error = 0;
778 1.57 pooka
779 1.57 pooka bp->b_saveaddr = bp->b_data;
780 1.102 pooka
781 1.102 pooka /* remote case */
782 1.106 pooka if (!RUMP_LOCALPROC_P(curproc)) {
783 1.102 pooka bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
784 1.102 pooka if (BUF_ISWRITE(bp)) {
785 1.111 pooka error = copyin(bp->b_saveaddr, bp->b_data, len);
786 1.111 pooka if (error) {
787 1.111 pooka rump_hyperfree(bp->b_data, len);
788 1.111 pooka bp->b_data = bp->b_saveaddr;
789 1.111 pooka bp->b_saveaddr = 0;
790 1.111 pooka }
791 1.102 pooka }
792 1.102 pooka }
793 1.111 pooka
794 1.111 pooka return error;
795 1.57 pooka }
796 1.57 pooka
797 1.57 pooka void
798 1.57 pooka vunmapbuf(struct buf *bp, vsize_t len)
799 1.57 pooka {
800 1.57 pooka
801 1.102 pooka /* remote case */
802 1.106 pooka if (!RUMP_LOCALPROC_P(bp->b_proc)) {
803 1.102 pooka if (BUF_ISREAD(bp)) {
804 1.110 pooka bp->b_error = copyout_proc(bp->b_proc,
805 1.102 pooka bp->b_data, bp->b_saveaddr, len);
806 1.102 pooka }
807 1.102 pooka rump_hyperfree(bp->b_data, len);
808 1.102 pooka }
809 1.102 pooka
810 1.57 pooka bp->b_data = bp->b_saveaddr;
811 1.57 pooka bp->b_saveaddr = 0;
812 1.57 pooka }
813 1.61 pooka
814 1.61 pooka void
815 1.83 pooka uvmspace_addref(struct vmspace *vm)
816 1.83 pooka {
817 1.83 pooka
818 1.83 pooka /*
819 1.103 pooka * No dynamically allocated vmspaces exist.
820 1.83 pooka */
821 1.83 pooka }
822 1.83 pooka
823 1.83 pooka void
824 1.66 pooka uvmspace_free(struct vmspace *vm)
825 1.66 pooka {
826 1.66 pooka
827 1.66 pooka /* nothing for now */
828 1.66 pooka }
829 1.66 pooka
830 1.61 pooka /*
831 1.61 pooka * page life cycle stuff. it really doesn't exist, so just stubs.
832 1.61 pooka */
833 1.61 pooka
834 1.61 pooka void
835 1.61 pooka uvm_pageactivate(struct vm_page *pg)
836 1.61 pooka {
837 1.61 pooka
838 1.61 pooka /* nada */
839 1.61 pooka }
840 1.61 pooka
841 1.61 pooka void
842 1.61 pooka uvm_pagedeactivate(struct vm_page *pg)
843 1.61 pooka {
844 1.61 pooka
845 1.61 pooka /* nada */
846 1.61 pooka }
847 1.61 pooka
848 1.61 pooka void
849 1.61 pooka uvm_pagedequeue(struct vm_page *pg)
850 1.61 pooka {
851 1.61 pooka
852 1.61 pooka /* nada*/
853 1.61 pooka }
854 1.61 pooka
855 1.61 pooka void
856 1.61 pooka uvm_pageenqueue(struct vm_page *pg)
857 1.61 pooka {
858 1.61 pooka
859 1.61 pooka /* nada */
860 1.61 pooka }
861 1.80 pooka
862 1.88 pooka void
863 1.88 pooka uvmpdpol_anfree(struct vm_anon *an)
864 1.88 pooka {
865 1.88 pooka
866 1.88 pooka /* nada */
867 1.88 pooka }
868 1.88 pooka
869 1.80 pooka /*
870 1.99 uebayasi * Physical address accessors.
871 1.99 uebayasi */
872 1.99 uebayasi
873 1.99 uebayasi struct vm_page *
874 1.99 uebayasi uvm_phys_to_vm_page(paddr_t pa)
875 1.99 uebayasi {
876 1.99 uebayasi
877 1.99 uebayasi return NULL;
878 1.99 uebayasi }
879 1.99 uebayasi
880 1.99 uebayasi paddr_t
881 1.99 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
882 1.99 uebayasi {
883 1.99 uebayasi
884 1.99 uebayasi return 0;
885 1.99 uebayasi }
886 1.99 uebayasi
887 1.99 uebayasi /*
888 1.80 pooka * Routines related to the Page Baroness.
