vm.c revision 1.112 1 1.112 pooka /* $NetBSD: vm.c,v 1.112 2011/02/22 18:43:20 pooka Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.76 pooka * Copyright (c) 2007-2010 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.76 pooka * Development of this software was supported by
7 1.76 pooka * The Finnish Cultural Foundation and the Research Foundation of
8 1.76 pooka * The Helsinki University of Technology.
9 1.1 pooka *
10 1.1 pooka * Redistribution and use in source and binary forms, with or without
11 1.1 pooka * modification, are permitted provided that the following conditions
12 1.1 pooka * are met:
13 1.1 pooka * 1. Redistributions of source code must retain the above copyright
14 1.1 pooka * notice, this list of conditions and the following disclaimer.
15 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer in the
17 1.1 pooka * documentation and/or other materials provided with the distribution.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka */
31 1.1 pooka
32 1.1 pooka /*
33 1.88 pooka * Virtual memory emulation routines.
34 1.1 pooka */
35 1.1 pooka
36 1.1 pooka /*
37 1.5 pooka * XXX: we abuse pg->uanon for the virtual address of the storage
38 1.1 pooka * for each page. phys_addr would fit the job description better,
39 1.1 pooka * except that it will create unnecessary lossage on some platforms
40 1.1 pooka * due to not being a pointer type.
41 1.1 pooka */
42 1.1 pooka
43 1.48 pooka #include <sys/cdefs.h>
44 1.112 pooka __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.112 2011/02/22 18:43:20 pooka Exp $");
45 1.48 pooka
46 1.1 pooka #include <sys/param.h>
47 1.40 pooka #include <sys/atomic.h>
48 1.80 pooka #include <sys/buf.h>
49 1.80 pooka #include <sys/kernel.h>
50 1.67 pooka #include <sys/kmem.h>
51 1.69 pooka #include <sys/mman.h>
52 1.1 pooka #include <sys/null.h>
53 1.1 pooka #include <sys/vnode.h>
54 1.1 pooka
55 1.34 pooka #include <machine/pmap.h>
56 1.34 pooka
57 1.34 pooka #include <rump/rumpuser.h>
58 1.34 pooka
59 1.1 pooka #include <uvm/uvm.h>
60 1.56 pooka #include <uvm/uvm_ddb.h>
61 1.88 pooka #include <uvm/uvm_pdpolicy.h>
62 1.1 pooka #include <uvm/uvm_prot.h>
63 1.58 he #include <uvm/uvm_readahead.h>
64 1.1 pooka
65 1.13 pooka #include "rump_private.h"
66 1.91 pooka #include "rump_vfs_private.h"
67 1.1 pooka
68 1.25 ad kmutex_t uvm_pageqlock;
69 1.88 pooka kmutex_t uvm_swap_data_lock;
70 1.25 ad
71 1.1 pooka struct uvmexp uvmexp;
72 1.7 pooka struct uvm uvm;
73 1.1 pooka
74 1.112 pooka #ifdef __uvmexp_pagesize
75 1.112 pooka int *uvmexp_pagesize = &uvmexp.pagesize;
76 1.112 pooka int *uvmexp_pagemask = &uvmexp.pagemask;
77 1.112 pooka int *uvmexp_pageshift = &uvmexp.pageshift;
78 1.112 pooka #endif
79 1.112 pooka
80 1.1 pooka struct vm_map rump_vmmap;
81 1.50 pooka static struct vm_map_kernel kmem_map_store;
82 1.50 pooka struct vm_map *kmem_map = &kmem_map_store.vmk_map;
83 1.1 pooka
84 1.35 pooka static struct vm_map_kernel kernel_map_store;
85 1.35 pooka struct vm_map *kernel_map = &kernel_map_store.vmk_map;
86 1.35 pooka
87 1.80 pooka static unsigned int pdaemon_waiters;
88 1.80 pooka static kmutex_t pdaemonmtx;
89 1.80 pooka static kcondvar_t pdaemoncv, oomwait;
90 1.80 pooka
91 1.91 pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
92 1.84 pooka static unsigned long curphysmem;
93 1.92 pooka static unsigned long dddlim; /* 90% of memory limit used */
94 1.92 pooka #define NEED_PAGEDAEMON() \
95 1.92 pooka (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
96 1.92 pooka
97 1.92 pooka /*
98 1.92 pooka * Try to free two pages worth of pages from objects.
99 1.92 pooka * If this succesfully frees a full page cache page, we'll
100 1.92 pooka * free the released page plus PAGE_SIZE/sizeof(vm_page).
101 1.92 pooka */
102 1.92 pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
103 1.92 pooka
104 1.92 pooka /*
105 1.92 pooka * Keep a list of least recently used pages. Since the only way a
106 1.92 pooka * rump kernel can "access" a page is via lookup, we put the page
107 1.92 pooka * at the back of queue every time a lookup for it is done. If the
108 1.92 pooka * page is in front of this global queue and we're short of memory,
109 1.92 pooka * it's a candidate for pageout.
110 1.92 pooka */
111 1.92 pooka static struct pglist vmpage_lruqueue;
112 1.92 pooka static unsigned vmpage_onqueue;
113 1.84 pooka
114 1.89 pooka static int
115 1.96 rmind pg_compare_key(void *ctx, const void *n, const void *key)
116 1.89 pooka {
117 1.89 pooka voff_t a = ((const struct vm_page *)n)->offset;
118 1.89 pooka voff_t b = *(const voff_t *)key;
119 1.89 pooka
120 1.89 pooka if (a < b)
121 1.96 rmind return -1;
122 1.96 rmind else if (a > b)
123 1.89 pooka return 1;
124 1.89 pooka else
125 1.89 pooka return 0;
126 1.89 pooka }
127 1.89 pooka
128 1.89 pooka static int
129 1.96 rmind pg_compare_nodes(void *ctx, const void *n1, const void *n2)
130 1.89 pooka {
131 1.89 pooka
132 1.96 rmind return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
133 1.89 pooka }
134 1.89 pooka
135 1.96 rmind const rb_tree_ops_t uvm_page_tree_ops = {
136 1.89 pooka .rbto_compare_nodes = pg_compare_nodes,
137 1.89 pooka .rbto_compare_key = pg_compare_key,
138 1.96 rmind .rbto_node_offset = offsetof(struct vm_page, rb_node),
139 1.96 rmind .rbto_context = NULL
140 1.89 pooka };
141 1.89 pooka
142 1.1 pooka /*
143 1.1 pooka * vm pages
144 1.1 pooka */
145 1.1 pooka
146 1.90 pooka static int
147 1.90 pooka pgctor(void *arg, void *obj, int flags)
148 1.90 pooka {
149 1.90 pooka struct vm_page *pg = obj;
150 1.90 pooka
151 1.90 pooka memset(pg, 0, sizeof(*pg));
152 1.103 pooka pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
153 1.103 pooka (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
154 1.103 pooka return pg->uanon == NULL;
155 1.90 pooka }
156 1.90 pooka
157 1.90 pooka static void
158 1.90 pooka pgdtor(void *arg, void *obj)
159 1.90 pooka {
160 1.90 pooka struct vm_page *pg = obj;
161 1.90 pooka
162 1.90 pooka rump_hyperfree(pg->uanon, PAGE_SIZE);
163 1.90 pooka }
164 1.90 pooka
165 1.90 pooka static struct pool_cache pagecache;
166 1.90 pooka
167 1.92 pooka /*
168 1.92 pooka * Called with the object locked. We don't support anons.
