Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.120.2.1
      1  1.120.2.1      yamt /*	$NetBSD: vm.c,v 1.120.2.1 2011/11/02 21:53:59 yamt Exp $	*/
      2        1.1     pooka 
      3        1.1     pooka /*
      4      1.114     pooka  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5        1.1     pooka  *
      6       1.76     pooka  * Development of this software was supported by
      7       1.76     pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8       1.76     pooka  * The Helsinki University of Technology.
      9        1.1     pooka  *
     10        1.1     pooka  * Redistribution and use in source and binary forms, with or without
     11        1.1     pooka  * modification, are permitted provided that the following conditions
     12        1.1     pooka  * are met:
     13        1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     14        1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     15        1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     17        1.1     pooka  *    documentation and/or other materials provided with the distribution.
     18        1.1     pooka  *
     19        1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20        1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21        1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22        1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23        1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24        1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25        1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26        1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27        1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28        1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29        1.1     pooka  * SUCH DAMAGE.
     30        1.1     pooka  */
     31        1.1     pooka 
     32        1.1     pooka /*
     33       1.88     pooka  * Virtual memory emulation routines.
     34        1.1     pooka  */
     35        1.1     pooka 
     36        1.1     pooka /*
     37        1.5     pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38        1.1     pooka  * for each page.  phys_addr would fit the job description better,
     39        1.1     pooka  * except that it will create unnecessary lossage on some platforms
     40        1.1     pooka  * due to not being a pointer type.
     41        1.1     pooka  */
     42        1.1     pooka 
     43       1.48     pooka #include <sys/cdefs.h>
     44  1.120.2.1      yamt __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.120.2.1 2011/11/02 21:53:59 yamt Exp $");
     45       1.48     pooka 
     46        1.1     pooka #include <sys/param.h>
     47       1.40     pooka #include <sys/atomic.h>
     48       1.80     pooka #include <sys/buf.h>
     49       1.80     pooka #include <sys/kernel.h>
     50       1.67     pooka #include <sys/kmem.h>
     51       1.69     pooka #include <sys/mman.h>
     52        1.1     pooka #include <sys/null.h>
     53        1.1     pooka #include <sys/vnode.h>
     54        1.1     pooka 
     55       1.34     pooka #include <machine/pmap.h>
     56       1.34     pooka 
     57       1.34     pooka #include <rump/rumpuser.h>
     58       1.34     pooka 
     59        1.1     pooka #include <uvm/uvm.h>
     60       1.56     pooka #include <uvm/uvm_ddb.h>
     61       1.88     pooka #include <uvm/uvm_pdpolicy.h>
     62        1.1     pooka #include <uvm/uvm_prot.h>
     63       1.58        he #include <uvm/uvm_readahead.h>
     64        1.1     pooka 
     65       1.13     pooka #include "rump_private.h"
     66       1.91     pooka #include "rump_vfs_private.h"
     67        1.1     pooka 
     68       1.25        ad kmutex_t uvm_pageqlock;
     69       1.88     pooka kmutex_t uvm_swap_data_lock;
     70       1.25        ad 
     71        1.1     pooka struct uvmexp uvmexp;
     72        1.7     pooka struct uvm uvm;
     73        1.1     pooka 
     74      1.112     pooka #ifdef __uvmexp_pagesize
     75      1.112     pooka int *uvmexp_pagesize = &uvmexp.pagesize;
     76      1.112     pooka int *uvmexp_pagemask = &uvmexp.pagemask;
     77      1.112     pooka int *uvmexp_pageshift = &uvmexp.pageshift;
     78      1.112     pooka #endif
     79      1.112     pooka 
     80        1.1     pooka struct vm_map rump_vmmap;
     81       1.50     pooka static struct vm_map_kernel kmem_map_store;
     82       1.50     pooka struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     83        1.1     pooka 
     84       1.35     pooka static struct vm_map_kernel kernel_map_store;
     85       1.35     pooka struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     86       1.35     pooka 
     87       1.80     pooka static unsigned int pdaemon_waiters;
     88       1.80     pooka static kmutex_t pdaemonmtx;
     89       1.80     pooka static kcondvar_t pdaemoncv, oomwait;
     90       1.80     pooka 
     91       1.91     pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     92       1.84     pooka static unsigned long curphysmem;
     93       1.92     pooka static unsigned long dddlim;		/* 90% of memory limit used */
     94       1.92     pooka #define NEED_PAGEDAEMON() \
     95       1.92     pooka     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
     96       1.92     pooka 
     97       1.92     pooka /*
     98       1.92     pooka  * Try to free two pages worth of pages from objects.
     99       1.92     pooka  * If this succesfully frees a full page cache page, we'll
    100      1.120      yamt  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    101       1.92     pooka  */
    102       1.92     pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    103       1.92     pooka 
    104       1.92     pooka /*
    105       1.92     pooka  * Keep a list of least recently used pages.  Since the only way a
    106       1.92     pooka  * rump kernel can "access" a page is via lookup, we put the page
    107       1.92     pooka  * at the back of queue every time a lookup for it is done.  If the
    108       1.92     pooka  * page is in front of this global queue and we're short of memory,
    109       1.92     pooka  * it's a candidate for pageout.
    110       1.92     pooka  */
    111       1.92     pooka static struct pglist vmpage_lruqueue;
    112       1.92     pooka static unsigned vmpage_onqueue;
    113       1.84     pooka 
    114        1.1     pooka /*
    115        1.1     pooka  * vm pages
    116        1.1     pooka  */
    117        1.1     pooka 
    118       1.90     pooka static int
    119       1.90     pooka pgctor(void *arg, void *obj, int flags)
    120       1.90     pooka {
    121       1.90     pooka 	struct vm_page *pg = obj;
    122       1.90     pooka 
    123       1.90     pooka 	memset(pg, 0, sizeof(*pg));
    124      1.103     pooka 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    125      1.103     pooka 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    126      1.103     pooka 	return pg->uanon == NULL;
    127       1.90     pooka }
    128       1.90     pooka 
    129       1.90     pooka static void
    130       1.90     pooka pgdtor(void *arg, void *obj)
    131       1.90     pooka {
    132       1.90     pooka 	struct vm_page *pg = obj;
    133       1.90     pooka 
    134       1.90     pooka 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    135       1.90     pooka }
    136       1.90     pooka 
    137       1.90     pooka static struct pool_cache pagecache;
    138       1.90     pooka 
    139       1.92     pooka /*
    140       1.92     pooka  * Called with the object locked.  We don't support anons.