889 1.80 pooka */
890 1.80 pooka
891 1.80 pooka void
892 1.80 pooka uvm_wait(const char *msg)
893 1.80 pooka {
894 1.80 pooka
895 1.80 pooka if (__predict_false(curlwp == uvm.pagedaemon_lwp))
896 1.80 pooka panic("pagedaemon out of memory");
897 1.80 pooka if (__predict_false(rump_threads == 0))
898 1.80 pooka panic("pagedaemon missing (RUMP_THREADS = 0)");
899 1.80 pooka
900 1.80 pooka mutex_enter(&pdaemonmtx);
901 1.80 pooka pdaemon_waiters++;
902 1.80 pooka cv_signal(&pdaemoncv);
903 1.80 pooka cv_wait(&oomwait, &pdaemonmtx);
904 1.80 pooka mutex_exit(&pdaemonmtx);
905 1.80 pooka }
906 1.80 pooka
907 1.80 pooka void
908 1.80 pooka uvm_pageout_start(int npages)
909 1.80 pooka {
910 1.80 pooka
911 1.80 pooka /* we don't have the heuristics */
912 1.80 pooka }
913 1.80 pooka
914 1.80 pooka void
915 1.80 pooka uvm_pageout_done(int npages)
916 1.80 pooka {
917 1.80 pooka
918 1.80 pooka /* could wakeup waiters, but just let the pagedaemon do it */
919 1.80 pooka }
920 1.80 pooka
921 1.95 pooka static bool
922 1.104 pooka processpage(struct vm_page *pg, bool *lockrunning)
923 1.95 pooka {
924 1.95 pooka struct uvm_object *uobj;
925 1.95 pooka
926 1.95 pooka uobj = pg->uobject;
927 1.95 pooka if (mutex_tryenter(&uobj->vmobjlock)) {
928 1.95 pooka if ((pg->flags & PG_BUSY) == 0) {
929 1.95 pooka mutex_exit(&uvm_pageqlock);
930 1.95 pooka uobj->pgops->pgo_put(uobj, pg->offset,
931 1.95 pooka pg->offset + PAGE_SIZE,
932 1.95 pooka PGO_CLEANIT|PGO_FREE);
933 1.95 pooka KASSERT(!mutex_owned(&uobj->vmobjlock));
934 1.95 pooka return true;
935 1.95 pooka } else {
936 1.95 pooka mutex_exit(&uobj->vmobjlock);
937 1.95 pooka }
938 1.104 pooka } else if (*lockrunning == false && ncpu > 1) {
939 1.104 pooka CPU_INFO_ITERATOR cii;
940 1.104 pooka struct cpu_info *ci;
941 1.104 pooka struct lwp *l;
942 1.104 pooka
943 1.104 pooka l = mutex_owner(&uobj->vmobjlock);
944 1.104 pooka for (CPU_INFO_FOREACH(cii, ci)) {
945 1.104 pooka if (ci->ci_curlwp == l) {
946 1.104 pooka *lockrunning = true;
947 1.104 pooka break;
948 1.104 pooka }
949 1.104 pooka }
950 1.95 pooka }
951 1.95 pooka
952 1.95 pooka return false;
953 1.95 pooka }
954 1.95 pooka
955 1.80 pooka /*
956 1.92 pooka * The Diabolical pageDaemon Director (DDD).
957 1.80 pooka */
958 1.80 pooka void
959 1.80 pooka uvm_pageout(void *arg)
960 1.80 pooka {
961 1.92 pooka struct vm_page *pg;
962 1.80 pooka struct pool *pp, *pp_first;
963 1.80 pooka uint64_t where;
964 1.80 pooka int timo = 0;
965 1.92 pooka int cleaned, skip, skipped;
966 1.92 pooka bool succ = false;
967 1.104 pooka bool lockrunning;
968 1.80 pooka
969 1.80 pooka mutex_enter(&pdaemonmtx);
970 1.80 pooka for (;;) {
971 1.92 pooka if (succ) {
972 1.92 pooka kernel_map->flags &= ~VM_MAP_WANTVA;
973 1.95 pooka kmem_map->flags &= ~VM_MAP_WANTVA;
974 1.92 pooka timo = 0;
975 1.95 pooka if (pdaemon_waiters) {
976 1.95 pooka pdaemon_waiters = 0;
977 1.95 pooka cv_broadcast(&oomwait);
978 1.95 pooka }
979 1.92 pooka }
980 1.92 pooka succ = false;
981 1.92 pooka
982 1.104 pooka if (pdaemon_waiters == 0) {
983 1.104 pooka cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
984 1.104 pooka uvmexp.pdwoke++;
985 1.104 pooka }
986 1.92 pooka
987 1.92 pooka /* tell the world that we are hungry */
988 1.80 pooka kernel_map->flags |= VM_MAP_WANTVA;
989 1.92 pooka kmem_map->flags |= VM_MAP_WANTVA;
990 1.92 pooka
991 1.92 pooka if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
992 1.92 pooka continue;
993 1.80 pooka mutex_exit(&pdaemonmtx);
994 1.80 pooka
995 1.92 pooka /*
996 1.92 pooka * step one: reclaim the page cache. this should give
997 1.92 pooka * us the biggest earnings since whole pages are released
998 1.92 pooka * into backing memory.