169 1.92 pooka */
170 1.1 pooka struct vm_page *
171 1.76 pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
172 1.76 pooka int flags, int strat, int free_list)
173 1.1 pooka {
174 1.1 pooka struct vm_page *pg;
175 1.1 pooka
176 1.92 pooka KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
177 1.92 pooka KASSERT(anon == NULL);
178 1.92 pooka
179 1.103 pooka pg = pool_cache_get(&pagecache, PR_NOWAIT);
180 1.104 pooka if (__predict_false(pg == NULL)) {
181 1.103 pooka return NULL;
182 1.104 pooka }
183 1.103 pooka
184 1.1 pooka pg->offset = off;
185 1.5 pooka pg->uobject = uobj;
186 1.1 pooka
187 1.22 pooka pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
188 1.90 pooka if (flags & UVM_PGA_ZERO) {
189 1.90 pooka uvm_pagezero(pg);
190 1.90 pooka }
191 1.1 pooka
192 1.31 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
193 1.96 rmind (void)rb_tree_insert_node(&uobj->rb_tree, pg);
194 1.89 pooka
195 1.92 pooka /*
196 1.93 pooka * Don't put anons on the LRU page queue. We can't flush them
197 1.93 pooka * (there's no concept of swap in a rump kernel), so no reason
198 1.93 pooka * to bother with them.
199 1.92 pooka */
200 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
201 1.92 pooka atomic_inc_uint(&vmpage_onqueue);
202 1.92 pooka mutex_enter(&uvm_pageqlock);
203 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
204 1.92 pooka mutex_exit(&uvm_pageqlock);
205 1.92 pooka }
206 1.92 pooka
207 1.59 pooka uobj->uo_npages++;
208 1.21 pooka
209 1.1 pooka return pg;
210 1.1 pooka }
211 1.1 pooka
212 1.21 pooka /*
213 1.21 pooka * Release a page.
214 1.21 pooka *
215 1.22 pooka * Called with the vm object locked.
216 1.21 pooka */
217 1.1 pooka void
218 1.22 pooka uvm_pagefree(struct vm_page *pg)
219 1.1 pooka {
220 1.5 pooka struct uvm_object *uobj = pg->uobject;
221 1.1 pooka
222 1.92 pooka KASSERT(mutex_owned(&uvm_pageqlock));
223 1.95 pooka KASSERT(mutex_owned(&uobj->vmobjlock));
224 1.92 pooka
225 1.22 pooka if (pg->flags & PG_WANTED)
226 1.22 pooka wakeup(pg);
227 1.22 pooka
228 1.92 pooka TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
229 1.92 pooka
230 1.59 pooka uobj->uo_npages--;
231 1.96 rmind rb_tree_remove_node(&uobj->rb_tree, pg);
232 1.92 pooka
233 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
234 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
235 1.92 pooka atomic_dec_uint(&vmpage_onqueue);
236 1.92 pooka }
237 1.92 pooka
238 1.90 pooka pool_cache_put(&pagecache, pg);
239 1.1 pooka }
240 1.1 pooka
241 1.15 pooka void
242 1.61 pooka uvm_pagezero(struct vm_page *pg)
243 1.15 pooka {
244 1.15 pooka
245 1.61 pooka pg->flags &= ~PG_CLEAN;
246 1.61 pooka memset((void *)pg->uanon, 0, PAGE_SIZE);
247 1.15 pooka }
248 1.15 pooka
249 1.1 pooka /*
250 1.1 pooka * Misc routines
251 1.1 pooka */
252 1.1 pooka
253 1.61 pooka static kmutex_t pagermtx;
254 1.61 pooka
255 1.1 pooka void
256 1.79 pooka uvm_init(void)
257 1.1 pooka {
258 1.84 pooka char buf[64];
259 1.84 pooka int error;
260 1.84 pooka
261 1.84 pooka if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
262 1.105 pooka unsigned long tmp;
263 1.105 pooka char *ep;
264 1.105 pooka int mult;
265 1.105 pooka
266 1.109 pooka tmp = strtoul(buf, &ep, 10);
267 1.105 pooka if (strlen(ep) > 1)
268 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
269 1.105 pooka
270 1.105 pooka /* mini-dehumanize-number */
271 1.105 pooka mult = 1;
272 1.105 pooka switch (*ep) {
273 1.105 pooka case 'k':
274 1.105 pooka mult = 1024;
275 1.105 pooka break;
276 1.105 pooka case 'm':
277 1.105 pooka mult = 1024*1024;
278 1.105 pooka break;
279 1.105 pooka case 'g':
280 1.105 pooka mult = 1024*1024*1024;
281 1.105 pooka break;
282 1.105 pooka case 0:
283 1.105 pooka break;
284 1.105 pooka default:
285 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
286 1.105 pooka }
287 1.105 pooka rump_physmemlimit = tmp * mult;
288 1.105 pooka
289 1.105 pooka if (rump_physmemlimit / mult != tmp)
290 1.105 pooka panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
291 1.84 pooka /* it's not like we'd get far with, say, 1 byte, but ... */
292 1.91 pooka if (rump_physmemlimit == 0)
293 1.105 pooka panic("uvm_init: no memory");
294 1.105 pooka
295 1.84 pooka #define HUMANIZE_BYTES 9
296 1.84 pooka CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
297 1.91 pooka format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
298 1.84 pooka #undef HUMANIZE_BYTES
299 1.92 pooka dddlim = 9 * (rump_physmemlimit / 10);
300 1.84 pooka } else {
301 1.84 pooka strlcpy(buf, "unlimited (host limit)", sizeof(buf));
302 1.84 pooka }
303 1.84 pooka aprint_verbose("total memory = %s\n", buf);
304 1.1 pooka
305 1.92 pooka TAILQ_INIT(&vmpage_lruqueue);
306 1.92 pooka
307 1.84 pooka uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
308 1.21 pooka
309 1.112 pooka #ifndef __uvmexp_pagesize
310 1.112 pooka uvmexp.pagesize = PAGE_SIZE;
311 1.112 pooka uvmexp.pagemask = PAGE_MASK;
312 1.112 pooka uvmexp.pageshift = PAGE_SHIFT;
313 1.112 pooka #else
314 1.112 pooka #define FAKE_PAGE_SHIFT 12
315 1.112 pooka uvmexp.pageshift = FAKE_PAGE_SHIFT;
316 1.112 pooka uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
317 1.112 pooka uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
318 1.112 pooka #undef FAKE_PAGE_SHIFT
319 1.112 pooka #endif
320 1.112 pooka
321 1.61 pooka mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
322 1.25 ad mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
323 1.88 pooka mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