    141       1.92     pooka  */
    142        1.1     pooka struct vm_page *
    143       1.76     pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    144       1.76     pooka 	int flags, int strat, int free_list)
    145        1.1     pooka {
    146        1.1     pooka 	struct vm_page *pg;
    147  1.120.2.1      yamt 	int error;
    148        1.1     pooka 
    149      1.115     rmind 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    150       1.92     pooka 	KASSERT(anon == NULL);
    151       1.92     pooka 
    152      1.103     pooka 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    153      1.104     pooka 	if (__predict_false(pg == NULL)) {
    154      1.103     pooka 		return NULL;
    155      1.104     pooka 	}
    156      1.103     pooka 
    157        1.1     pooka 	pg->offset = off;
    158        1.5     pooka 	pg->uobject = uobj;
    159        1.1     pooka 
    160       1.22     pooka 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    161       1.90     pooka 	if (flags & UVM_PGA_ZERO) {
    162       1.90     pooka 		uvm_pagezero(pg);
    163       1.90     pooka 	}
    164        1.1     pooka 
    165       1.31        ad 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    166  1.120.2.1      yamt 	error = radix_tree_insert_node(&uobj->uo_pages,
    167  1.120.2.1      yamt 	    pg->offset >> PAGE_SHIFT, pg);
    168  1.120.2.1      yamt 	KASSERT(error == 0);
    169       1.89     pooka 
    170       1.92     pooka 	/*
    171       1.93     pooka 	 * Don't put anons on the LRU page queue.  We can't flush them
    172       1.93     pooka 	 * (there's no concept of swap in a rump kernel), so no reason
    173       1.93     pooka 	 * to bother with them.
    174       1.92     pooka 	 */
    175       1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    176       1.92     pooka 		atomic_inc_uint(&vmpage_onqueue);
    177       1.92     pooka 		mutex_enter(&uvm_pageqlock);
    178       1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    179       1.92     pooka 		mutex_exit(&uvm_pageqlock);
    180       1.92     pooka 	}
    181       1.92     pooka 
    182       1.59     pooka 	uobj->uo_npages++;
    183       1.21     pooka 
    184        1.1     pooka 	return pg;
    185        1.1     pooka }
    186        1.1     pooka 
    187       1.21     pooka /*
    188       1.21     pooka  * Release a page.
    189       1.21     pooka  *
    190       1.22     pooka  * Called with the vm object locked.
    191       1.21     pooka  */
    192        1.1     pooka void
    193       1.22     pooka uvm_pagefree(struct vm_page *pg)
    194        1.1     pooka {
    195        1.5     pooka 	struct uvm_object *uobj = pg->uobject;
    196  1.120.2.1      yamt 	struct vm_page *opg;
    197        1.1     pooka 
    198       1.92     pooka 	KASSERT(mutex_owned(&uvm_pageqlock));
    199      1.115     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    200       1.92     pooka 
    201       1.22     pooka 	if (pg->flags & PG_WANTED)
    202       1.22     pooka 		wakeup(pg);
    203       1.22     pooka 
    204       1.92     pooka 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    205       1.92     pooka 
    206       1.59     pooka 	uobj->uo_npages--;
    207  1.120.2.1      yamt 	opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    208  1.120.2.1      yamt 	KASSERT(pg == opg);
    209       1.92     pooka 
    210       1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    211       1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    212       1.92     pooka 		atomic_dec_uint(&vmpage_onqueue);
    213       1.92     pooka 	}
    214       1.92     pooka 
    215       1.90     pooka 	pool_cache_put(&pagecache, pg);
    216        1.1     pooka }
    217        1.1     pooka 
    218       1.15     pooka void
    219       1.61     pooka uvm_pagezero(struct vm_page *pg)
    220       1.15     pooka {
    221       1.15     pooka 
    222  1.120.2.1      yamt 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    223       1.61     pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    224       1.15     pooka }
    225       1.15     pooka 
    226        1.1     pooka /*
    227  1.120.2.1      yamt  * uvm_page_locked_p: return true if object associated with page is
    228  1.120.2.1      yamt  * locked.  this is a weak check for runtime assertions only.
    229  1.120.2.1      yamt  */
    230  1.120.2.1      yamt 
    231  1.120.2.1      yamt bool
    232  1.120.2.1      yamt uvm_page_locked_p(struct vm_page *pg)
    233  1.120.2.1      yamt {
    234  1.120.2.1      yamt 
    235  1.120.2.1      yamt 	return mutex_owned(pg->uobject->vmobjlock);
    236  1.120.2.1      yamt }
    237  1.120.2.1      yamt 
    238  1.120.2.1      yamt /*
    239        1.1     pooka  * Misc routines
    240        1.1     pooka  */
    241        1.1     pooka 
    242       1.61     pooka static kmutex_t pagermtx;
    243       1.61     pooka 
    244        1.1     pooka void
    245       1.79     pooka uvm_init(void)
    246        1.1     pooka {
    247       1.84     pooka 	char buf[64];
    248       1.84     pooka 	int error;
    249       1.84     pooka 
    250       1.84     pooka 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    251      1.105     pooka 		unsigned long tmp;
    252      1.105     pooka 		char *ep;
    253      1.105     pooka 		int mult;
    254      1.105     pooka 
    255      1.109     pooka 		tmp = strtoul(buf, &ep, 10);
    256      1.105     pooka 		if (strlen(ep) > 1)
    257      1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    258      1.105     pooka 
    259      1.105     pooka 		/* mini-dehumanize-number */
    260      1.105     pooka 		mult = 1;
    261      1.105     pooka 		switch (*ep) {
    262      1.105     pooka 		case 'k':
    263      1.105     pooka 			mult = 1024;
    264      1.105     pooka 			break;
    265      1.105     pooka 		case 'm':
    266      1.105     pooka 			mult = 1024*1024;
    267      1.105     pooka 			break;
    268      1.105     pooka 		case 'g':
    269      1.105     pooka 			mult = 1024*1024*1024;
    270      1.105     pooka 			break;
    271      1.105     pooka 		case 0:
    272      1.105     pooka 			break;
    273      1.105     pooka 		default:
    274      1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    275      1.105     pooka 		}
    276      1.105     pooka 		rump_physmemlimit = tmp * mult;
    277      1.105     pooka 
    278      1.105     pooka 		if (rump_physmemlimit / mult != tmp)
    279      1.105     pooka 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    280       1.84     pooka 		/* it's not like we'd get far with, say, 1 byte, but ... */
    281       1.91     pooka 		if (rump_physmemlimit == 0)
    282      1.105     pooka 			panic("uvm_init: no memory");
    283      1.105     pooka 
    284       1.84     pooka #define HUMANIZE_BYTES 9
    285       1.84     pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    286       1.91     pooka 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    287       1.84     pooka #undef HUMANIZE_BYTES
    288       1.92     pooka 		dddlim = 9 * (rump_physmemlimit / 10);
    289       1.84     pooka 	} else {
    290       1.84     pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    291       1.84     pooka 	}
    292       1.84     pooka 	aprint_verbose("total memory = %s\n", buf);
    293        1.1     pooka 
    294       1.92     pooka 	TAILQ_INIT(&vmpage_lruqueue);
    295       1.92     pooka 
    296       1.84     pooka 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    297       1.21     pooka 
    298      1.112     pooka #ifndef __uvmexp_pagesize
    299      1.112     pooka 	uvmexp.pagesize = PAGE_SIZE;
    300      1.112     pooka 	uvmexp.pagemask = PAGE_MASK;
    301      1.112     pooka 	uvmexp.pageshift = PAGE_SHIFT;
    302      1.112     pooka #else
    303      1.112     pooka #define FAKE_PAGE_SHIFT 12
