vm.c revision 1.120.2.3 1 1.120.2.1 yamt /* $NetBSD: vm.c,v 1.120.2.3 2012/01/14 04:36:39 yamt Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.114 pooka * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.76 pooka * Development of this software was supported by
7 1.76 pooka * The Finnish Cultural Foundation and the Research Foundation of
8 1.76 pooka * The Helsinki University of Technology.
9 1.1 pooka *
10 1.1 pooka * Redistribution and use in source and binary forms, with or without
11 1.1 pooka * modification, are permitted provided that the following conditions
12 1.1 pooka * are met:
13 1.1 pooka * 1. Redistributions of source code must retain the above copyright
14 1.1 pooka * notice, this list of conditions and the following disclaimer.
15 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer in the
17 1.1 pooka * documentation and/or other materials provided with the distribution.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka */
31 1.1 pooka
32 1.1 pooka /*
33 1.88 pooka * Virtual memory emulation routines.
34 1.1 pooka */
35 1.1 pooka
36 1.1 pooka /*
37 1.5 pooka * XXX: we abuse pg->uanon for the virtual address of the storage
38 1.1 pooka * for each page. phys_addr would fit the job description better,
39 1.1 pooka * except that it will create unnecessary lossage on some platforms
40 1.1 pooka * due to not being a pointer type.
41 1.1 pooka */
42 1.1 pooka
43 1.48 pooka #include <sys/cdefs.h>
44 1.120.2.1 yamt __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.120.2.3 2012/01/14 04:36:39 yamt Exp $");
45 1.48 pooka
46 1.1 pooka #include <sys/param.h>
47 1.40 pooka #include <sys/atomic.h>
48 1.80 pooka #include <sys/buf.h>
49 1.80 pooka #include <sys/kernel.h>
50 1.67 pooka #include <sys/kmem.h>
51 1.69 pooka #include <sys/mman.h>
52 1.1 pooka #include <sys/null.h>
53 1.1 pooka #include <sys/vnode.h>
54 1.1 pooka
55 1.34 pooka #include <machine/pmap.h>
56 1.34 pooka
57 1.34 pooka #include <rump/rumpuser.h>
58 1.34 pooka
59 1.1 pooka #include <uvm/uvm.h>
60 1.56 pooka #include <uvm/uvm_ddb.h>
61 1.88 pooka #include <uvm/uvm_pdpolicy.h>
62 1.1 pooka #include <uvm/uvm_prot.h>
63 1.58 he #include <uvm/uvm_readahead.h>
64 1.1 pooka
65 1.13 pooka #include "rump_private.h"
66 1.91 pooka #include "rump_vfs_private.h"
67 1.1 pooka
68 1.25 ad kmutex_t uvm_pageqlock;
69 1.88 pooka kmutex_t uvm_swap_data_lock;
70 1.25 ad
71 1.1 pooka struct uvmexp uvmexp;
72 1.7 pooka struct uvm uvm;
73 1.1 pooka
74 1.112 pooka #ifdef __uvmexp_pagesize
75 1.112 pooka int *uvmexp_pagesize = &uvmexp.pagesize;
76 1.112 pooka int *uvmexp_pagemask = &uvmexp.pagemask;
77 1.112 pooka int *uvmexp_pageshift = &uvmexp.pageshift;
78 1.112 pooka #endif
79 1.112 pooka
80 1.1 pooka struct vm_map rump_vmmap;
81 1.50 pooka static struct vm_map_kernel kmem_map_store;
82 1.50 pooka struct vm_map *kmem_map = &kmem_map_store.vmk_map;
83 1.1 pooka
84 1.35 pooka static struct vm_map_kernel kernel_map_store;
85 1.35 pooka struct vm_map *kernel_map = &kernel_map_store.vmk_map;
86 1.35 pooka
87 1.80 pooka static unsigned int pdaemon_waiters;
88 1.80 pooka static kmutex_t pdaemonmtx;
89 1.80 pooka static kcondvar_t pdaemoncv, oomwait;
90 1.80 pooka
91 1.91 pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
92 1.84 pooka static unsigned long curphysmem;
93 1.92 pooka static unsigned long dddlim; /* 90% of memory limit used */
94 1.92 pooka #define NEED_PAGEDAEMON() \
95 1.92 pooka (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
96 1.92 pooka
97 1.92 pooka /*
98 1.92 pooka * Try to free two pages worth of pages from objects.
99 1.92 pooka * If this succesfully frees a full page cache page, we'll
100 1.120 yamt * free the released page plus PAGE_SIZE/sizeof(vm_page).
101 1.92 pooka */
102 1.92 pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
103 1.92 pooka
104 1.92 pooka /*
105 1.92 pooka * Keep a list of least recently used pages. Since the only way a
106 1.92 pooka * rump kernel can "access" a page is via lookup, we put the page
107 1.92 pooka * at the back of queue every time a lookup for it is done. If the
108 1.92 pooka * page is in front of this global queue and we're short of memory,
109 1.92 pooka * it's a candidate for pageout.
110 1.92 pooka */
111 1.92 pooka static struct pglist vmpage_lruqueue;
112 1.92 pooka static unsigned vmpage_onqueue;
113 1.84 pooka
114 1.1 pooka /*
115 1.1 pooka * vm pages
116 1.1 pooka */
117 1.1 pooka
118 1.90 pooka static int
119 1.90 pooka pgctor(void *arg, void *obj, int flags)
120 1.90 pooka {
121 1.90 pooka struct vm_page *pg = obj;
122 1.90 pooka
123 1.90 pooka memset(pg, 0, sizeof(*pg));
124 1.103 pooka pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
125 1.103 pooka (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
126 1.103 pooka return pg->uanon == NULL;
127 1.90 pooka }
128 1.90 pooka
129 1.90 pooka static void
130 1.90 pooka pgdtor(void *arg, void *obj)
131 1.90 pooka {
132 1.90 pooka struct vm_page *pg = obj;
133 1.90 pooka
134 1.90 pooka rump_hyperfree(pg->uanon, PAGE_SIZE);
135 1.90 pooka }
136 1.90 pooka
137 1.90 pooka static struct pool_cache pagecache;
138 1.90 pooka
139 1.92 pooka /*
140 1.92 pooka * Called with the object locked. We don't support anons.