324 1.35 pooka
325 1.80 pooka mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
326 1.80 pooka cv_init(&pdaemoncv, "pdaemon");
327 1.80 pooka cv_init(&oomwait, "oomwait");
328 1.80 pooka
329 1.50 pooka kernel_map->pmap = pmap_kernel();
330 1.35 pooka callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
331 1.50 pooka kmem_map->pmap = pmap_kernel();
332 1.50 pooka callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
333 1.90 pooka
334 1.90 pooka pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
335 1.90 pooka "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
336 1.1 pooka }
337 1.1 pooka
338 1.83 pooka void
339 1.83 pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
340 1.83 pooka {
341 1.83 pooka
342 1.83 pooka vm->vm_map.pmap = pmap_kernel();
343 1.83 pooka vm->vm_refcnt = 1;
344 1.83 pooka }
345 1.1 pooka
346 1.1 pooka void
347 1.7 pooka uvm_pagewire(struct vm_page *pg)
348 1.7 pooka {
349 1.7 pooka
350 1.7 pooka /* nada */
351 1.7 pooka }
352 1.7 pooka
353 1.7 pooka void
354 1.7 pooka uvm_pageunwire(struct vm_page *pg)
355 1.7 pooka {
356 1.7 pooka
357 1.7 pooka /* nada */
358 1.7 pooka }
359 1.7 pooka
360 1.108 pooka /*
361 1.108 pooka * The uvm reclaim hook is not currently necessary because it is
362 1.108 pooka * used only by ZFS and implements exactly the same functionality
363 1.108 pooka * as the kva reclaim hook which we already run in the pagedaemon
364 1.108 pooka * (rump vm does not have a concept of uvm_map(), so we cannot
365 1.108 pooka * reclaim kva it when a mapping operation fails due to insufficient
366 1.108 pooka * available kva).
367 1.108 pooka */
368 1.107 haad void
369 1.107 haad uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook_entry)
370 1.107 haad {
371 1.107 haad
372 1.107 haad }
373 1.108 pooka __strong_alias(uvm_reclaim_hook_del,uvm_reclaim_hook_add);
374 1.107 haad
375 1.83 pooka /* where's your schmonz now? */
376 1.83 pooka #define PUNLIMIT(a) \
377 1.83 pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
378 1.83 pooka void
379 1.83 pooka uvm_init_limits(struct proc *p)
380 1.83 pooka {
381 1.83 pooka
382 1.83 pooka PUNLIMIT(RLIMIT_STACK);
383 1.83 pooka PUNLIMIT(RLIMIT_DATA);
384 1.83 pooka PUNLIMIT(RLIMIT_RSS);
385 1.83 pooka PUNLIMIT(RLIMIT_AS);
386 1.83 pooka /* nice, cascade */
387 1.83 pooka }
388 1.83 pooka #undef PUNLIMIT
389 1.83 pooka
390 1.69 pooka /*
391 1.69 pooka * This satisfies the "disgusting mmap hack" used by proplib.
392 1.69 pooka * We probably should grow some more assertables to make sure we're
393 1.103 pooka * not satisfying anything we shouldn't be satisfying.
394 1.69 pooka */
395 1.49 pooka int
396 1.49 pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
397 1.49 pooka vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
398 1.49 pooka {
399 1.69 pooka void *uaddr;
400 1.69 pooka int error;
401 1.49 pooka
402 1.69 pooka if (prot != (VM_PROT_READ | VM_PROT_WRITE))
403 1.69 pooka panic("uvm_mmap() variant unsupported");
404 1.69 pooka if (flags != (MAP_PRIVATE | MAP_ANON))
405 1.69 pooka panic("uvm_mmap() variant unsupported");
406 1.98 pooka
407 1.69 pooka /* no reason in particular, but cf. uvm_default_mapaddr() */
408 1.69 pooka if (*addr != 0)
409 1.69 pooka panic("uvm_mmap() variant unsupported");
410 1.69 pooka
411 1.106 pooka if (RUMP_LOCALPROC_P(curproc)) {
412 1.98 pooka uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
413 1.98 pooka } else {
414 1.102 pooka error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
415 1.102 pooka size, &uaddr);
416 1.98 pooka }
417 1.69 pooka if (uaddr == NULL)
418 1.69 pooka return error;
419 1.69 pooka
420 1.69 pooka *addr = (vaddr_t)uaddr;
421 1.69 pooka return 0;
422 1.49 pooka }
423 1.49 pooka
424 1.61 pooka struct pagerinfo {
425 1.61 pooka vaddr_t pgr_kva;
426 1.61 pooka int pgr_npages;
427 1.61 pooka struct vm_page **pgr_pgs;
428 1.61 pooka bool pgr_read;
429 1.61 pooka
430 1.61 pooka LIST_ENTRY(pagerinfo) pgr_entries;
431 1.61 pooka };
432 1.61 pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
433 1.61 pooka
434 1.61 pooka /*
435 1.61 pooka * Pager "map" in routine. Instead of mapping, we allocate memory
436 1.61 pooka * and copy page contents there. Not optimal or even strictly
437 1.61 pooka * correct (the caller might modify the page contents after mapping
438 1.61 pooka * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
439 1.61 pooka */
440 1.7 pooka vaddr_t
441 1.61 pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
442 1.7 pooka {
443 1.61 pooka struct pagerinfo *pgri;
444 1.61 pooka vaddr_t curkva;
445 1.61 pooka int i;
446 1.61 pooka
447 1.61 pooka /* allocate structures */
448 1.61 pooka pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
449 1.61 pooka pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
450 1.61 pooka pgri->pgr_npages = npages;
451 1.61 pooka pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
452 1.61 pooka pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
453 1.61 pooka
454 1.61 pooka /* copy contents to "mapped" memory */
455 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
456 1.61 pooka i < npages;
457 1.61 pooka i++, curkva += PAGE_SIZE) {
458 1.61 pooka /*
459 1.61 pooka * We need to copy the previous contents of the pages to
460 1.61 pooka * the window even if we are reading from the
461 1.61 pooka * device, since the device might not fill the contents of
462 1.61 pooka * the full mapped range and we will end up corrupting
463 1.61 pooka * data when we unmap the window.