    304      1.112     pooka 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    305      1.112     pooka 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    306      1.112     pooka 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    307      1.112     pooka #undef FAKE_PAGE_SHIFT
    308      1.112     pooka #endif
    309      1.112     pooka 
    310       1.61     pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    311       1.25        ad 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    312       1.88     pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    313       1.35     pooka 
    314       1.80     pooka 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    315       1.80     pooka 	cv_init(&pdaemoncv, "pdaemon");
    316       1.80     pooka 	cv_init(&oomwait, "oomwait");
    317       1.80     pooka 
    318       1.50     pooka 	kernel_map->pmap = pmap_kernel();
    319       1.35     pooka 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    320       1.50     pooka 	kmem_map->pmap = pmap_kernel();
    321       1.50     pooka 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    322       1.90     pooka 
    323       1.90     pooka 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    324       1.90     pooka 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    325        1.1     pooka }
    326        1.1     pooka 
    327       1.83     pooka void
    328       1.83     pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    329       1.83     pooka {
    330       1.83     pooka 
    331       1.83     pooka 	vm->vm_map.pmap = pmap_kernel();
    332       1.83     pooka 	vm->vm_refcnt = 1;
    333       1.83     pooka }
    334        1.1     pooka 
    335        1.1     pooka void
    336        1.7     pooka uvm_pagewire(struct vm_page *pg)
    337        1.7     pooka {
    338        1.7     pooka 
    339        1.7     pooka 	/* nada */
    340        1.7     pooka }
    341        1.7     pooka 
    342        1.7     pooka void
    343        1.7     pooka uvm_pageunwire(struct vm_page *pg)
    344        1.7     pooka {
    345        1.7     pooka 
    346        1.7     pooka 	/* nada */
    347        1.7     pooka }
    348        1.7     pooka 
    349      1.108     pooka /*
    350      1.108     pooka  * The uvm reclaim hook is not currently necessary because it is
    351      1.108     pooka  * used only by ZFS and implements exactly the same functionality
    352      1.108     pooka  * as the kva reclaim hook which we already run in the pagedaemon
    353      1.108     pooka  * (rump vm does not have a concept of uvm_map(), so we cannot
    354      1.108     pooka  * reclaim kva it when a mapping operation fails due to insufficient
    355      1.108     pooka  * available kva).
    356      1.108     pooka  */
    357      1.107      haad void
    358      1.107      haad uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook_entry)
    359      1.107      haad {
    360      1.107      haad 
    361      1.107      haad }
    362      1.108     pooka __strong_alias(uvm_reclaim_hook_del,uvm_reclaim_hook_add);
    363      1.107      haad 
    364       1.83     pooka /* where's your schmonz now? */
    365       1.83     pooka #define PUNLIMIT(a)	\
    366       1.83     pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    367       1.83     pooka void
    368       1.83     pooka uvm_init_limits(struct proc *p)
    369       1.83     pooka {
    370       1.83     pooka 
    371       1.83     pooka 	PUNLIMIT(RLIMIT_STACK);
    372       1.83     pooka 	PUNLIMIT(RLIMIT_DATA);
    373       1.83     pooka 	PUNLIMIT(RLIMIT_RSS);
    374       1.83     pooka 	PUNLIMIT(RLIMIT_AS);
    375       1.83     pooka 	/* nice, cascade */
    376       1.83     pooka }
    377       1.83     pooka #undef PUNLIMIT
    378       1.83     pooka 
    379       1.69     pooka /*
    380       1.69     pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    381       1.69     pooka  * We probably should grow some more assertables to make sure we're
    382      1.103     pooka  * not satisfying anything we shouldn't be satisfying.
    383       1.69     pooka  */
    384       1.49     pooka int
    385       1.49     pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    386       1.49     pooka 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    387       1.49     pooka {
    388       1.69     pooka 	void *uaddr;
    389       1.69     pooka 	int error;
    390       1.49     pooka 
    391       1.69     pooka 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    392       1.69     pooka 		panic("uvm_mmap() variant unsupported");
    393       1.69     pooka 	if (flags != (MAP_PRIVATE | MAP_ANON))
    394       1.69     pooka 		panic("uvm_mmap() variant unsupported");
    395       1.98     pooka 
    396       1.69     pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    397       1.69     pooka 	if (*addr != 0)
    398       1.69     pooka 		panic("uvm_mmap() variant unsupported");
    399       1.69     pooka 
    400      1.106     pooka 	if (RUMP_LOCALPROC_P(curproc)) {
    401       1.98     pooka 		uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    402       1.98     pooka 	} else {
    403      1.102     pooka 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
    404      1.102     pooka 		    size, &uaddr);
    405       1.98     pooka 	}
    406       1.69     pooka 	if (uaddr == NULL)
    407       1.69     pooka 		return error;
    408       1.69     pooka 
    409       1.69     pooka 	*addr = (vaddr_t)uaddr;
    410       1.69     pooka 	return 0;
    411       1.49     pooka }
    412       1.49     pooka 
    413       1.61     pooka struct pagerinfo {
    414       1.61     pooka 	vaddr_t pgr_kva;
    415       1.61     pooka 	int pgr_npages;
    416       1.61     pooka 	struct vm_page **pgr_pgs;
    417       1.61     pooka 	bool pgr_read;
    418       1.61     pooka 
    419       1.61     pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    420       1.61     pooka };
    421       1.61     pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    422       1.61     pooka 
    423       1.61     pooka /*
    424       1.61     pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    425       1.61     pooka  * and copy page contents there.  Not optimal or even strictly
    426       1.61     pooka  * correct (the caller might modify the page contents after mapping
    427       1.61     pooka  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    428       1.61     pooka  */
    429        1.7     pooka vaddr_t
    430       1.61     pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    431        1.7     pooka {
    432       1.61     pooka 	struct pagerinfo *pgri;
    433       1.61     pooka 	vaddr_t curkva;
    434       1.61     pooka 	int i;
    435       1.61     pooka 
    436       1.61     pooka 	/* allocate structures */
    437       1.61     pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    438       1.61     pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    439       1.61     pooka 	pgri->pgr_npages = npages;
    440       1.61     pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    441       1.61     pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    442       1.61     pooka 
    443       1.61     pooka 	/* copy contents to "mapped" memory */
    444       1.61     pooka 	for (i = 0, curkva = pgri->pgr_kva;
    445       1.61     pooka 	    i < npages;
    446       1.61     pooka 	    i++, curkva += PAGE_SIZE) {
    447       1.61     pooka 		/*
    448       1.61     pooka 		 * We need to copy the previous contents of the pages to
    449       1.61     pooka 		 * the window even if we are reading from the
    450       1.61     pooka 		 * device, since the device might not fill the contents of
    451       1.61     pooka 		 * the full mapped range and we will end up corrupting
    452       1.61     pooka 		 * data when we unmap the window.