141 1.92 pooka */
142 1.1 pooka struct vm_page *
143 1.76 pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
144 1.76 pooka int flags, int strat, int free_list)
145 1.1 pooka {
146 1.1 pooka struct vm_page *pg;
147 1.120.2.1 yamt int error;
148 1.1 pooka
149 1.115 rmind KASSERT(uobj && mutex_owned(uobj->vmobjlock));
150 1.92 pooka KASSERT(anon == NULL);
151 1.92 pooka
152 1.103 pooka pg = pool_cache_get(&pagecache, PR_NOWAIT);
153 1.104 pooka if (__predict_false(pg == NULL)) {
154 1.103 pooka return NULL;
155 1.104 pooka }
156 1.103 pooka
157 1.1 pooka pg->offset = off;
158 1.5 pooka pg->uobject = uobj;
159 1.1 pooka
160 1.22 pooka pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
161 1.90 pooka if (flags & UVM_PGA_ZERO) {
162 1.90 pooka uvm_pagezero(pg);
163 1.90 pooka }
164 1.1 pooka
165 1.120.2.1 yamt error = radix_tree_insert_node(&uobj->uo_pages,
166 1.120.2.1 yamt pg->offset >> PAGE_SHIFT, pg);
167 1.120.2.1 yamt KASSERT(error == 0);
168 1.89 pooka
169 1.92 pooka /*
170 1.93 pooka * Don't put anons on the LRU page queue. We can't flush them
171 1.93 pooka * (there's no concept of swap in a rump kernel), so no reason
172 1.93 pooka * to bother with them.
173 1.92 pooka */
174 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
175 1.92 pooka atomic_inc_uint(&vmpage_onqueue);
176 1.92 pooka mutex_enter(&uvm_pageqlock);
177 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
178 1.92 pooka mutex_exit(&uvm_pageqlock);
179 1.92 pooka }
180 1.92 pooka
181 1.59 pooka uobj->uo_npages++;
182 1.21 pooka
183 1.1 pooka return pg;
184 1.1 pooka }
185 1.1 pooka
186 1.21 pooka /*
187 1.21 pooka * Release a page.
188 1.21 pooka *
189 1.22 pooka * Called with the vm object locked.
190 1.21 pooka */
191 1.1 pooka void
192 1.22 pooka uvm_pagefree(struct vm_page *pg)
193 1.1 pooka {
194 1.5 pooka struct uvm_object *uobj = pg->uobject;
195 1.120.2.1 yamt struct vm_page *opg;
196 1.1 pooka
197 1.92 pooka KASSERT(mutex_owned(&uvm_pageqlock));
198 1.115 rmind KASSERT(mutex_owned(uobj->vmobjlock));
199 1.92 pooka
200 1.22 pooka if (pg->flags & PG_WANTED)
201 1.22 pooka wakeup(pg);
202 1.22 pooka
203 1.59 pooka uobj->uo_npages--;
204 1.120.2.1 yamt opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
205 1.120.2.1 yamt KASSERT(pg == opg);
206 1.92 pooka
207 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
208 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
209 1.92 pooka atomic_dec_uint(&vmpage_onqueue);
210 1.92 pooka }
211 1.92 pooka
212 1.90 pooka pool_cache_put(&pagecache, pg);
213 1.1 pooka }
214 1.1 pooka
215 1.15 pooka void
216 1.61 pooka uvm_pagezero(struct vm_page *pg)
217 1.15 pooka {
218 1.15 pooka
219 1.120.2.1 yamt uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
220 1.61 pooka memset((void *)pg->uanon, 0, PAGE_SIZE);
221 1.15 pooka }
222 1.15 pooka
223 1.1 pooka /*
224 1.120.2.1 yamt * uvm_page_locked_p: return true if object associated with page is
225 1.120.2.1 yamt * locked. this is a weak check for runtime assertions only.
226 1.120.2.1 yamt */
227 1.120.2.1 yamt
228 1.120.2.1 yamt bool
229 1.120.2.1 yamt uvm_page_locked_p(struct vm_page *pg)
230 1.120.2.1 yamt {
231 1.120.2.1 yamt
232 1.120.2.1 yamt return mutex_owned(pg->uobject->vmobjlock);
233 1.120.2.1 yamt }
234 1.120.2.1 yamt
235 1.120.2.1 yamt /*
236 1.1 pooka * Misc routines
237 1.1 pooka */
238 1.1 pooka
239 1.61 pooka static kmutex_t pagermtx;
240 1.61 pooka
241 1.1 pooka void
242 1.79 pooka uvm_init(void)
243 1.1 pooka {
244 1.84 pooka char buf[64];
245 1.84 pooka int error;
246 1.84 pooka
247 1.84 pooka if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
248 1.105 pooka unsigned long tmp;
249 1.105 pooka char *ep;
250 1.105 pooka int mult;
251 1.105 pooka
252 1.109 pooka tmp = strtoul(buf, &ep, 10);
253 1.105 pooka if (strlen(ep) > 1)
254 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
255 1.105 pooka
256 1.105 pooka /* mini-dehumanize-number */
257 1.105 pooka mult = 1;
258 1.105 pooka switch (*ep) {
259 1.105 pooka case 'k':
260 1.105 pooka mult = 1024;
261 1.105 pooka break;
262 1.105 pooka case 'm':
263 1.105 pooka mult = 1024*1024;
264 1.105 pooka break;
265 1.105 pooka case 'g':
266 1.105 pooka mult = 1024*1024*1024;
267 1.105 pooka break;
268 1.105 pooka case 0:
269 1.105 pooka break;
270 1.105 pooka default:
271 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
272 1.105 pooka }
273 1.105 pooka rump_physmemlimit = tmp * mult;
274 1.105 pooka
275 1.105 pooka if (rump_physmemlimit / mult != tmp)
276 1.105 pooka panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
277 1.84 pooka /* it's not like we'd get far with, say, 1 byte, but ... */
278 1.91 pooka if (rump_physmemlimit == 0)
279 1.105 pooka panic("uvm_init: no memory");
280 1.105 pooka
281 1.84 pooka #define HUMANIZE_BYTES 9
282 1.84 pooka CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
283 1.91 pooka format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
284 1.84 pooka #undef HUMANIZE_BYTES
285 1.92 pooka dddlim = 9 * (rump_physmemlimit / 10);
286 1.84 pooka } else {
287 1.84 pooka strlcpy(buf, "unlimited (host limit)", sizeof(buf));
288 1.84 pooka }
289 1.84 pooka aprint_verbose("total memory = %s\n", buf);
290 1.1 pooka
291 1.92 pooka TAILQ_INIT(&vmpage_lruqueue);
292 1.92 pooka
293 1.84 pooka uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
294 1.21 pooka
295 1.112 pooka #ifndef __uvmexp_pagesize
296 1.112 pooka uvmexp.pagesize = PAGE_SIZE;
297 1.112 pooka uvmexp.pagemask = PAGE_MASK;
298 1.112 pooka uvmexp.pageshift = PAGE_SHIFT;
299 1.112 pooka #else
300 1.112 pooka #define FAKE_PAGE_SHIFT 12
301 1.112 pooka uvmexp.pageshift = FAKE_PAGE_SHIFT;
302 1.112 pooka uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
303 1.112 pooka uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