464 1.61 pooka */
465 1.61 pooka memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
466 1.61 pooka pgri->pgr_pgs[i] = pgs[i];
467 1.61 pooka }
468 1.61 pooka
469 1.61 pooka mutex_enter(&pagermtx);
470 1.61 pooka LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
471 1.61 pooka mutex_exit(&pagermtx);
472 1.7 pooka
473 1.61 pooka return pgri->pgr_kva;
474 1.7 pooka }
475 1.7 pooka
476 1.61 pooka /*
477 1.61 pooka * map out the pager window. return contents from VA to page storage
478 1.61 pooka * and free structures.
479 1.61 pooka *
480 1.61 pooka * Note: does not currently support partial frees
481 1.61 pooka */
482 1.61 pooka void
483 1.61 pooka uvm_pagermapout(vaddr_t kva, int npages)
484 1.7 pooka {
485 1.61 pooka struct pagerinfo *pgri;
486 1.61 pooka vaddr_t curkva;
487 1.61 pooka int i;
488 1.7 pooka
489 1.61 pooka mutex_enter(&pagermtx);
490 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
491 1.61 pooka if (pgri->pgr_kva == kva)
492 1.61 pooka break;
493 1.61 pooka }
494 1.61 pooka KASSERT(pgri);
495 1.61 pooka if (pgri->pgr_npages != npages)
496 1.61 pooka panic("uvm_pagermapout: partial unmapping not supported");
497 1.61 pooka LIST_REMOVE(pgri, pgr_entries);
498 1.61 pooka mutex_exit(&pagermtx);
499 1.61 pooka
500 1.61 pooka if (pgri->pgr_read) {
501 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
502 1.61 pooka i < pgri->pgr_npages;
503 1.61 pooka i++, curkva += PAGE_SIZE) {
504 1.61 pooka memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
505 1.21 pooka }
506 1.21 pooka }
507 1.10 pooka
508 1.61 pooka kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
509 1.61 pooka kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
510 1.61 pooka kmem_free(pgri, sizeof(*pgri));
511 1.7 pooka }
512 1.7 pooka
513 1.61 pooka /*
514 1.61 pooka * convert va in pager window to page structure.
515 1.61 pooka * XXX: how expensive is this (global lock, list traversal)?
516 1.61 pooka */
517 1.14 pooka struct vm_page *
518 1.14 pooka uvm_pageratop(vaddr_t va)
519 1.14 pooka {
520 1.61 pooka struct pagerinfo *pgri;
521 1.61 pooka struct vm_page *pg = NULL;
522 1.61 pooka int i;
523 1.14 pooka
524 1.61 pooka mutex_enter(&pagermtx);
525 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
526 1.61 pooka if (pgri->pgr_kva <= va
527 1.61 pooka && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
528 1.21 pooka break;
529 1.61 pooka }
530 1.61 pooka if (pgri) {
531 1.61 pooka i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
532 1.61 pooka pg = pgri->pgr_pgs[i];
533 1.61 pooka }
534 1.61 pooka mutex_exit(&pagermtx);
535 1.21 pooka
536 1.61 pooka return pg;
537 1.61 pooka }
538 1.15 pooka
539 1.97 pooka /*
540 1.97 pooka * Called with the vm object locked.
541 1.97 pooka *
542 1.97 pooka * Put vnode object pages at the end of the access queue to indicate
543 1.97 pooka * they have been recently accessed and should not be immediate
544 1.97 pooka * candidates for pageout. Do not do this for lookups done by
545 1.97 pooka * the pagedaemon to mimic pmap_kentered mappings which don't track
546 1.97 pooka * access information.