    453       1.61     pooka 		 */
    454       1.61     pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    455       1.61     pooka 		pgri->pgr_pgs[i] = pgs[i];
    456       1.61     pooka 	}
    457       1.61     pooka 
    458       1.61     pooka 	mutex_enter(&pagermtx);
    459       1.61     pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    460       1.61     pooka 	mutex_exit(&pagermtx);
    461        1.7     pooka 
    462       1.61     pooka 	return pgri->pgr_kva;
    463        1.7     pooka }
    464        1.7     pooka 
    465       1.61     pooka /*
    466       1.61     pooka  * map out the pager window.  return contents from VA to page storage
    467       1.61     pooka  * and free structures.
    468       1.61     pooka  *
    469       1.61     pooka  * Note: does not currently support partial frees
    470       1.61     pooka  */
    471       1.61     pooka void
    472       1.61     pooka uvm_pagermapout(vaddr_t kva, int npages)
    473        1.7     pooka {
    474       1.61     pooka 	struct pagerinfo *pgri;
    475       1.61     pooka 	vaddr_t curkva;
    476       1.61     pooka 	int i;
    477        1.7     pooka 
    478       1.61     pooka 	mutex_enter(&pagermtx);
    479       1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    480       1.61     pooka 		if (pgri->pgr_kva == kva)
    481       1.61     pooka 			break;
    482       1.61     pooka 	}
    483       1.61     pooka 	KASSERT(pgri);
    484       1.61     pooka 	if (pgri->pgr_npages != npages)
    485       1.61     pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    486       1.61     pooka 	LIST_REMOVE(pgri, pgr_entries);
    487       1.61     pooka 	mutex_exit(&pagermtx);
    488       1.61     pooka 
    489       1.61     pooka 	if (pgri->pgr_read) {
    490       1.61     pooka 		for (i = 0, curkva = pgri->pgr_kva;
    491       1.61     pooka 		    i < pgri->pgr_npages;
    492       1.61     pooka 		    i++, curkva += PAGE_SIZE) {
    493       1.61     pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    494       1.21     pooka 		}
    495       1.21     pooka 	}
    496       1.10     pooka 
    497       1.61     pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    498       1.61     pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    499       1.61     pooka 	kmem_free(pgri, sizeof(*pgri));
    500        1.7     pooka }
    501        1.7     pooka 
    502       1.61     pooka /*
    503       1.61     pooka  * convert va in pager window to page structure.
    504       1.61     pooka  * XXX: how expensive is this (global lock, list traversal)?
    505       1.61     pooka  */
    506       1.14     pooka struct vm_page *
    507       1.14     pooka uvm_pageratop(vaddr_t va)
    508       1.14     pooka {
    509       1.61     pooka 	struct pagerinfo *pgri;
    510       1.61     pooka 	struct vm_page *pg = NULL;
    511       1.61     pooka 	int i;
    512       1.14     pooka 
    513       1.61     pooka 	mutex_enter(&pagermtx);
    514       1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    515       1.61     pooka 		if (pgri->pgr_kva <= va
    516       1.61     pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    517       1.21     pooka 			break;
    518       1.61     pooka 	}
    519       1.61     pooka 	if (pgri) {
    520       1.61     pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    521       1.61     pooka 		pg = pgri->pgr_pgs[i];
    522       1.61     pooka 	}
    523       1.61     pooka 	mutex_exit(&pagermtx);
    524       1.21     pooka 
    525       1.61     pooka 	return pg;
    526       1.61     pooka }
    527       1.15     pooka 
    528       1.97     pooka /*
    529       1.97     pooka  * Called with the vm object locked.
    530       1.97     pooka  *
    531       1.97     pooka  * Put vnode object pages at the end of the access queue to indicate
    532       1.97     pooka  * they have been recently accessed and should not be immediate
    533       1.97     pooka  * candidates for pageout.  Do not do this for lookups done by
    534       1.97     pooka  * the pagedaemon to mimic pmap_kentered mappings which don't track
    535       1.97     pooka  * access information.
    536       1.97     pooka  */
    537       1.61     pooka struct vm_page *
    538       1.61     pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    539       1.61     pooka {
    540       1.92     pooka 	struct vm_page *pg;
    541       1.97     pooka 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    542       1.61     pooka 
    543  1.120.2.1      yamt 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    544       1.97     pooka 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    545       1.92     pooka 		mutex_enter(&uvm_pageqlock);
    546       1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    547       1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    548       1.92     pooka 		mutex_exit(&uvm_pageqlock);
    549       1.92     pooka 	}
    550       1.92     pooka 
    551       1.92     pooka 	return pg;
    552       1.14     pooka }
    553       1.14     pooka 
    554        1.7     pooka void
    555       1.22     pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    556       1.22     pooka {
    557       1.22     pooka 	struct vm_page *pg;
    558       1.22     pooka 	int i;
    559       1.22     pooka 
    560       1.94     pooka 	KASSERT(npgs > 0);
    561      1.115     rmind 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    562       1.94     pooka 
    563       1.22     pooka 	for (i = 0; i < npgs; i++) {
    564       1.22     pooka 		pg = pgs[i];
    565       1.22     pooka 		if (pg == NULL)
    566       1.22     pooka 			continue;
    567       1.22     pooka 
    568       1.22     pooka 		KASSERT(pg->flags & PG_BUSY);
    569       1.22     pooka 		if (pg->flags & PG_WANTED)
    570       1.22     pooka 			wakeup(pg);
    571       1.36     pooka 		if (pg->flags & PG_RELEASED)
    572       1.36     pooka 			uvm_pagefree(pg);
    573       1.36     pooka 		else
    574       1.36     pooka 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    575       1.22     pooka 	}
    576       1.22     pooka }
    577       1.22     pooka 
    578       1.22     pooka void
    579        1.7     pooka uvm_estimatepageable(int *active, int *inactive)
    580        1.7     pooka {
    581        1.7     pooka 
    582       1.19     pooka 	/* XXX: guessing game */
    583       1.19     pooka 	*active = 1024;
    584       1.19     pooka 	*inactive = 1024;
    585        1.7     pooka }
    586        1.7     pooka 
    587       1.39     pooka struct vm_map_kernel *
    588       1.39     pooka vm_map_to_kernel(struct vm_map *map)
    589       1.39     pooka {
    590       1.39     pooka 
    591       1.39     pooka 	return (struct vm_map_kernel *)map;
    592       1.39     pooka }
    593       1.39     pooka 
    594       1.41     pooka bool
    595       1.41     pooka vm_map_starved_p(struct vm_map *map)
    596       1.41     pooka {
    597       1.41     pooka 
    598       1.80     pooka 	if (map->flags & VM_MAP_WANTVA)
    599       1.80     pooka 		return true;
    600       1.80     pooka 
    601       1.41     pooka 	return false;
    602       1.41     pooka }
    603       1.41     pooka 
    604       1.41     pooka int
    605       1.41     pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    606       1.41     pooka {
    607       1.41     pooka 
    608       1.41     pooka 	panic("%s: unimplemented", __func__);
    609       1.41     pooka }
    610       1.41     pooka 
    611       1.41     pooka void
    612       1.41     pooka uvm_unloan(void *v, int npages, int flags)
    613       1.41     pooka {
    614       1.41     pooka 
    615       1.41     pooka 	panic("%s: unimplemented", __func__);
    616       1.41     pooka }
    617       1.41     pooka 
    618       1.43     pooka int
    619       1.43     pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    620       1.43     pooka 	struct vm_page **opp)
    621       1.43     pooka {
    622       1.43     pooka 
    623       1.72     pooka 	return EBUSY;
    624       1.43     pooka }
    625       1.43     pooka 
    626      1.116       mrg struct vm_page *
    627      1.116       mrg uvm_loanbreak(struct vm_page *pg)
    628      1.116       mrg {
    629      1.116       mrg 
    630      1.116       mrg 	panic("%s: unimplemented", __func__);
    631      1.116       mrg }
    632      1.116       mrg 
    633      1.116       mrg void
    634      1.116       mrg ubc_purge(struct uvm_object *uobj)
    635      1.116       mrg {
    636      1.116       mrg 
    637      1.116       mrg }
    638      1.116       mrg 
    639       1.73     pooka #ifdef DEBUGPRINT
    640       1.56     pooka void
    641       1.56     pooka uvm_object_printit(struct uvm_object *uobj, bool full,
    642       1.56     pooka 	void (*pr)(const char *, ...))