304 1.112 pooka #undef FAKE_PAGE_SHIFT
305 1.112 pooka #endif
306 1.112 pooka
307 1.61 pooka mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
308 1.25 ad mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
309 1.88 pooka mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
310 1.35 pooka
311 1.80 pooka mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
312 1.80 pooka cv_init(&pdaemoncv, "pdaemon");
313 1.80 pooka cv_init(&oomwait, "oomwait");
314 1.80 pooka
315 1.50 pooka kernel_map->pmap = pmap_kernel();
316 1.35 pooka callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
317 1.50 pooka kmem_map->pmap = pmap_kernel();
318 1.50 pooka callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
319 1.90 pooka
320 1.90 pooka pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
321 1.90 pooka "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
322 1.1 pooka }
323 1.1 pooka
324 1.83 pooka void
325 1.83 pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
326 1.83 pooka {
327 1.83 pooka
328 1.83 pooka vm->vm_map.pmap = pmap_kernel();
329 1.83 pooka vm->vm_refcnt = 1;
330 1.83 pooka }
331 1.1 pooka
332 1.1 pooka void
333 1.7 pooka uvm_pagewire(struct vm_page *pg)
334 1.7 pooka {
335 1.7 pooka
336 1.7 pooka /* nada */
337 1.7 pooka }
338 1.7 pooka
339 1.7 pooka void
340 1.7 pooka uvm_pageunwire(struct vm_page *pg)
341 1.7 pooka {
342 1.7 pooka
343 1.7 pooka /* nada */
344 1.7 pooka }
345 1.7 pooka
346 1.108 pooka /*
347 1.108 pooka * The uvm reclaim hook is not currently necessary because it is
348 1.108 pooka * used only by ZFS and implements exactly the same functionality
349 1.108 pooka * as the kva reclaim hook which we already run in the pagedaemon
350 1.108 pooka * (rump vm does not have a concept of uvm_map(), so we cannot
351 1.108 pooka * reclaim kva it when a mapping operation fails due to insufficient
352 1.108 pooka * available kva).
353 1.108 pooka */
354 1.107 haad void
355 1.107 haad uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook_entry)
356 1.107 haad {
357 1.107 haad
358 1.107 haad }
359 1.108 pooka __strong_alias(uvm_reclaim_hook_del,uvm_reclaim_hook_add);
360 1.107 haad
361 1.83 pooka /* where's your schmonz now? */
362 1.83 pooka #define PUNLIMIT(a) \
363 1.83 pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
364 1.83 pooka void
365 1.83 pooka uvm_init_limits(struct proc *p)
366 1.83 pooka {
367 1.83 pooka
368 1.83 pooka PUNLIMIT(RLIMIT_STACK);
369 1.83 pooka PUNLIMIT(RLIMIT_DATA);
370 1.83 pooka PUNLIMIT(RLIMIT_RSS);
371 1.83 pooka PUNLIMIT(RLIMIT_AS);
372 1.83 pooka /* nice, cascade */
373 1.83 pooka }
374 1.83 pooka #undef PUNLIMIT
375 1.83 pooka
376 1.69 pooka /*
377 1.69 pooka * This satisfies the "disgusting mmap hack" used by proplib.
378 1.69 pooka * We probably should grow some more assertables to make sure we're
379 1.103 pooka * not satisfying anything we shouldn't be satisfying.
380 1.69 pooka */
381 1.49 pooka int
382 1.49 pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
383 1.49 pooka vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
384 1.49 pooka {
385 1.69 pooka void *uaddr;
386 1.69 pooka int error;
387 1.49 pooka
388 1.69 pooka if (prot != (VM_PROT_READ | VM_PROT_WRITE))
389 1.69 pooka panic("uvm_mmap() variant unsupported");
390 1.69 pooka if (flags != (MAP_PRIVATE | MAP_ANON))
391 1.69 pooka panic("uvm_mmap() variant unsupported");
392 1.98 pooka
393 1.69 pooka /* no reason in particular, but cf. uvm_default_mapaddr() */
394 1.69 pooka if (*addr != 0)
395 1.69 pooka panic("uvm_mmap() variant unsupported");
396 1.69 pooka
397 1.106 pooka if (RUMP_LOCALPROC_P(curproc)) {
398 1.98 pooka uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
399 1.98 pooka } else {
400 1.102 pooka error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
401 1.102 pooka size, &uaddr);
402 1.98 pooka }
403 1.69 pooka if (uaddr == NULL)
404 1.69 pooka return error;
405 1.69 pooka
406 1.69 pooka *addr = (vaddr_t)uaddr;
407 1.69 pooka return 0;
408 1.49 pooka }
409 1.49 pooka
410 1.61 pooka struct pagerinfo {
411 1.61 pooka vaddr_t pgr_kva;
412 1.61 pooka int pgr_npages;
413 1.61 pooka struct vm_page **pgr_pgs;
414 1.61 pooka bool pgr_read;
415 1.61 pooka
416 1.61 pooka LIST_ENTRY(pagerinfo) pgr_entries;
417 1.61 pooka };
418 1.61 pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
419 1.61 pooka
420 1.61 pooka /*
421 1.61 pooka * Pager "map" in routine. Instead of mapping, we allocate memory
422 1.61 pooka * and copy page contents there. Not optimal or even strictly
423 1.61 pooka * correct (the caller might modify the page contents after mapping
424 1.61 pooka * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
425 1.61 pooka */
426 1.7 pooka vaddr_t
427 1.61 pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
428 1.7 pooka {
429 1.61 pooka struct pagerinfo *pgri;
430 1.61 pooka vaddr_t curkva;
431 1.61 pooka int i;
432 1.61 pooka
433 1.61 pooka /* allocate structures */
434 1.61 pooka pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
435 1.61 pooka pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
436 1.61 pooka pgri->pgr_npages = npages;
437 1.61 pooka pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
438 1.61 pooka pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
439 1.61 pooka
440 1.61 pooka /* copy contents to "mapped" memory */
441 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
442 1.61 pooka i < npages;
443 1.61 pooka i++, curkva += PAGE_SIZE) {
444 1.61 pooka /*
445 1.61 pooka * We need to copy the previous contents of the pages to
446 1.61 pooka * the window even if we are reading from the
447 1.61 pooka * device, since the device might not fill the contents of
448 1.61 pooka * the full mapped range and we will end up corrupting
449 1.61 pooka * data when we unmap the window.