547 1.97 pooka */
548 1.61 pooka struct vm_page *
549 1.61 pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
550 1.61 pooka {
551 1.92 pooka struct vm_page *pg;
552 1.97 pooka bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
553 1.61 pooka
554 1.96 rmind pg = rb_tree_find_node(&uobj->rb_tree, &off);
555 1.97 pooka if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
556 1.92 pooka mutex_enter(&uvm_pageqlock);
557 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
558 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
559 1.92 pooka mutex_exit(&uvm_pageqlock);
560 1.92 pooka }
561 1.92 pooka
562 1.92 pooka return pg;
563 1.14 pooka }
564 1.14 pooka
565 1.7 pooka void
566 1.22 pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
567 1.22 pooka {
568 1.22 pooka struct vm_page *pg;
569 1.22 pooka int i;
570 1.22 pooka
571 1.94 pooka KASSERT(npgs > 0);
572 1.94 pooka KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
573 1.94 pooka
574 1.22 pooka for (i = 0; i < npgs; i++) {
575 1.22 pooka pg = pgs[i];
576 1.22 pooka if (pg == NULL)
577 1.22 pooka continue;
578 1.22 pooka
579 1.22 pooka KASSERT(pg->flags & PG_BUSY);
580 1.22 pooka if (pg->flags & PG_WANTED)
581 1.22 pooka wakeup(pg);
582 1.36 pooka if (pg->flags & PG_RELEASED)
583 1.36 pooka uvm_pagefree(pg);
584 1.36 pooka else
585 1.36 pooka pg->flags &= ~(PG_WANTED|PG_BUSY);
586 1.22 pooka }
587 1.22 pooka }
588 1.22 pooka
589 1.22 pooka void
590 1.7 pooka uvm_estimatepageable(int *active, int *inactive)
591 1.7 pooka {
592 1.7 pooka
593 1.19 pooka /* XXX: guessing game */
594 1.19 pooka *active = 1024;
595 1.19 pooka *inactive = 1024;
596 1.7 pooka }
597 1.7 pooka
598 1.39 pooka struct vm_map_kernel *
599 1.39 pooka vm_map_to_kernel(struct vm_map *map)
600 1.39 pooka {
601 1.39 pooka
602 1.39 pooka return (struct vm_map_kernel *)map;
603 1.39 pooka }
604 1.39 pooka
605 1.41 pooka bool
606 1.41 pooka vm_map_starved_p(struct vm_map *map)
607 1.41 pooka {
608 1.41 pooka
609 1.80 pooka if (map->flags & VM_MAP_WANTVA)
610 1.80 pooka return true;
611 1.80 pooka
612 1.41 pooka return false;
613 1.41 pooka }
614 1.41 pooka
615 1.41 pooka int
616 1.41 pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
617 1.41 pooka {
618 1.41 pooka
619 1.41 pooka panic("%s: unimplemented", __func__);
620 1.41 pooka }
621 1.41 pooka
622 1.41 pooka void
623 1.41 pooka uvm_unloan(void *v, int npages, int flags)
624 1.41 pooka {
625 1.41 pooka
626 1.41 pooka panic("%s: unimplemented", __func__);
627 1.41 pooka }
628 1.41 pooka
629 1.43 pooka int
630 1.43 pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
631 1.43 pooka struct vm_page **opp)
632 1.43 pooka {
633 1.43 pooka
634 1.72 pooka return EBUSY;
635 1.43 pooka }
636 1.43 pooka
637 1.73 pooka #ifdef DEBUGPRINT
638 1.56 pooka void
639 1.56 pooka uvm_object_printit(struct uvm_object *uobj, bool full,
640 1.56 pooka void (*pr)(const char *, ...))
641 1.56 pooka {
642 1.56 pooka
643 1.75 pooka pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
644 1.56 pooka }
645 1.73 pooka #endif
646 1.56 pooka
647 1.68 pooka vaddr_t
648 1.68 pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
649 1.68 pooka {
650 1.68 pooka
651 1.68 pooka return 0;
652 1.68 pooka }
653 1.68 pooka
654 1.71 pooka int
655 1.71 pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
656 1.71 pooka vm_prot_t prot, bool set_max)
657 1.71 pooka {
658 1.71 pooka
659 1.71 pooka return EOPNOTSUPP;
660 1.71 pooka }
661 1.71 pooka
662 1.9 pooka /*
663 1.12 pooka * UVM km
664 1.12 pooka */
665 1.12 pooka
666 1.12 pooka vaddr_t
667 1.12 pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
668 1.12 pooka {
669 1.82 pooka void *rv, *desired = NULL;
670 1.50 pooka int alignbit, error;
671 1.50 pooka
672 1.82 pooka #ifdef __x86_64__
673 1.82 pooka /*
674 1.82 pooka * On amd64, allocate all module memory from the lowest 2GB.
675 1.82 pooka * This is because NetBSD kernel modules are compiled
676 1.82 pooka * with -mcmodel=kernel and reserve only 4 bytes for
677 1.82 pooka * offsets. If we load code compiled with -mcmodel=kernel
678 1.82 pooka * anywhere except the lowest or highest 2GB, it will not
679 1.82 pooka * work. Since userspace does not have access to the highest
680 1.82 pooka * 2GB, use the lowest 2GB.
681 1.82 pooka *
682 1.82 pooka * Note: this assumes the rump kernel resides in
683 1.82 pooka * the lowest 2GB as well.
684 1.82 pooka *
685 1.82 pooka * Note2: yes, it's a quick hack, but since this the only
686 1.82 pooka * place where we care about the map we're allocating from,
687 1.82 pooka * just use a simple "if" instead of coming up with a fancy
688 1.82 pooka * generic solution.
689 1.82 pooka */
690 1.82 pooka extern struct vm_map *module_map;
691 1.82 pooka if (map == module_map) {
692 1.82 pooka desired = (void *)(0x80000000 - size);
693 1.82 pooka }
694 1.82 pooka #endif
695 1.82 pooka
696 1.50 pooka alignbit = 0;
697 1.50 pooka if (align) {
698 1.50 pooka alignbit = ffs(align)-1;
699 1.50 pooka }
700 1.50 pooka
701 1.82 pooka rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
702 1.81 pooka &error);
703 1.50 pooka if (rv == NULL) {
704 1.50 pooka if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
705 1.50 pooka return 0;
706 1.50 pooka else
707 1.50 pooka panic("uvm_km_alloc failed");
708 1.50 pooka }
709 1.12 pooka
710 1.50 pooka if (flags & UVM_KMF_ZERO)
711 1.12 pooka memset(rv, 0, size);
712 1.12 pooka
713 1.12 pooka return (vaddr_t)rv;
714 1.12 pooka }
715 1.12 pooka
716 1.12 pooka void
717 1.12 pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
718 1.12 pooka {
719 1.12 pooka
720 1.50 pooka rumpuser_unmap((void *)vaddr, size);
721 1.12 pooka }
722 1.12 pooka
723 1.12 pooka struct vm_map *
724 1.12 pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
725 1.12 pooka vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
726 1.12 pooka {
727 1.12 pooka
728 1.12 pooka return (struct vm_map *)417416;
729 1.12 pooka }
730 1.40 pooka
731 1.40 pooka vaddr_t
732 1.40 pooka uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
733 1.40 pooka {
734 1.40 pooka
735 1.80 pooka return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
736 1.80 pooka waitok, "kmalloc");
737 1.40 pooka }
738 1.40 pooka
739 1.40 pooka void
740 1.40 pooka uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
741 1.40 pooka {
742 1.40 pooka
743 1.84 pooka rump_hyperfree((void *)addr, PAGE_SIZE);
744 1.50 pooka }
745 1.50 pooka
746 1.50 pooka vaddr_t
747 1.50 pooka uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
748 1.50 pooka {
749 1.50 pooka
750 1.77 pooka return uvm_km_alloc_poolpage(map, waitok);
751 1.50 pooka }
752 1.50 pooka
753 1.50 pooka void
754 1.50 pooka uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
755 1.50 pooka {
756 1.50 pooka
757 1.77 pooka uvm_km_free_poolpage(map, vaddr);
758 1.40 pooka }
759 1.57 pooka
760 1.74 pooka void
761 1.74 pooka uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
762 1.74 pooka {
763 1.74 pooka
764 1.74 pooka /* we eventually maybe want some model for available memory */
765 1.74 pooka }
766 1.74 pooka
767 1.57 pooka /*
768 1.102 pooka * VM space locking routines. We don't really have to do anything,
769 1.102 pooka * since the pages are always "wired" (both local and remote processes).