999 1.92 pooka */
1000 1.92 pooka pool_cache_reclaim(&pagecache);
1001 1.92 pooka if (!NEED_PAGEDAEMON()) {
1002 1.92 pooka succ = true;
1003 1.92 pooka mutex_enter(&pdaemonmtx);
1004 1.92 pooka continue;
1005 1.92 pooka }
1006 1.92 pooka
1007 1.92 pooka /*
1008 1.92 pooka * Ok, so that didn't help. Next, try to hunt memory
1009 1.92 pooka * by pushing out vnode pages. The pages might contain
1010 1.92 pooka * useful cached data, but we need the memory.
1011 1.92 pooka */
1012 1.92 pooka cleaned = 0;
1013 1.92 pooka skip = 0;
1014 1.104 pooka lockrunning = false;
1015 1.92 pooka again:
1016 1.92 pooka mutex_enter(&uvm_pageqlock);
1017 1.92 pooka while (cleaned < PAGEDAEMON_OBJCHUNK) {
1018 1.92 pooka skipped = 0;
1019 1.92 pooka TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1020 1.92 pooka
1021 1.92 pooka /*
1022 1.92 pooka * skip over pages we _might_ have tried
1023 1.92 pooka * to handle earlier. they might not be
1024 1.92 pooka * exactly the same ones, but I'm not too
1025 1.92 pooka * concerned.
1026 1.92 pooka */
1027 1.92 pooka while (skipped++ < skip)
1028 1.92 pooka continue;
1029 1.92 pooka
1030 1.104 pooka if (processpage(pg, &lockrunning)) {
1031 1.95 pooka cleaned++;
1032 1.95 pooka goto again;
1033 1.92 pooka }
1034 1.92 pooka
1035 1.92 pooka skip++;
1036 1.92 pooka }
1037 1.92 pooka break;
1038 1.92 pooka }
1039 1.92 pooka mutex_exit(&uvm_pageqlock);
1040 1.92 pooka
1041 1.92 pooka /*
1042 1.104 pooka * Ok, someone is running with an object lock held.
1043 1.104 pooka * We want to yield the host CPU to make sure the
1044 1.104 pooka * thread is not parked on the host. Since sched_yield()
1045 1.104 pooka * doesn't appear to do anything on NetBSD, nanosleep
1046 1.104 pooka * for the smallest possible time and hope we're back in
1047 1.104 pooka * the game soon.
1048 1.104 pooka */
1049 1.104 pooka if (cleaned == 0 && lockrunning) {
1050 1.104 pooka uint64_t sec, nsec;
1051 1.104 pooka
1052 1.104 pooka sec = 0;
1053 1.104 pooka nsec = 1;
1054 1.104 pooka rumpuser_nanosleep(&sec, &nsec, NULL);
1055 1.104 pooka
1056 1.104 pooka lockrunning = false;
1057 1.104 pooka skip = 0;
1058 1.104 pooka
1059 1.104 pooka /* and here we go again */
1060 1.104 pooka goto again;
1061 1.104 pooka }
1062 1.104 pooka
1063 1.104 pooka /*
1064 1.92 pooka * And of course we need to reclaim the page cache
1065 1.92 pooka * again to actually release memory.
1066 1.92 pooka */
1067 1.92 pooka pool_cache_reclaim(&pagecache);
1068 1.92 pooka if (!NEED_PAGEDAEMON()) {
1069 1.92 pooka succ = true;
1070 1.92 pooka mutex_enter(&pdaemonmtx);
1071 1.92 pooka continue;
1072 1.92 pooka }
1073 1.92 pooka
1074 1.92 pooka /*
1075 1.92 pooka * Still not there? sleeves come off right about now.