450 1.61 pooka */
451 1.61 pooka memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
452 1.61 pooka pgri->pgr_pgs[i] = pgs[i];
453 1.61 pooka }
454 1.61 pooka
455 1.61 pooka mutex_enter(&pagermtx);
456 1.61 pooka LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
457 1.61 pooka mutex_exit(&pagermtx);
458 1.7 pooka
459 1.61 pooka return pgri->pgr_kva;
460 1.7 pooka }
461 1.7 pooka
462 1.61 pooka /*
463 1.61 pooka * map out the pager window. return contents from VA to page storage
464 1.61 pooka * and free structures.
465 1.61 pooka *
466 1.61 pooka * Note: does not currently support partial frees
467 1.61 pooka */
468 1.61 pooka void
469 1.61 pooka uvm_pagermapout(vaddr_t kva, int npages)
470 1.7 pooka {
471 1.61 pooka struct pagerinfo *pgri;
472 1.61 pooka vaddr_t curkva;
473 1.61 pooka int i;
474 1.7 pooka
475 1.61 pooka mutex_enter(&pagermtx);
476 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
477 1.61 pooka if (pgri->pgr_kva == kva)
478 1.61 pooka break;
479 1.61 pooka }
480 1.61 pooka KASSERT(pgri);
481 1.61 pooka if (pgri->pgr_npages != npages)
482 1.61 pooka panic("uvm_pagermapout: partial unmapping not supported");
483 1.61 pooka LIST_REMOVE(pgri, pgr_entries);
484 1.61 pooka mutex_exit(&pagermtx);
485 1.61 pooka
486 1.61 pooka if (pgri->pgr_read) {
487 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
488 1.61 pooka i < pgri->pgr_npages;
489 1.61 pooka i++, curkva += PAGE_SIZE) {
490 1.61 pooka memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
491 1.21 pooka }
492 1.21 pooka }
493 1.10 pooka
494 1.61 pooka kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
495 1.61 pooka kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
496 1.61 pooka kmem_free(pgri, sizeof(*pgri));
497 1.7 pooka }
498 1.7 pooka
499 1.61 pooka /*
500 1.61 pooka * convert va in pager window to page structure.
501 1.61 pooka * XXX: how expensive is this (global lock, list traversal)?
502 1.61 pooka */
503 1.14 pooka struct vm_page *
504 1.14 pooka uvm_pageratop(vaddr_t va)
505 1.14 pooka {
506 1.61 pooka struct pagerinfo *pgri;
507 1.61 pooka struct vm_page *pg = NULL;
508 1.61 pooka int i;
509 1.14 pooka
510 1.61 pooka mutex_enter(&pagermtx);
511 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
512 1.61 pooka if (pgri->pgr_kva <= va
513 1.61 pooka && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
514 1.21 pooka break;
515 1.61 pooka }
516 1.61 pooka if (pgri) {
517 1.61 pooka i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
518 1.61 pooka pg = pgri->pgr_pgs[i];
519 1.61 pooka }
520 1.61 pooka mutex_exit(&pagermtx);
521 1.21 pooka
522 1.61 pooka return pg;
523 1.61 pooka }
524 1.15 pooka
525 1.97 pooka /*
526 1.97 pooka * Called with the vm object locked.
527 1.97 pooka *
528 1.97 pooka * Put vnode object pages at the end of the access queue to indicate
529 1.97 pooka * they have been recently accessed and should not be immediate
530 1.97 pooka * candidates for pageout. Do not do this for lookups done by
531 1.97 pooka * the pagedaemon to mimic pmap_kentered mappings which don't track
532 1.97 pooka * access information.
533 1.97 pooka */
534 1.61 pooka struct vm_page *
535 1.61 pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
536 1.61 pooka {
537 1.92 pooka struct vm_page *pg;
538 1.97 pooka bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
539 1.61 pooka
540 1.120.2.1 yamt pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
541 1.97 pooka if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
542 1.92 pooka mutex_enter(&uvm_pageqlock);
543 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
544 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
545 1.92 pooka mutex_exit(&uvm_pageqlock);
546 1.92 pooka }
547 1.92 pooka
548 1.92 pooka return pg;
549 1.14 pooka }
550 1.14 pooka
551 1.7 pooka void
552 1.22 pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
553 1.22 pooka {
554 1.22 pooka struct vm_page *pg;
555 1.22 pooka int i;
556 1.22 pooka
557 1.94 pooka KASSERT(npgs > 0);
558 1.115 rmind KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
559 1.94 pooka
560 1.22 pooka for (i = 0; i < npgs; i++) {
561 1.22 pooka pg = pgs[i];
562 1.22 pooka if (pg == NULL)
563 1.22 pooka continue;
564 1.22 pooka
565 1.22 pooka KASSERT(pg->flags & PG_BUSY);
566 1.22 pooka if (pg->flags & PG_WANTED)
567 1.22 pooka wakeup(pg);
568 1.36 pooka if (pg->flags & PG_RELEASED)
569 1.36 pooka uvm_pagefree(pg);
570 1.36 pooka else
571 1.36 pooka pg->flags &= ~(PG_WANTED|PG_BUSY);
572 1.22 pooka }
573 1.22 pooka }
574 1.22 pooka
575 1.22 pooka void
576 1.7 pooka uvm_estimatepageable(int *active, int *inactive)
577 1.7 pooka {
578 1.7 pooka
579 1.19 pooka /* XXX: guessing game */
580 1.19 pooka *active = 1024;
581 1.19 pooka *inactive = 1024;
582 1.7 pooka }
583 1.7 pooka
584 1.39 pooka struct vm_map_kernel *
585 1.39 pooka vm_map_to_kernel(struct vm_map *map)
586 1.39 pooka {
587 1.39 pooka
588 1.39 pooka return (struct vm_map_kernel *)map;
589 1.39 pooka }
590 1.39 pooka
591 1.41 pooka bool
592 1.41 pooka vm_map_starved_p(struct vm_map *map)
593 1.41 pooka {
594 1.41 pooka
595 1.80 pooka if (map->flags & VM_MAP_WANTVA)
596 1.80 pooka return true;
597 1.80 pooka
598 1.41 pooka return false;
599 1.41 pooka }
600 1.41 pooka
601 1.41 pooka int
602 1.41 pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
603 1.41 pooka {
604 1.41 pooka
605 1.41 pooka panic("%s: unimplemented", __func__);
606 1.41 pooka }
607 1.41 pooka
608 1.41 pooka void
609 1.41 pooka uvm_unloan(void *v, int npages, int flags)
610 1.41 pooka {
611 1.41 pooka
612 1.41 pooka panic("%s: unimplemented", __func__);
613 1.41 pooka }
614 1.41 pooka
615 1.43 pooka int
616 1.43 pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
617 1.43 pooka struct vm_page **opp)
618 1.43 pooka {
619 1.43 pooka
620 1.72 pooka return EBUSY;
621 1.43 pooka }
622 1.43 pooka
623 1.116 mrg struct vm_page *
624 1.116 mrg uvm_loanbreak(struct vm_page *pg)
625 1.116 mrg {
626 1.116 mrg
627 1.116 mrg panic("%s: unimplemented", __func__);
628 1.116 mrg }
629 1.116 mrg
630 1.120.2.3 yamt int
631 1.120.2.3 yamt uvm_loanobj(struct uvm_object *uobj, struct uio *uio)
632 1.120.2.3 yamt {
633 1.120.2.3 yamt
634 1.120.2.3 yamt return ENOTSUP;
635 1.120.2.3 yamt }
636 1.120.2.3 yamt
637 1.116 mrg void
638 1.116 mrg ubc_purge(struct uvm_object *uobj)
639 1.116 mrg {
640 1.116 mrg
641 1.116 mrg }
642 1.116 mrg
643 1.73 pooka #ifdef DEBUGPRINT
644 1.56 pooka void
645 1.56 pooka uvm_object_printit(struct uvm_object *uobj, bool full,
646 1.56 pooka void (*pr)(const char *, ...))