770 1.57 pooka */
771 1.57 pooka int
772 1.57 pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
773 1.57 pooka {
774 1.57 pooka
775 1.57 pooka return 0;
776 1.57 pooka }
777 1.57 pooka
778 1.57 pooka void
779 1.57 pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
780 1.57 pooka {
781 1.57 pooka
782 1.57 pooka }
783 1.57 pooka
784 1.102 pooka /*
785 1.102 pooka * For the local case the buffer mappers don't need to do anything.
786 1.102 pooka * For the remote case we need to reserve space and copy data in or
787 1.102 pooka * out, depending on B_READ/B_WRITE.
788 1.102 pooka */
789 1.111 pooka int
790 1.57 pooka vmapbuf(struct buf *bp, vsize_t len)
791 1.57 pooka {
792 1.111 pooka int error = 0;
793 1.57 pooka
794 1.57 pooka bp->b_saveaddr = bp->b_data;
795 1.102 pooka
796 1.102 pooka /* remote case */
797 1.106 pooka if (!RUMP_LOCALPROC_P(curproc)) {
798 1.102 pooka bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
799 1.102 pooka if (BUF_ISWRITE(bp)) {
800 1.111 pooka error = copyin(bp->b_saveaddr, bp->b_data, len);
801 1.111 pooka if (error) {
802 1.111 pooka rump_hyperfree(bp->b_data, len);
803 1.111 pooka bp->b_data = bp->b_saveaddr;
804 1.111 pooka bp->b_saveaddr = 0;
805 1.111 pooka }
806 1.102 pooka }
807 1.102 pooka }
808 1.111 pooka
809 1.111 pooka return error;
810 1.57 pooka }
811 1.57 pooka
812 1.57 pooka void
813 1.57 pooka vunmapbuf(struct buf *bp, vsize_t len)
814 1.57 pooka {
815 1.57 pooka
816 1.102 pooka /* remote case */
817 1.106 pooka if (!RUMP_LOCALPROC_P(bp->b_proc)) {
818 1.102 pooka if (BUF_ISREAD(bp)) {
819 1.110 pooka bp->b_error = copyout_proc(bp->b_proc,
820 1.102 pooka bp->b_data, bp->b_saveaddr, len);
821 1.102 pooka }
822 1.102 pooka rump_hyperfree(bp->b_data, len);
823 1.102 pooka }
824 1.102 pooka
825 1.57 pooka bp->b_data = bp->b_saveaddr;
826 1.57 pooka bp->b_saveaddr = 0;
827 1.57 pooka }
828 1.61 pooka
829 1.61 pooka void
830 1.83 pooka uvmspace_addref(struct vmspace *vm)
831 1.83 pooka {
832 1.83 pooka
833 1.83 pooka /*
834 1.103 pooka * No dynamically allocated vmspaces exist.
835 1.83 pooka */
836 1.83 pooka }
837 1.83 pooka
838 1.83 pooka void
839 1.66 pooka uvmspace_free(struct vmspace *vm)
840 1.66 pooka {
841 1.66 pooka
842 1.66 pooka /* nothing for now */
843 1.66 pooka }
844 1.66 pooka
845 1.61 pooka /*
846 1.61 pooka * page life cycle stuff. it really doesn't exist, so just stubs.
847 1.61 pooka */
848 1.61 pooka
849 1.61 pooka void
850 1.61 pooka uvm_pageactivate(struct vm_page *pg)
851 1.61 pooka {
852 1.61 pooka
853 1.61 pooka /* nada */
854 1.61 pooka }
855 1.61 pooka
856 1.61 pooka void
857 1.61 pooka uvm_pagedeactivate(struct vm_page *pg)
858 1.61 pooka {
859 1.61 pooka
860 1.61 pooka /* nada */
861 1.61 pooka }
862 1.61 pooka
863 1.61 pooka void
864 1.61 pooka uvm_pagedequeue(struct vm_page *pg)
865 1.61 pooka {
866 1.61 pooka
867 1.61 pooka /* nada*/
868 1.61 pooka }
869 1.61 pooka
870 1.61 pooka void
871 1.61 pooka uvm_pageenqueue(struct vm_page *pg)
872 1.61 pooka {
873 1.61 pooka
874 1.61 pooka /* nada */
875 1.61 pooka }
876 1.80 pooka
877 1.88 pooka void
878 1.88 pooka uvmpdpol_anfree(struct vm_anon *an)
879 1.88 pooka {
880 1.88 pooka
881 1.88 pooka /* nada */
882 1.88 pooka }
883 1.88 pooka
884 1.80 pooka /*
885 1.99 uebayasi * Physical address accessors.
886 1.99 uebayasi */
887 1.99 uebayasi
888 1.99 uebayasi struct vm_page *
889 1.99 uebayasi uvm_phys_to_vm_page(paddr_t pa)
890 1.99 uebayasi {
891 1.99 uebayasi
892 1.99 uebayasi return NULL;
893 1.99 uebayasi }
894 1.99 uebayasi
895 1.99 uebayasi paddr_t
896 1.99 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
897 1.99 uebayasi {
898 1.99 uebayasi
899 1.99 uebayasi return 0;
900 1.99 uebayasi }
901 1.99 uebayasi
902 1.99 uebayasi /*
903 1.80 pooka * Routines related to the Page Baroness.