    643       1.56     pooka {
    644       1.56     pooka 
    645       1.75     pooka 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    646       1.56     pooka }
    647       1.73     pooka #endif
    648       1.56     pooka 
    649       1.68     pooka vaddr_t
    650       1.68     pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    651       1.68     pooka {
    652       1.68     pooka 
    653       1.68     pooka 	return 0;
    654       1.68     pooka }
    655       1.68     pooka 
    656       1.71     pooka int
    657       1.71     pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    658       1.71     pooka 	vm_prot_t prot, bool set_max)
    659       1.71     pooka {
    660       1.71     pooka 
    661       1.71     pooka 	return EOPNOTSUPP;
    662       1.71     pooka }
    663       1.71     pooka 
    664        1.9     pooka /*
    665       1.12     pooka  * UVM km
    666       1.12     pooka  */
    667       1.12     pooka 
    668       1.12     pooka vaddr_t
    669       1.12     pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    670       1.12     pooka {
    671       1.82     pooka 	void *rv, *desired = NULL;
    672       1.50     pooka 	int alignbit, error;
    673       1.50     pooka 
    674       1.82     pooka #ifdef __x86_64__
    675       1.82     pooka 	/*
    676       1.82     pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    677       1.82     pooka 	 * This is because NetBSD kernel modules are compiled
    678       1.82     pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    679       1.82     pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    680       1.82     pooka 	 * anywhere except the lowest or highest 2GB, it will not
    681       1.82     pooka 	 * work.  Since userspace does not have access to the highest
    682       1.82     pooka 	 * 2GB, use the lowest 2GB.
    683       1.82     pooka 	 *
    684       1.82     pooka 	 * Note: this assumes the rump kernel resides in
    685       1.82     pooka 	 * the lowest 2GB as well.
    686       1.82     pooka 	 *
    687       1.82     pooka 	 * Note2: yes, it's a quick hack, but since this the only
    688       1.82     pooka 	 * place where we care about the map we're allocating from,
    689       1.82     pooka 	 * just use a simple "if" instead of coming up with a fancy
    690       1.82     pooka 	 * generic solution.
    691       1.82     pooka 	 */
    692       1.82     pooka 	extern struct vm_map *module_map;
    693       1.82     pooka 	if (map == module_map) {
    694       1.82     pooka 		desired = (void *)(0x80000000 - size);
    695       1.82     pooka 	}
    696       1.82     pooka #endif
    697       1.82     pooka 
    698       1.50     pooka 	alignbit = 0;
    699       1.50     pooka 	if (align) {
    700       1.50     pooka 		alignbit = ffs(align)-1;
    701       1.50     pooka 	}
    702       1.50     pooka 
    703       1.82     pooka 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    704       1.81     pooka 	    &error);
    705       1.50     pooka 	if (rv == NULL) {
    706       1.50     pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    707       1.50     pooka 			return 0;
    708       1.50     pooka 		else
    709       1.50     pooka 			panic("uvm_km_alloc failed");
    710       1.50     pooka 	}
    711       1.12     pooka 
    712       1.50     pooka 	if (flags & UVM_KMF_ZERO)
    713       1.12     pooka 		memset(rv, 0, size);
    714       1.12     pooka 
    715       1.12     pooka 	return (vaddr_t)rv;
    716       1.12     pooka }
    717       1.12     pooka 
    718       1.12     pooka void
    719       1.12     pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    720       1.12     pooka {
    721       1.12     pooka 
    722       1.50     pooka 	rumpuser_unmap((void *)vaddr, size);
    723       1.12     pooka }
    724       1.12     pooka 
    725       1.12     pooka struct vm_map *
    726       1.12     pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    727       1.12     pooka 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    728       1.12     pooka {
    729       1.12     pooka 
    730       1.12     pooka 	return (struct vm_map *)417416;
    731       1.12     pooka }
    732       1.40     pooka 
    733       1.40     pooka vaddr_t
    734       1.40     pooka uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    735       1.40     pooka {
    736       1.40     pooka 
    737       1.80     pooka 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    738       1.80     pooka 	    waitok, "kmalloc");
    739       1.40     pooka }
    740       1.40     pooka 
    741       1.40     pooka void
    742       1.40     pooka uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    743       1.40     pooka {
    744       1.40     pooka 
    745       1.84     pooka 	rump_hyperfree((void *)addr, PAGE_SIZE);
    746       1.50     pooka }
    747       1.50     pooka 
    748       1.50     pooka vaddr_t
    749       1.50     pooka uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    750       1.50     pooka {
    751       1.50     pooka 
    752       1.77     pooka 	return uvm_km_alloc_poolpage(map, waitok);
    753       1.50     pooka }
    754       1.50     pooka 
    755       1.50     pooka void
    756       1.50     pooka uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    757       1.50     pooka {
    758       1.50     pooka 
    759       1.77     pooka 	uvm_km_free_poolpage(map, vaddr);
    760       1.40     pooka }
    761       1.57     pooka 
    762       1.74     pooka void
    763       1.74     pooka uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    764       1.74     pooka {
    765       1.74     pooka 
    766       1.74     pooka 	/* we eventually maybe want some model for available memory */
    767       1.74     pooka }
    768       1.74     pooka 
    769       1.57     pooka /*
    770      1.102     pooka  * VM space locking routines.  We don't really have to do anything,
    771      1.102     pooka  * since the pages are always "wired" (both local and remote processes).