647 1.56 pooka {
648 1.56 pooka
649 1.75 pooka pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
650 1.56 pooka }
651 1.73 pooka #endif
652 1.56 pooka
653 1.68 pooka vaddr_t
654 1.68 pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
655 1.68 pooka {
656 1.68 pooka
657 1.68 pooka return 0;
658 1.68 pooka }
659 1.68 pooka
660 1.71 pooka int
661 1.71 pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
662 1.71 pooka vm_prot_t prot, bool set_max)
663 1.71 pooka {
664 1.71 pooka
665 1.71 pooka return EOPNOTSUPP;
666 1.71 pooka }
667 1.71 pooka
668 1.9 pooka /*
669 1.12 pooka * UVM km
670 1.12 pooka */
671 1.12 pooka
672 1.12 pooka vaddr_t
673 1.12 pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
674 1.12 pooka {
675 1.82 pooka void *rv, *desired = NULL;
676 1.50 pooka int alignbit, error;
677 1.50 pooka
678 1.82 pooka #ifdef __x86_64__
679 1.82 pooka /*
680 1.82 pooka * On amd64, allocate all module memory from the lowest 2GB.
681 1.82 pooka * This is because NetBSD kernel modules are compiled
682 1.82 pooka * with -mcmodel=kernel and reserve only 4 bytes for
683 1.82 pooka * offsets. If we load code compiled with -mcmodel=kernel
684 1.82 pooka * anywhere except the lowest or highest 2GB, it will not
685 1.82 pooka * work. Since userspace does not have access to the highest
686 1.82 pooka * 2GB, use the lowest 2GB.
687 1.82 pooka *
688 1.82 pooka * Note: this assumes the rump kernel resides in
689 1.82 pooka * the lowest 2GB as well.
690 1.82 pooka *
691 1.82 pooka * Note2: yes, it's a quick hack, but since this the only
692 1.82 pooka * place where we care about the map we're allocating from,
693 1.82 pooka * just use a simple "if" instead of coming up with a fancy
694 1.82 pooka * generic solution.
695 1.82 pooka */
696 1.82 pooka extern struct vm_map *module_map;
697 1.82 pooka if (map == module_map) {
698 1.82 pooka desired = (void *)(0x80000000 - size);
699 1.82 pooka }
700 1.82 pooka #endif
701 1.82 pooka
702 1.50 pooka alignbit = 0;
703 1.50 pooka if (align) {
704 1.50 pooka alignbit = ffs(align)-1;
705 1.50 pooka }
706 1.50 pooka
707 1.82 pooka rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
708 1.81 pooka &error);
709 1.50 pooka if (rv == NULL) {
710 1.50 pooka if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
711 1.50 pooka return 0;
712 1.50 pooka else
713 1.50 pooka panic("uvm_km_alloc failed");
714 1.50 pooka }
715 1.12 pooka
716 1.50 pooka if (flags & UVM_KMF_ZERO)
717 1.12 pooka memset(rv, 0, size);
718 1.12 pooka
719 1.12 pooka return (vaddr_t)rv;
720 1.12 pooka }
721 1.12 pooka
722 1.12 pooka void
723 1.12 pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
724 1.12 pooka {
725 1.12 pooka
726 1.50 pooka rumpuser_unmap((void *)vaddr, size);
727 1.12 pooka }
728 1.12 pooka
729 1.12 pooka struct vm_map *
730 1.12 pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
731 1.12 pooka vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
732 1.12 pooka {
733 1.12 pooka
734 1.12 pooka return (struct vm_map *)417416;
735 1.12 pooka }
736 1.40 pooka
737 1.40 pooka vaddr_t
738 1.40 pooka uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
739 1.40 pooka {
740 1.40 pooka
741 1.80 pooka return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
742 1.80 pooka waitok, "kmalloc");
743 1.40 pooka }
744 1.40 pooka
745 1.40 pooka void
746 1.40 pooka uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
747 1.40 pooka {
748 1.40 pooka
749 1.84 pooka rump_hyperfree((void *)addr, PAGE_SIZE);
750 1.50 pooka }
751 1.50 pooka
752 1.50 pooka vaddr_t
753 1.50 pooka uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
754 1.50 pooka {
755 1.50 pooka
756 1.77 pooka return uvm_km_alloc_poolpage(map, waitok);
757 1.50 pooka }
758 1.50 pooka
759 1.50 pooka void
760 1.50 pooka uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
761 1.50 pooka {
762 1.50 pooka
763 1.77 pooka uvm_km_free_poolpage(map, vaddr);
764 1.40 pooka }
765 1.57 pooka
766 1.74 pooka void
767 1.74 pooka uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
768 1.74 pooka {
769 1.74 pooka
770 1.74 pooka /* we eventually maybe want some model for available memory */
771 1.74 pooka }
772 1.74 pooka
773 1.57 pooka /*
774 1.102 pooka * VM space locking routines. We don't really have to do anything,
775 1.102 pooka * since the pages are always "wired" (both local and remote processes).