904 1.80 pooka */
905 1.80 pooka
906 1.80 pooka void
907 1.80 pooka uvm_wait(const char *msg)
908 1.80 pooka {
909 1.80 pooka
910 1.80 pooka if (__predict_false(curlwp == uvm.pagedaemon_lwp))
911 1.80 pooka panic("pagedaemon out of memory");
912 1.80 pooka if (__predict_false(rump_threads == 0))
913 1.80 pooka panic("pagedaemon missing (RUMP_THREADS = 0)");
914 1.80 pooka
915 1.80 pooka mutex_enter(&pdaemonmtx);
916 1.80 pooka pdaemon_waiters++;
917 1.80 pooka cv_signal(&pdaemoncv);
918 1.80 pooka cv_wait(&oomwait, &pdaemonmtx);
919 1.80 pooka mutex_exit(&pdaemonmtx);
920 1.80 pooka }
921 1.80 pooka
922 1.80 pooka void
923 1.80 pooka uvm_pageout_start(int npages)
924 1.80 pooka {
925 1.80 pooka
926 1.80 pooka /* we don't have the heuristics */
927 1.80 pooka }
928 1.80 pooka
929 1.80 pooka void
930 1.80 pooka uvm_pageout_done(int npages)
931 1.80 pooka {
932 1.80 pooka
933 1.80 pooka /* could wakeup waiters, but just let the pagedaemon do it */
934 1.80 pooka }
935 1.80 pooka
936 1.95 pooka static bool
937 1.104 pooka processpage(struct vm_page *pg, bool *lockrunning)
938 1.95 pooka {
939 1.95 pooka struct uvm_object *uobj;
940 1.95 pooka
941 1.95 pooka uobj = pg->uobject;
942 1.95 pooka if (mutex_tryenter(&uobj->vmobjlock)) {
943 1.95 pooka if ((pg->flags & PG_BUSY) == 0) {
944 1.95 pooka mutex_exit(&uvm_pageqlock);
945 1.95 pooka uobj->pgops->pgo_put(uobj, pg->offset,
946 1.95 pooka pg->offset + PAGE_SIZE,
947 1.95 pooka PGO_CLEANIT|PGO_FREE);
948 1.95 pooka KASSERT(!mutex_owned(&uobj->vmobjlock));
949 1.95 pooka return true;
950 1.95 pooka } else {
951 1.95 pooka mutex_exit(&uobj->vmobjlock);
952 1.95 pooka }
953 1.104 pooka } else if (*lockrunning == false && ncpu > 1) {
954 1.104 pooka CPU_INFO_ITERATOR cii;
955 1.104 pooka struct cpu_info *ci;
956 1.104 pooka struct lwp *l;
957 1.104 pooka
958 1.104 pooka l = mutex_owner(&uobj->vmobjlock);
959 1.104 pooka for (CPU_INFO_FOREACH(cii, ci)) {
960 1.104 pooka if (ci->ci_curlwp == l) {
961 1.104 pooka *lockrunning = true;
962 1.104 pooka break;
963 1.104 pooka }
964 1.104 pooka }
965 1.95 pooka }
966 1.95 pooka
967 1.95 pooka return false;
968 1.95 pooka }
969 1.95 pooka
970 1.80 pooka /*
971 1.92 pooka * The Diabolical pageDaemon Director (DDD).
972 1.80 pooka */
973 1.80 pooka void
974 1.80 pooka uvm_pageout(void *arg)
975 1.80 pooka {
976 1.92 pooka struct vm_page *pg;
977 1.80 pooka struct pool *pp, *pp_first;
978 1.80 pooka uint64_t where;
979 1.80 pooka int timo = 0;
980 1.92 pooka int cleaned, skip, skipped;
981 1.92 pooka bool succ = false;
982 1.104 pooka bool lockrunning;
983 1.80 pooka
984 1.80 pooka mutex_enter(&pdaemonmtx);
985 1.80 pooka for (;;) {
986 1.92 pooka if (succ) {
987 1.92 pooka kernel_map->flags &= ~VM_MAP_WANTVA;
988 1.95 pooka kmem_map->flags &= ~VM_MAP_WANTVA;
989 1.92 pooka timo = 0;
990 1.95 pooka if (pdaemon_waiters) {
991 1.95 pooka pdaemon_waiters = 0;
992 1.95 pooka cv_broadcast(&oomwait);
993 1.95 pooka }
994 1.92 pooka }
995 1.92 pooka succ = false;
996 1.92 pooka
997 1.104 pooka if (pdaemon_waiters == 0) {
998 1.104 pooka cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
999 1.104 pooka uvmexp.pdwoke++;
1000 1.104 pooka }
1001 1.92 pooka
1002 1.92 pooka /* tell the world that we are hungry */
1003 1.80 pooka kernel_map->flags |= VM_MAP_WANTVA;
1004 1.92 pooka kmem_map->flags |= VM_MAP_WANTVA;
1005 1.92 pooka
1006 1.92 pooka if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
1007 1.92 pooka continue;
1008 1.80 pooka mutex_exit(&pdaemonmtx);
1009 1.80 pooka
1010 1.92 pooka /*
1011 1.92 pooka * step one: reclaim the page cache. this should give
1012 1.92 pooka * us the biggest earnings since whole pages are released
1013 1.92 pooka * into backing memory.
1014 1.92 pooka */
1015 1.92 pooka pool_cache_reclaim(&pagecache);
1016 1.92 pooka if (!NEED_PAGEDAEMON()) {
1017 1.92 pooka succ = true;
1018 1.92 pooka mutex_enter(&pdaemonmtx);
1019 1.92 pooka continue;
1020 1.92 pooka }
1021 1.92 pooka
1022 1.92 pooka /*
1023 1.92 pooka * Ok, so that didn't help. Next, try to hunt memory
1024 1.92 pooka * by pushing out vnode pages. The pages might contain
1025 1.92 pooka * useful cached data, but we need the memory.
1026 1.92 pooka */
1027 1.92 pooka cleaned = 0;
1028 1.92 pooka skip = 0;
1029 1.104 pooka lockrunning = false;
1030 1.92 pooka again:
1031 1.92 pooka mutex_enter(&uvm_pageqlock);
1032 1.92 pooka while (cleaned < PAGEDAEMON_OBJCHUNK) {
1033 1.92 pooka skipped = 0;
1034 1.92 pooka TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1035 1.92 pooka
1036 1.92 pooka /*
1037 1.92 pooka * skip over pages we _might_ have tried
1038 1.92 pooka * to handle earlier. they might not be
1039 1.92 pooka * exactly the same ones, but I'm not too
1040 1.92 pooka * concerned.
1041 1.92 pooka */
1042 1.92 pooka while (skipped++ < skip)
1043 1.92 pooka continue;
1044 1.92 pooka
1045 1.104 pooka if (processpage(pg, &lockrunning)) {
1046 1.95 pooka cleaned++;
1047 1.95 pooka goto again;
1048 1.92 pooka }
1049 1.92 pooka
1050 1.92 pooka skip++;
1051 1.92 pooka }
1052 1.92 pooka break;
1053 1.92 pooka }
1054 1.92 pooka mutex_exit(&uvm_pageqlock);
1055 1.92 pooka
1056 1.92 pooka /*
1057 1.104 pooka * Ok, someone is running with an object lock held.