    772       1.57     pooka  */
    773       1.57     pooka int
    774       1.57     pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    775       1.57     pooka {
    776       1.57     pooka 
    777       1.57     pooka 	return 0;
    778       1.57     pooka }
    779       1.57     pooka 
    780       1.57     pooka void
    781       1.57     pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    782       1.57     pooka {
    783       1.57     pooka 
    784       1.57     pooka }
    785       1.57     pooka 
    786      1.102     pooka /*
    787      1.102     pooka  * For the local case the buffer mappers don't need to do anything.
    788      1.102     pooka  * For the remote case we need to reserve space and copy data in or
    789      1.102     pooka  * out, depending on B_READ/B_WRITE.
    790      1.102     pooka  */
    791      1.111     pooka int
    792       1.57     pooka vmapbuf(struct buf *bp, vsize_t len)
    793       1.57     pooka {
    794      1.111     pooka 	int error = 0;
    795       1.57     pooka 
    796       1.57     pooka 	bp->b_saveaddr = bp->b_data;
    797      1.102     pooka 
    798      1.102     pooka 	/* remote case */
    799      1.106     pooka 	if (!RUMP_LOCALPROC_P(curproc)) {
    800      1.102     pooka 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    801      1.102     pooka 		if (BUF_ISWRITE(bp)) {
    802      1.111     pooka 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    803      1.111     pooka 			if (error) {
    804      1.111     pooka 				rump_hyperfree(bp->b_data, len);
    805      1.111     pooka 				bp->b_data = bp->b_saveaddr;
    806      1.111     pooka 				bp->b_saveaddr = 0;
    807      1.111     pooka 			}
    808      1.102     pooka 		}
    809      1.102     pooka 	}
    810      1.111     pooka 
    811      1.111     pooka 	return error;
    812       1.57     pooka }
    813       1.57     pooka 
    814       1.57     pooka void
    815       1.57     pooka vunmapbuf(struct buf *bp, vsize_t len)
    816       1.57     pooka {
    817       1.57     pooka 
    818      1.102     pooka 	/* remote case */
    819      1.106     pooka 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    820      1.102     pooka 		if (BUF_ISREAD(bp)) {
    821      1.110     pooka 			bp->b_error = copyout_proc(bp->b_proc,
    822      1.102     pooka 			    bp->b_data, bp->b_saveaddr, len);
    823      1.102     pooka 		}
    824      1.102     pooka 		rump_hyperfree(bp->b_data, len);
    825      1.102     pooka 	}
    826      1.102     pooka 
    827       1.57     pooka 	bp->b_data = bp->b_saveaddr;
    828       1.57     pooka 	bp->b_saveaddr = 0;
    829       1.57     pooka }
    830       1.61     pooka 
    831       1.61     pooka void
    832       1.83     pooka uvmspace_addref(struct vmspace *vm)
    833       1.83     pooka {
    834       1.83     pooka 
    835       1.83     pooka 	/*
    836      1.103     pooka 	 * No dynamically allocated vmspaces exist.
    837       1.83     pooka 	 */
    838       1.83     pooka }
    839       1.83     pooka 
    840       1.83     pooka void
    841       1.66     pooka uvmspace_free(struct vmspace *vm)
    842       1.66     pooka {
    843       1.66     pooka 
    844       1.66     pooka 	/* nothing for now */
    845       1.66     pooka }
    846       1.66     pooka 
    847       1.61     pooka /*
    848       1.61     pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    849       1.61     pooka  */
    850       1.61     pooka 
    851       1.61     pooka void
    852       1.61     pooka uvm_pageactivate(struct vm_page *pg)
    853       1.61     pooka {
    854       1.61     pooka 
    855       1.61     pooka 	/* nada */
    856       1.61     pooka }
    857       1.61     pooka 
    858       1.61     pooka void
    859       1.61     pooka uvm_pagedeactivate(struct vm_page *pg)
    860       1.61     pooka {
    861       1.61     pooka 
    862       1.61     pooka 	/* nada */
    863       1.61     pooka }
    864       1.61     pooka 
    865       1.61     pooka void
    866       1.61     pooka uvm_pagedequeue(struct vm_page *pg)
    867       1.61     pooka {
    868       1.61     pooka 
    869       1.61     pooka 	/* nada*/
    870       1.61     pooka }
    871       1.61     pooka 
    872       1.61     pooka void
    873       1.61     pooka uvm_pageenqueue(struct vm_page *pg)
    874       1.61     pooka {
    875       1.61     pooka 
    876       1.61     pooka 	/* nada */
    877       1.61     pooka }
    878       1.80     pooka 
    879       1.88     pooka void
    880       1.88     pooka uvmpdpol_anfree(struct vm_anon *an)
    881       1.88     pooka {
    882       1.88     pooka 
    883       1.88     pooka 	/* nada */
    884       1.88     pooka }
    885       1.88     pooka 
    886       1.80     pooka /*
    887       1.99  uebayasi  * Physical address accessors.
    888       1.99  uebayasi  */
    889       1.99  uebayasi 
    890       1.99  uebayasi struct vm_page *
    891       1.99  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    892       1.99  uebayasi {
    893       1.99  uebayasi 
    894       1.99  uebayasi 	return NULL;
    895       1.99  uebayasi }
    896       1.99  uebayasi 
    897       1.99  uebayasi paddr_t
    898       1.99  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
    899       1.99  uebayasi {
    900       1.99  uebayasi 
    901       1.99  uebayasi 	return 0;
    902       1.99  uebayasi }
    903       1.99  uebayasi 
    904       1.99  uebayasi /*
    905       1.80     pooka  * Routines related to the Page Baroness.