776 1.57 pooka */
777 1.57 pooka int
778 1.57 pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
779 1.57 pooka {
780 1.57 pooka
781 1.57 pooka return 0;
782 1.57 pooka }
783 1.57 pooka
784 1.57 pooka void
785 1.57 pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
786 1.57 pooka {
787 1.57 pooka
788 1.57 pooka }
789 1.57 pooka
790 1.102 pooka /*
791 1.102 pooka * For the local case the buffer mappers don't need to do anything.
792 1.102 pooka * For the remote case we need to reserve space and copy data in or
793 1.102 pooka * out, depending on B_READ/B_WRITE.
794 1.102 pooka */
795 1.111 pooka int
796 1.57 pooka vmapbuf(struct buf *bp, vsize_t len)
797 1.57 pooka {
798 1.111 pooka int error = 0;
799 1.57 pooka
800 1.57 pooka bp->b_saveaddr = bp->b_data;
801 1.102 pooka
802 1.102 pooka /* remote case */
803 1.106 pooka if (!RUMP_LOCALPROC_P(curproc)) {
804 1.102 pooka bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
805 1.102 pooka if (BUF_ISWRITE(bp)) {
806 1.111 pooka error = copyin(bp->b_saveaddr, bp->b_data, len);
807 1.111 pooka if (error) {
808 1.111 pooka rump_hyperfree(bp->b_data, len);
809 1.111 pooka bp->b_data = bp->b_saveaddr;
810 1.111 pooka bp->b_saveaddr = 0;
811 1.111 pooka }
812 1.102 pooka }
813 1.102 pooka }
814 1.111 pooka
815 1.111 pooka return error;
816 1.57 pooka }
817 1.57 pooka
818 1.57 pooka void
819 1.57 pooka vunmapbuf(struct buf *bp, vsize_t len)
820 1.57 pooka {
821 1.57 pooka
822 1.102 pooka /* remote case */
823 1.106 pooka if (!RUMP_LOCALPROC_P(bp->b_proc)) {
824 1.102 pooka if (BUF_ISREAD(bp)) {
825 1.110 pooka bp->b_error = copyout_proc(bp->b_proc,
826 1.102 pooka bp->b_data, bp->b_saveaddr, len);
827 1.102 pooka }
828 1.102 pooka rump_hyperfree(bp->b_data, len);
829 1.102 pooka }
830 1.102 pooka
831 1.57 pooka bp->b_data = bp->b_saveaddr;
832 1.57 pooka bp->b_saveaddr = 0;
833 1.57 pooka }
834 1.61 pooka
835 1.61 pooka void
836 1.83 pooka uvmspace_addref(struct vmspace *vm)
837 1.83 pooka {
838 1.83 pooka
839 1.83 pooka /*
840 1.103 pooka * No dynamically allocated vmspaces exist.
841 1.83 pooka */
842 1.83 pooka }
843 1.83 pooka
844 1.83 pooka void
845 1.66 pooka uvmspace_free(struct vmspace *vm)
846 1.66 pooka {
847 1.66 pooka
848 1.66 pooka /* nothing for now */
849 1.66 pooka }
850 1.66 pooka
851 1.61 pooka /*
852 1.61 pooka * page life cycle stuff. it really doesn't exist, so just stubs.
853 1.61 pooka */
854 1.61 pooka
855 1.61 pooka void
856 1.61 pooka uvm_pageactivate(struct vm_page *pg)
857 1.61 pooka {
858 1.61 pooka
859 1.61 pooka /* nada */
860 1.61 pooka }
861 1.61 pooka
862 1.61 pooka void
863 1.61 pooka uvm_pagedeactivate(struct vm_page *pg)
864 1.61 pooka {
865 1.61 pooka
866 1.61 pooka /* nada */
867 1.61 pooka }
868 1.61 pooka
869 1.61 pooka void
870 1.61 pooka uvm_pagedequeue(struct vm_page *pg)
871 1.61 pooka {
872 1.61 pooka
873 1.61 pooka /* nada*/
874 1.61 pooka }
875 1.61 pooka
876 1.61 pooka void
877 1.61 pooka uvm_pageenqueue(struct vm_page *pg)
878 1.61 pooka {
879 1.61 pooka
880 1.61 pooka /* nada */
881 1.61 pooka }
882 1.80 pooka
883 1.88 pooka void
884 1.88 pooka uvmpdpol_anfree(struct vm_anon *an)
885 1.88 pooka {
886 1.88 pooka
887 1.88 pooka /* nada */
888 1.88 pooka }
889 1.88 pooka
890 1.80 pooka /*
891 1.99 uebayasi * Physical address accessors.
892 1.99 uebayasi */
893 1.99 uebayasi
894 1.99 uebayasi struct vm_page *
895 1.99 uebayasi uvm_phys_to_vm_page(paddr_t pa)
896 1.99 uebayasi {
897 1.99 uebayasi
898 1.99 uebayasi return NULL;
899 1.99 uebayasi }
900 1.99 uebayasi
901 1.99 uebayasi paddr_t
902 1.99 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
903 1.99 uebayasi {
904 1.99 uebayasi
905 1.99 uebayasi return 0;
906 1.99 uebayasi }
907 1.99 uebayasi
908 1.99 uebayasi /*
909 1.80 pooka * Routines related to the Page Baroness.