1076 1.92 pooka * First: do reclaim on kernel/kmem map.
1077 1.92 pooka */
1078 1.92 pooka callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
1079 1.92 pooka NULL);
1080 1.92 pooka callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
1081 1.92 pooka NULL);
1082 1.92 pooka
1083 1.92 pooka /*
1084 1.92 pooka * And then drain the pools. Wipe them out ... all of them.
1085 1.92 pooka */
1086 1.92 pooka
1087 1.80 pooka pool_drain_start(&pp_first, &where);
1088 1.80 pooka pp = pp_first;
1089 1.80 pooka for (;;) {
1090 1.91 pooka rump_vfs_drainbufs(10 /* XXX: estimate better */);
1091 1.80 pooka succ = pool_drain_end(pp, where);
1092 1.80 pooka if (succ)
1093 1.80 pooka break;
1094 1.80 pooka pool_drain_start(&pp, &where);
1095 1.80 pooka if (pp == pp_first) {
1096 1.80 pooka succ = pool_drain_end(pp, where);
1097 1.80 pooka break;
1098 1.80 pooka }
1099 1.80 pooka }
1100 1.92 pooka
1101 1.92 pooka /*
1102 1.92 pooka * Need to use PYEC on our bag of tricks.
1103 1.92 pooka * Unfortunately, the wife just borrowed it.
1104 1.92 pooka */
1105 1.80 pooka
1106 1.104 pooka if (!succ && cleaned == 0) {
1107 1.80 pooka rumpuser_dprintf("pagedaemoness: failed to reclaim "
1108 1.80 pooka "memory ... sleeping (deadlock?)\n");
1109 1.95 pooka timo = hz;
1110 1.80 pooka }
1111 1.80 pooka
1112 1.92 pooka mutex_enter(&pdaemonmtx);
1113 1.80 pooka }
1114 1.80 pooka
1115 1.80 pooka panic("you can swap out any time you like, but you can never leave");
1116 1.80 pooka }
1117 1.80 pooka
1118 1.80 pooka void
1119 1.80 pooka uvm_kick_pdaemon()
1120 1.80 pooka {
1121 1.80 pooka
1122 1.92 pooka /*
1123 1.92 pooka * Wake up the diabolical pagedaemon director if we are over
1124 1.92 pooka * 90% of the memory limit. This is a complete and utter
1125 1.92 pooka * stetson-harrison decision which you are allowed to finetune.
1126 1.92 pooka * Don't bother locking. If we have some unflushed caches,
1127 1.92 pooka * other waker-uppers will deal with the issue.
1128 1.92 pooka */
1129 1.92 pooka if (NEED_PAGEDAEMON()) {
1130 1.92 pooka cv_signal(&pdaemoncv);
1131 1.92 pooka }
1132 1.80 pooka }
1133 1.80 pooka
1134 1.80 pooka void *
1135 1.80 pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1136 1.80 pooka {
1137 1.84 pooka unsigned long newmem;
1138 1.80 pooka void *rv;
1139 1.80 pooka
1140 1.92 pooka uvm_kick_pdaemon(); /* ouch */
1141 1.92 pooka
1142 1.84 pooka /* first we must be within the limit */
1143 1.84 pooka limitagain:
1144 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1145 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, howmuch);
1146 1.91 pooka if (newmem > rump_physmemlimit) {
1147 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1148 1.103 pooka if (!waitok) {
1149 1.84 pooka return NULL;
1150 1.103 pooka }
1151 1.84 pooka uvm_wait(wmsg);
1152 1.84 pooka goto limitagain;
1153 1.84 pooka }
1154 1.84 pooka }
1155 1.84 pooka
1156 1.84 pooka /* second, we must get something from the backend */
1157 1.80 pooka again:
1158 1.80 pooka rv = rumpuser_malloc(howmuch, alignment);
1159 1.80 pooka if (__predict_false(rv == NULL && waitok)) {
1160 1.80 pooka uvm_wait(wmsg);
1161 1.80 pooka goto again;
1162 1.80 pooka }
1163 1.80 pooka
1164 1.80 pooka return rv;
1165 1.80 pooka }
1166 1.84 pooka
1167 1.84 pooka void
1168 1.84 pooka rump_hyperfree(void *what, size_t size)
1169 1.84 pooka {
1170 1.84 pooka
1171 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1172 1.84 pooka atomic_add_long(&curphysmem, -size);
1173 1.84 pooka }
1174 1.84 pooka rumpuser_free(what);
1175 1.84 pooka }
1176