    906       1.80     pooka  */
    907       1.80     pooka 
    908       1.80     pooka void
    909       1.80     pooka uvm_wait(const char *msg)
    910       1.80     pooka {
    911       1.80     pooka 
    912       1.80     pooka 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    913       1.80     pooka 		panic("pagedaemon out of memory");
    914       1.80     pooka 	if (__predict_false(rump_threads == 0))
    915       1.80     pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    916       1.80     pooka 
    917       1.80     pooka 	mutex_enter(&pdaemonmtx);
    918       1.80     pooka 	pdaemon_waiters++;
    919       1.80     pooka 	cv_signal(&pdaemoncv);
    920       1.80     pooka 	cv_wait(&oomwait, &pdaemonmtx);
    921       1.80     pooka 	mutex_exit(&pdaemonmtx);
    922       1.80     pooka }
    923       1.80     pooka 
    924       1.80     pooka void
    925       1.80     pooka uvm_pageout_start(int npages)
    926       1.80     pooka {
    927       1.80     pooka 
    928      1.113     pooka 	mutex_enter(&pdaemonmtx);
    929      1.113     pooka 	uvmexp.paging += npages;
    930      1.113     pooka 	mutex_exit(&pdaemonmtx);
    931       1.80     pooka }
    932       1.80     pooka 
    933       1.80     pooka void
    934       1.80     pooka uvm_pageout_done(int npages)
    935       1.80     pooka {
    936       1.80     pooka 
    937      1.113     pooka 	if (!npages)
    938      1.113     pooka 		return;
    939      1.113     pooka 
    940      1.113     pooka 	mutex_enter(&pdaemonmtx);
    941      1.113     pooka 	KASSERT(uvmexp.paging >= npages);
    942      1.113     pooka 	uvmexp.paging -= npages;
    943      1.113     pooka 
    944      1.113     pooka 	if (pdaemon_waiters) {
    945      1.113     pooka 		pdaemon_waiters = 0;
    946      1.113     pooka 		cv_broadcast(&oomwait);
    947      1.113     pooka 	}
    948      1.113     pooka 	mutex_exit(&pdaemonmtx);
    949       1.80     pooka }
    950       1.80     pooka 
    951       1.95     pooka static bool
    952      1.104     pooka processpage(struct vm_page *pg, bool *lockrunning)
    953       1.95     pooka {
    954       1.95     pooka 	struct uvm_object *uobj;
    955       1.95     pooka 
    956       1.95     pooka 	uobj = pg->uobject;
    957      1.115     rmind 	if (mutex_tryenter(uobj->vmobjlock)) {
    958       1.95     pooka 		if ((pg->flags & PG_BUSY) == 0) {
    959       1.95     pooka 			mutex_exit(&uvm_pageqlock);
    960       1.95     pooka 			uobj->pgops->pgo_put(uobj, pg->offset,
    961       1.95     pooka 			    pg->offset + PAGE_SIZE,
    962       1.95     pooka 			    PGO_CLEANIT|PGO_FREE);
    963      1.115     rmind 			KASSERT(!mutex_owned(uobj->vmobjlock));
    964       1.95     pooka 			return true;
    965       1.95     pooka 		} else {
    966      1.115     rmind 			mutex_exit(uobj->vmobjlock);
    967       1.95     pooka 		}
    968      1.104     pooka 	} else if (*lockrunning == false && ncpu > 1) {
    969      1.104     pooka 		CPU_INFO_ITERATOR cii;
    970      1.104     pooka 		struct cpu_info *ci;
    971      1.104     pooka 		struct lwp *l;
    972      1.104     pooka 
    973      1.115     rmind 		l = mutex_owner(uobj->vmobjlock);
    974      1.104     pooka 		for (CPU_INFO_FOREACH(cii, ci)) {
    975      1.104     pooka 			if (ci->ci_curlwp == l) {
    976      1.104     pooka 				*lockrunning = true;
    977      1.104     pooka 				break;
    978      1.104     pooka 			}
    979      1.104     pooka 		}
    980       1.95     pooka 	}
    981       1.95     pooka 
    982       1.95     pooka 	return false;
    983       1.95     pooka }
    984       1.95     pooka 
    985       1.80     pooka /*
    986       1.92     pooka  * The Diabolical pageDaemon Director (DDD).
    987      1.113     pooka  *
    988      1.113     pooka  * This routine can always use better heuristics.
    989       1.80     pooka  */
    990       1.80     pooka void
    991       1.80     pooka uvm_pageout(void *arg)
    992       1.80     pooka {
    993       1.92     pooka 	struct vm_page *pg;
    994       1.80     pooka 	struct pool *pp, *pp_first;
    995       1.80     pooka 	uint64_t where;
    996       1.92     pooka 	int cleaned, skip, skipped;
    997      1.113     pooka 	int waspaging;
    998      1.113     pooka 	bool succ;
    999      1.104     pooka 	bool lockrunning;
   1000       1.80     pooka 
   1001       1.80     pooka 	mutex_enter(&pdaemonmtx);
   1002       1.80     pooka 	for (;;) {
   1003      1.113     pooka 		if (!NEED_PAGEDAEMON()) {
   1004       1.92     pooka 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1005       1.95     pooka 			kmem_map->flags &= ~VM_MAP_WANTVA;
   1006       1.92     pooka 		}
   1007       1.92     pooka 
   1008      1.113     pooka 		if (pdaemon_waiters) {
   1009      1.113     pooka 			pdaemon_waiters = 0;
   1010      1.113     pooka 			cv_broadcast(&oomwait);
   1011      1.104     pooka 		}
   1012       1.92     pooka 
   1013      1.113     pooka 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1014      1.113     pooka 		uvmexp.pdwoke++;
   1015      1.113     pooka 		waspaging = uvmexp.paging;
   1016      1.113     pooka 
   1017       1.92     pooka 		/* tell the world that we are hungry */
   1018       1.80     pooka 		kernel_map->flags |= VM_MAP_WANTVA;
   1019       1.92     pooka 		kmem_map->flags |= VM_MAP_WANTVA;
   1020       1.80     pooka 		mutex_exit(&pdaemonmtx);
   1021       1.80     pooka 
   1022       1.92     pooka 		/*
   1023       1.92     pooka 		 * step one: reclaim the page cache.  this should give
   1024       1.92     pooka 		 * us the biggest earnings since whole pages are released
   1025       1.92     pooka 		 * into backing memory.
   1026       1.92     pooka 		 */
   1027       1.92     pooka 		pool_cache_reclaim(&pagecache);
   1028       1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1029       1.92     pooka 			mutex_enter(&pdaemonmtx);
   1030       1.92     pooka 			continue;
   1031       1.92     pooka 		}
   1032       1.92     pooka 
   1033       1.92     pooka 		/*
   1034       1.92     pooka 		 * Ok, so that didn't help.  Next, try to hunt memory
   1035       1.92     pooka 		 * by pushing out vnode pages.  The pages might contain
   1036       1.92     pooka 		 * useful cached data, but we need the memory.
   1037       1.92     pooka 		 */
   1038       1.92     pooka 		cleaned = 0;
   1039       1.92     pooka 		skip = 0;
   1040      1.104     pooka 		lockrunning = false;
   1041       1.92     pooka  again:
   1042       1.92     pooka 		mutex_enter(&uvm_pageqlock);
   1043       1.92     pooka 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1044       1.92     pooka 			skipped = 0;
   1045       1.92     pooka 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1046       1.92     pooka 
   1047       1.92     pooka 				/*
   1048       1.92     pooka 				 * skip over pages we _might_ have tried
   1049       1.92     pooka 				 * to handle earlier.  they might not be
   1050       1.92     pooka 				 * exactly the same ones, but I'm not too
   1051       1.92     pooka 				 * concerned.
   1052       1.92     pooka 				 */
   1053       1.92     pooka 				while (skipped++ < skip)
   1054       1.92     pooka 					continue;
   1055       1.92     pooka 
   1056      1.104     pooka 				if (processpage(pg, &lockrunning)) {
   1057       1.95     pooka 					cleaned++;
   1058       1.95     pooka 					goto again;
   1059       1.92     pooka 				}
   1060       1.92     pooka 
   1061       1.92     pooka 				skip++;
   1062       1.92     pooka 			}
   1063       1.92     pooka 			break;
   1064       1.92     pooka 		}
   1065       1.92     pooka 		mutex_exit(&uvm_pageqlock);
   1066       1.92     pooka 
   1067       1.92     pooka 		/*
   1068      1.104     pooka 		 * Ok, someone is running with an object lock held.