910 1.80 pooka */
911 1.80 pooka
912 1.80 pooka void
913 1.80 pooka uvm_wait(const char *msg)
914 1.80 pooka {
915 1.80 pooka
916 1.80 pooka if (__predict_false(curlwp == uvm.pagedaemon_lwp))
917 1.80 pooka panic("pagedaemon out of memory");
918 1.80 pooka if (__predict_false(rump_threads == 0))
919 1.80 pooka panic("pagedaemon missing (RUMP_THREADS = 0)");
920 1.80 pooka
921 1.80 pooka mutex_enter(&pdaemonmtx);
922 1.80 pooka pdaemon_waiters++;
923 1.80 pooka cv_signal(&pdaemoncv);
924 1.80 pooka cv_wait(&oomwait, &pdaemonmtx);
925 1.80 pooka mutex_exit(&pdaemonmtx);
926 1.80 pooka }
927 1.80 pooka
928 1.80 pooka void
929 1.80 pooka uvm_pageout_start(int npages)
930 1.80 pooka {
931 1.80 pooka
932 1.113 pooka mutex_enter(&pdaemonmtx);
933 1.113 pooka uvmexp.paging += npages;
934 1.113 pooka mutex_exit(&pdaemonmtx);
935 1.80 pooka }
936 1.80 pooka
937 1.80 pooka void
938 1.80 pooka uvm_pageout_done(int npages)
939 1.80 pooka {
940 1.80 pooka
941 1.113 pooka if (!npages)
942 1.113 pooka return;
943 1.113 pooka
944 1.113 pooka mutex_enter(&pdaemonmtx);
945 1.113 pooka KASSERT(uvmexp.paging >= npages);
946 1.113 pooka uvmexp.paging -= npages;
947 1.113 pooka
948 1.113 pooka if (pdaemon_waiters) {
949 1.113 pooka pdaemon_waiters = 0;
950 1.113 pooka cv_broadcast(&oomwait);
951 1.113 pooka }
952 1.113 pooka mutex_exit(&pdaemonmtx);
953 1.80 pooka }
954 1.80 pooka
955 1.95 pooka static bool
956 1.104 pooka processpage(struct vm_page *pg, bool *lockrunning)
957 1.95 pooka {
958 1.95 pooka struct uvm_object *uobj;
959 1.95 pooka
960 1.95 pooka uobj = pg->uobject;
961 1.115 rmind if (mutex_tryenter(uobj->vmobjlock)) {
962 1.95 pooka if ((pg->flags & PG_BUSY) == 0) {
963 1.95 pooka mutex_exit(&uvm_pageqlock);
964 1.95 pooka uobj->pgops->pgo_put(uobj, pg->offset,
965 1.95 pooka pg->offset + PAGE_SIZE,
966 1.95 pooka PGO_CLEANIT|PGO_FREE);
967 1.115 rmind KASSERT(!mutex_owned(uobj->vmobjlock));
968 1.95 pooka return true;
969 1.95 pooka } else {
970 1.115 rmind mutex_exit(uobj->vmobjlock);
971 1.95 pooka }
972 1.104 pooka } else if (*lockrunning == false && ncpu > 1) {
973 1.104 pooka CPU_INFO_ITERATOR cii;
974 1.104 pooka struct cpu_info *ci;
975 1.104 pooka struct lwp *l;
976 1.104 pooka
977 1.115 rmind l = mutex_owner(uobj->vmobjlock);
978 1.104 pooka for (CPU_INFO_FOREACH(cii, ci)) {
979 1.104 pooka if (ci->ci_curlwp == l) {
980 1.104 pooka *lockrunning = true;
981 1.104 pooka break;
982 1.104 pooka }
983 1.104 pooka }
984 1.95 pooka }
985 1.95 pooka
986 1.95 pooka return false;
987 1.95 pooka }
988 1.95 pooka
989 1.80 pooka /*
990 1.92 pooka * The Diabolical pageDaemon Director (DDD).
991 1.113 pooka *
992 1.113 pooka * This routine can always use better heuristics.
993 1.80 pooka */
994 1.80 pooka void
995 1.80 pooka uvm_pageout(void *arg)
996 1.80 pooka {
997 1.92 pooka struct vm_page *pg;
998 1.80 pooka struct pool *pp, *pp_first;
999 1.80 pooka uint64_t where;
1000 1.92 pooka int cleaned, skip, skipped;
1001 1.113 pooka int waspaging;
1002 1.113 pooka bool succ;
1003 1.104 pooka bool lockrunning;
1004 1.80 pooka
1005 1.80 pooka mutex_enter(&pdaemonmtx);
1006 1.80 pooka for (;;) {
1007 1.113 pooka if (!NEED_PAGEDAEMON()) {
1008 1.92 pooka kernel_map->flags &= ~VM_MAP_WANTVA;
1009 1.95 pooka kmem_map->flags &= ~VM_MAP_WANTVA;
1010 1.92 pooka }
1011 1.92 pooka
1012 1.113 pooka if (pdaemon_waiters) {
1013 1.113 pooka pdaemon_waiters = 0;
1014 1.113 pooka cv_broadcast(&oomwait);
1015 1.104 pooka }
1016 1.92 pooka
1017 1.113 pooka cv_wait(&pdaemoncv, &pdaemonmtx);
1018 1.113 pooka uvmexp.pdwoke++;
1019 1.113 pooka waspaging = uvmexp.paging;
1020 1.113 pooka
1021 1.92 pooka /* tell the world that we are hungry */
1022 1.80 pooka kernel_map->flags |= VM_MAP_WANTVA;
1023 1.92 pooka kmem_map->flags |= VM_MAP_WANTVA;
1024 1.80 pooka mutex_exit(&pdaemonmtx);
1025 1.80 pooka
1026 1.92 pooka /*
1027 1.92 pooka * step one: reclaim the page cache. this should give
1028 1.92 pooka * us the biggest earnings since whole pages are released
1029 1.92 pooka * into backing memory.
1030 1.92 pooka */
1031 1.92 pooka pool_cache_reclaim(&pagecache);
1032 1.92 pooka if (!NEED_PAGEDAEMON()) {
1033 1.92 pooka mutex_enter(&pdaemonmtx);
1034 1.92 pooka continue;
1035 1.92 pooka }
1036 1.92 pooka
1037 1.92 pooka /*
1038 1.92 pooka * Ok, so that didn't help. Next, try to hunt memory
1039 1.92 pooka * by pushing out vnode pages. The pages might contain
1040 1.92 pooka * useful cached data, but we need the memory.
1041 1.92 pooka */
1042 1.92 pooka cleaned = 0;
1043 1.92 pooka skip = 0;
1044 1.104 pooka lockrunning = false;
1045 1.92 pooka again:
1046 1.92 pooka mutex_enter(&uvm_pageqlock);
1047 1.92 pooka while (cleaned < PAGEDAEMON_OBJCHUNK) {
1048 1.92 pooka skipped = 0;
1049 1.92 pooka TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1050 1.92 pooka
1051 1.92 pooka /*
1052 1.92 pooka * skip over pages we _might_ have tried
1053 1.92 pooka * to handle earlier. they might not be
1054 1.92 pooka * exactly the same ones, but I'm not too
1055 1.92 pooka * concerned.