1058 1.104 pooka * We want to yield the host CPU to make sure the
1059 1.104 pooka * thread is not parked on the host. Since sched_yield()
1060 1.104 pooka * doesn't appear to do anything on NetBSD, nanosleep
1061 1.104 pooka * for the smallest possible time and hope we're back in
1062 1.104 pooka * the game soon.
1063 1.104 pooka */
1064 1.104 pooka if (cleaned == 0 && lockrunning) {
1065 1.104 pooka uint64_t sec, nsec;
1066 1.104 pooka
1067 1.104 pooka sec = 0;
1068 1.104 pooka nsec = 1;
1069 1.104 pooka rumpuser_nanosleep(&sec, &nsec, NULL);
1070 1.104 pooka
1071 1.104 pooka lockrunning = false;
1072 1.104 pooka skip = 0;
1073 1.104 pooka
1074 1.104 pooka /* and here we go again */
1075 1.104 pooka goto again;
1076 1.104 pooka }
1077 1.104 pooka
1078 1.104 pooka /*
1079 1.92 pooka * And of course we need to reclaim the page cache
1080 1.92 pooka * again to actually release memory.
1081 1.92 pooka */
1082 1.92 pooka pool_cache_reclaim(&pagecache);
1083 1.92 pooka if (!NEED_PAGEDAEMON()) {
1084 1.92 pooka succ = true;
1085 1.92 pooka mutex_enter(&pdaemonmtx);
1086 1.92 pooka continue;
1087 1.92 pooka }
1088 1.92 pooka
1089 1.92 pooka /*
1090 1.92 pooka * Still not there? sleeves come off right about now.
1091 1.92 pooka * First: do reclaim on kernel/kmem map.
1092 1.92 pooka */
1093 1.92 pooka callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
1094 1.92 pooka NULL);
1095 1.92 pooka callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
1096 1.92 pooka NULL);
1097 1.92 pooka
1098 1.92 pooka /*
1099 1.92 pooka * And then drain the pools. Wipe them out ... all of them.
1100 1.92 pooka */
1101 1.92 pooka
1102 1.80 pooka pool_drain_start(&pp_first, &where);
1103 1.80 pooka pp = pp_first;
1104 1.80 pooka for (;;) {
1105 1.91 pooka rump_vfs_drainbufs(10 /* XXX: estimate better */);
1106 1.80 pooka succ = pool_drain_end(pp, where);
1107 1.80 pooka if (succ)
1108 1.80 pooka break;
1109 1.80 pooka pool_drain_start(&pp, &where);
1110 1.80 pooka if (pp == pp_first) {
1111 1.80 pooka succ = pool_drain_end(pp, where);
1112 1.80 pooka break;
1113 1.80 pooka }
1114 1.80 pooka }
1115 1.92 pooka
1116 1.92 pooka /*
1117 1.92 pooka * Need to use PYEC on our bag of tricks.
1118 1.92 pooka * Unfortunately, the wife just borrowed it.
1119 1.92 pooka */
1120 1.80 pooka
1121 1.104 pooka if (!succ && cleaned == 0) {
1122 1.80 pooka rumpuser_dprintf("pagedaemoness: failed to reclaim "
1123 1.80 pooka "memory ... sleeping (deadlock?)\n");
1124 1.95 pooka timo = hz;
1125 1.80 pooka }
1126 1.80 pooka
1127 1.92 pooka mutex_enter(&pdaemonmtx);
1128 1.80 pooka }
1129 1.80 pooka
1130 1.80 pooka panic("you can swap out any time you like, but you can never leave");
1131 1.80 pooka }
1132 1.80 pooka
1133 1.80 pooka void
1134 1.80 pooka uvm_kick_pdaemon()
1135 1.80 pooka {
1136 1.80 pooka
1137 1.92 pooka /*
1138 1.92 pooka * Wake up the diabolical pagedaemon director if we are over
1139 1.92 pooka * 90% of the memory limit. This is a complete and utter
1140 1.92 pooka * stetson-harrison decision which you are allowed to finetune.
1141 1.92 pooka * Don't bother locking. If we have some unflushed caches,
1142 1.92 pooka * other waker-uppers will deal with the issue.
1143 1.92 pooka */
1144 1.92 pooka if (NEED_PAGEDAEMON()) {
1145 1.92 pooka cv_signal(&pdaemoncv);
1146 1.92 pooka }
1147 1.80 pooka }
1148 1.80 pooka
1149 1.80 pooka void *
1150 1.80 pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1151 1.80 pooka {
1152 1.84 pooka unsigned long newmem;
1153 1.80 pooka void *rv;
1154 1.80 pooka
1155 1.92 pooka uvm_kick_pdaemon(); /* ouch */
1156 1.92 pooka
1157 1.84 pooka /* first we must be within the limit */
1158 1.84 pooka limitagain:
1159 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1160 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, howmuch);
1161 1.91 pooka if (newmem > rump_physmemlimit) {
1162 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1163 1.103 pooka if (!waitok) {
1164 1.84 pooka return NULL;
1165 1.103 pooka }
1166 1.84 pooka uvm_wait(wmsg);
1167 1.84 pooka goto limitagain;
1168 1.84 pooka }
1169 1.84 pooka }
1170 1.84 pooka
1171 1.84 pooka /* second, we must get something from the backend */
1172 1.80 pooka again:
1173 1.80 pooka rv = rumpuser_malloc(howmuch, alignment);
1174 1.80 pooka if (__predict_false(rv == NULL && waitok)) {
1175 1.80 pooka uvm_wait(wmsg);
1176 1.80 pooka goto again;
1177 1.80 pooka }
1178 1.80 pooka
1179 1.80 pooka return rv;
1180 1.80 pooka }
1181 1.84 pooka
1182 1.84 pooka void
1183 1.84 pooka rump_hyperfree(void *what, size_t size)
1184 1.84 pooka {
1185 1.84 pooka
1186 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1187 1.84 pooka atomic_add_long(&curphysmem, -size);
1188 1.84 pooka }
1189 1.84 pooka rumpuser_free(what);
1190 1.84 pooka }
1191