   1069      1.104     pooka 		 * We want to yield the host CPU to make sure the
   1070      1.104     pooka 		 * thread is not parked on the host.  Since sched_yield()
   1071      1.104     pooka 		 * doesn't appear to do anything on NetBSD, nanosleep
   1072      1.104     pooka 		 * for the smallest possible time and hope we're back in
   1073      1.104     pooka 		 * the game soon.
   1074      1.104     pooka 		 */
   1075      1.104     pooka 		if (cleaned == 0 && lockrunning) {
   1076      1.104     pooka 			uint64_t sec, nsec;
   1077      1.104     pooka 
   1078      1.104     pooka 			sec = 0;
   1079      1.104     pooka 			nsec = 1;
   1080      1.104     pooka 			rumpuser_nanosleep(&sec, &nsec, NULL);
   1081      1.104     pooka 
   1082      1.104     pooka 			lockrunning = false;
   1083      1.104     pooka 			skip = 0;
   1084      1.104     pooka 
   1085      1.104     pooka 			/* and here we go again */
   1086      1.104     pooka 			goto again;
   1087      1.104     pooka 		}
   1088      1.104     pooka 
   1089      1.104     pooka 		/*
   1090       1.92     pooka 		 * And of course we need to reclaim the page cache
   1091       1.92     pooka 		 * again to actually release memory.
   1092       1.92     pooka 		 */
   1093       1.92     pooka 		pool_cache_reclaim(&pagecache);
   1094       1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1095       1.92     pooka 			mutex_enter(&pdaemonmtx);
   1096       1.92     pooka 			continue;
   1097       1.92     pooka 		}
   1098       1.92     pooka 
   1099       1.92     pooka 		/*
   1100       1.92     pooka 		 * Still not there?  sleeves come off right about now.
   1101       1.92     pooka 		 * First: do reclaim on kernel/kmem map.
   1102       1.92     pooka 		 */
   1103       1.92     pooka 		callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
   1104       1.92     pooka 		    NULL);
   1105       1.92     pooka 		callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
   1106       1.92     pooka 		    NULL);
   1107       1.92     pooka 
   1108       1.92     pooka 		/*
   1109       1.92     pooka 		 * And then drain the pools.  Wipe them out ... all of them.
   1110       1.92     pooka 		 */
   1111       1.92     pooka 
   1112       1.80     pooka 		pool_drain_start(&pp_first, &where);
   1113       1.80     pooka 		pp = pp_first;
   1114       1.80     pooka 		for (;;) {
   1115       1.91     pooka 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
   1116       1.80     pooka 			succ = pool_drain_end(pp, where);
   1117       1.80     pooka 			if (succ)
   1118       1.80     pooka 				break;
   1119       1.80     pooka 			pool_drain_start(&pp, &where);
   1120       1.80     pooka 			if (pp == pp_first) {
   1121       1.80     pooka 				succ = pool_drain_end(pp, where);
   1122       1.80     pooka 				break;
   1123       1.80     pooka 			}
   1124       1.80     pooka 		}
   1125       1.92     pooka 
   1126       1.92     pooka 		/*
   1127       1.92     pooka 		 * Need to use PYEC on our bag of tricks.
   1128       1.92     pooka 		 * Unfortunately, the wife just borrowed it.
   1129       1.92     pooka 		 */
   1130       1.80     pooka 
   1131      1.113     pooka 		mutex_enter(&pdaemonmtx);
   1132      1.113     pooka 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1133      1.113     pooka 		    uvmexp.paging == 0) {
   1134       1.80     pooka 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1135       1.80     pooka 			    "memory ... sleeping (deadlock?)\n");
   1136      1.113     pooka 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
   1137      1.113     pooka 			mutex_enter(&pdaemonmtx);
   1138       1.80     pooka 		}
   1139       1.80     pooka 	}
   1140       1.80     pooka 
   1141       1.80     pooka 	panic("you can swap out any time you like, but you can never leave");
   1142       1.80     pooka }
   1143       1.80     pooka 
   1144       1.80     pooka void
   1145       1.80     pooka uvm_kick_pdaemon()
   1146       1.80     pooka {
   1147       1.80     pooka 
   1148       1.92     pooka 	/*
   1149       1.92     pooka 	 * Wake up the diabolical pagedaemon director if we are over
   1150       1.92     pooka 	 * 90% of the memory limit.  This is a complete and utter
   1151       1.92     pooka 	 * stetson-harrison decision which you are allowed to finetune.
   1152       1.92     pooka 	 * Don't bother locking.  If we have some unflushed caches,
   1153       1.92     pooka 	 * other waker-uppers will deal with the issue.
   1154       1.92     pooka 	 */
   1155       1.92     pooka 	if (NEED_PAGEDAEMON()) {
   1156       1.92     pooka 		cv_signal(&pdaemoncv);
   1157       1.92     pooka 	}
   1158       1.80     pooka }
   1159       1.80     pooka 
   1160       1.80     pooka void *
   1161       1.80     pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1162       1.80     pooka {
   1163       1.84     pooka 	unsigned long newmem;
   1164       1.80     pooka 	void *rv;
   1165       1.80     pooka 
   1166       1.92     pooka 	uvm_kick_pdaemon(); /* ouch */
   1167       1.92     pooka 
   1168       1.84     pooka 	/* first we must be within the limit */
   1169       1.84     pooka  limitagain:
   1170       1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1171       1.84     pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1172       1.91     pooka 		if (newmem > rump_physmemlimit) {
   1173       1.84     pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1174      1.103     pooka 			if (!waitok) {
   1175       1.84     pooka 				return NULL;
   1176      1.103     pooka 			}
   1177       1.84     pooka 			uvm_wait(wmsg);
   1178       1.84     pooka 			goto limitagain;
   1179       1.84     pooka 		}
   1180       1.84     pooka 	}
   1181       1.84     pooka 
   1182       1.84     pooka 	/* second, we must get something from the backend */
   1183       1.80     pooka  again:
   1184       1.80     pooka 	rv = rumpuser_malloc(howmuch, alignment);
   1185       1.80     pooka 	if (__predict_false(rv == NULL && waitok)) {
   1186       1.80     pooka 		uvm_wait(wmsg);
   1187       1.80     pooka 		goto again;
   1188       1.80     pooka 	}
   1189       1.80     pooka 
   1190       1.80     pooka 	return rv;
   1191       1.80     pooka }
   1192       1.84     pooka 
   1193       1.84     pooka void
   1194       1.84     pooka rump_hyperfree(void *what, size_t size)
   1195       1.84     pooka {
   1196       1.84     pooka 
   1197       1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1198       1.84     pooka 		atomic_add_long(&curphysmem, -size);
   1199       1.84     pooka 	}
   1200       1.84     pooka 	rumpuser_free(what);
   1201       1.84     pooka }
   1202