1056 1.92 pooka */
1057 1.92 pooka while (skipped++ < skip)
1058 1.92 pooka continue;
1059 1.92 pooka
1060 1.104 pooka if (processpage(pg, &lockrunning)) {
1061 1.95 pooka cleaned++;
1062 1.95 pooka goto again;
1063 1.92 pooka }
1064 1.92 pooka
1065 1.92 pooka skip++;
1066 1.92 pooka }
1067 1.92 pooka break;
1068 1.92 pooka }
1069 1.92 pooka mutex_exit(&uvm_pageqlock);
1070 1.92 pooka
1071 1.92 pooka /*
1072 1.104 pooka * Ok, someone is running with an object lock held.
1073 1.104 pooka * We want to yield the host CPU to make sure the
1074 1.104 pooka * thread is not parked on the host. Since sched_yield()
1075 1.104 pooka * doesn't appear to do anything on NetBSD, nanosleep
1076 1.104 pooka * for the smallest possible time and hope we're back in
1077 1.104 pooka * the game soon.
1078 1.104 pooka */
1079 1.104 pooka if (cleaned == 0 && lockrunning) {
1080 1.104 pooka uint64_t sec, nsec;
1081 1.104 pooka
1082 1.104 pooka sec = 0;
1083 1.104 pooka nsec = 1;
1084 1.104 pooka rumpuser_nanosleep(&sec, &nsec, NULL);
1085 1.104 pooka
1086 1.104 pooka lockrunning = false;
1087 1.104 pooka skip = 0;
1088 1.104 pooka
1089 1.104 pooka /* and here we go again */
1090 1.104 pooka goto again;
1091 1.104 pooka }
1092 1.104 pooka
1093 1.104 pooka /*
1094 1.92 pooka * And of course we need to reclaim the page cache
1095 1.92 pooka * again to actually release memory.
1096 1.92 pooka */
1097 1.92 pooka pool_cache_reclaim(&pagecache);
1098 1.92 pooka if (!NEED_PAGEDAEMON()) {
1099 1.92 pooka mutex_enter(&pdaemonmtx);
1100 1.92 pooka continue;
1101 1.92 pooka }
1102 1.92 pooka
1103 1.92 pooka /*
1104 1.92 pooka * Still not there? sleeves come off right about now.
1105 1.92 pooka * First: do reclaim on kernel/kmem map.
1106 1.92 pooka */
1107 1.92 pooka callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
1108 1.92 pooka NULL);
1109 1.92 pooka callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
1110 1.92 pooka NULL);
1111 1.92 pooka
1112 1.92 pooka /*
1113 1.92 pooka * And then drain the pools. Wipe them out ... all of them.
1114 1.92 pooka */
1115 1.92 pooka
1116 1.80 pooka pool_drain_start(&pp_first, &where);
1117 1.80 pooka pp = pp_first;
1118 1.80 pooka for (;;) {
1119 1.91 pooka rump_vfs_drainbufs(10 /* XXX: estimate better */);
1120 1.80 pooka succ = pool_drain_end(pp, where);
1121 1.80 pooka if (succ)
1122 1.80 pooka break;
1123 1.80 pooka pool_drain_start(&pp, &where);
1124 1.80 pooka if (pp == pp_first) {
1125 1.80 pooka succ = pool_drain_end(pp, where);
1126 1.80 pooka break;
1127 1.80 pooka }
1128 1.80 pooka }
1129 1.92 pooka
1130 1.92 pooka /*
1131 1.92 pooka * Need to use PYEC on our bag of tricks.
1132 1.92 pooka * Unfortunately, the wife just borrowed it.
1133 1.92 pooka */
1134 1.80 pooka
1135 1.113 pooka mutex_enter(&pdaemonmtx);
1136 1.113 pooka if (!succ && cleaned == 0 && pdaemon_waiters &&
1137 1.113 pooka uvmexp.paging == 0) {
1138 1.80 pooka rumpuser_dprintf("pagedaemoness: failed to reclaim "
1139 1.80 pooka "memory ... sleeping (deadlock?)\n");
1140 1.113 pooka cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1141 1.113 pooka mutex_enter(&pdaemonmtx);
1142 1.80 pooka }
1143 1.80 pooka }
1144 1.80 pooka
1145 1.80 pooka panic("you can swap out any time you like, but you can never leave");
1146 1.80 pooka }
1147 1.80 pooka
1148 1.80 pooka void
1149 1.80 pooka uvm_kick_pdaemon()
1150 1.80 pooka {
1151 1.80 pooka
1152 1.92 pooka /*
1153 1.92 pooka * Wake up the diabolical pagedaemon director if we are over
1154 1.92 pooka * 90% of the memory limit. This is a complete and utter
1155 1.92 pooka * stetson-harrison decision which you are allowed to finetune.
1156 1.92 pooka * Don't bother locking. If we have some unflushed caches,
1157 1.92 pooka * other waker-uppers will deal with the issue.
1158 1.92 pooka */
1159 1.92 pooka if (NEED_PAGEDAEMON()) {
1160 1.92 pooka cv_signal(&pdaemoncv);
1161 1.92 pooka }
1162 1.80 pooka }
1163 1.80 pooka
1164 1.80 pooka void *
1165 1.80 pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1166 1.80 pooka {
1167 1.84 pooka unsigned long newmem;
1168 1.80 pooka void *rv;
1169 1.80 pooka
1170 1.92 pooka uvm_kick_pdaemon(); /* ouch */
1171 1.92 pooka
1172 1.84 pooka /* first we must be within the limit */
1173 1.84 pooka limitagain:
1174 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1175 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, howmuch);
1176 1.91 pooka if (newmem > rump_physmemlimit) {
1177 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1178 1.103 pooka if (!waitok) {
1179 1.84 pooka return NULL;
1180 1.103 pooka }
1181 1.84 pooka uvm_wait(wmsg);
1182 1.84 pooka goto limitagain;
1183 1.84 pooka }
1184 1.84 pooka }
1185 1.84 pooka
1186 1.84 pooka /* second, we must get something from the backend */
1187 1.80 pooka again:
1188 1.80 pooka rv = rumpuser_malloc(howmuch, alignment);
1189 1.80 pooka if (__predict_false(rv == NULL && waitok)) {
1190 1.80 pooka uvm_wait(wmsg);
1191 1.80 pooka goto again;
1192 1.80 pooka }
1193 1.80 pooka
1194 1.80 pooka return rv;
1195 1.80 pooka }
1196 1.84 pooka
1197 1.84 pooka void
1198 1.84 pooka rump_hyperfree(void *what, size_t size)
1199 1.84 pooka {
1200 1.84 pooka
1201 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1202 1.84 pooka atomic_add_long(&curphysmem, -size);
1203 1.84 pooka }
1204 1.84 pooka rumpuser_free(what);
1205 1.84 pooka }
1206