vm.c revision 1.120.2.5 1 1.120.2.5 yamt /* $NetBSD: vm.c,v 1.120.2.5 2012/04/17 00:08:49 yamt Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.114 pooka * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.76 pooka * Development of this software was supported by
7 1.76 pooka * The Finnish Cultural Foundation and the Research Foundation of
8 1.76 pooka * The Helsinki University of Technology.
9 1.1 pooka *
10 1.1 pooka * Redistribution and use in source and binary forms, with or without
11 1.1 pooka * modification, are permitted provided that the following conditions
12 1.1 pooka * are met:
13 1.1 pooka * 1. Redistributions of source code must retain the above copyright
14 1.1 pooka * notice, this list of conditions and the following disclaimer.
15 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer in the
17 1.1 pooka * documentation and/or other materials provided with the distribution.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka */
31 1.1 pooka
32 1.1 pooka /*
33 1.88 pooka * Virtual memory emulation routines.
34 1.1 pooka */
35 1.1 pooka
36 1.1 pooka /*
37 1.5 pooka * XXX: we abuse pg->uanon for the virtual address of the storage
38 1.1 pooka * for each page. phys_addr would fit the job description better,
39 1.1 pooka * except that it will create unnecessary lossage on some platforms
40 1.1 pooka * due to not being a pointer type.
41 1.1 pooka */
42 1.1 pooka
43 1.48 pooka #include <sys/cdefs.h>
44 1.120.2.5 yamt __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.120.2.5 2012/04/17 00:08:49 yamt Exp $");
45 1.48 pooka
46 1.1 pooka #include <sys/param.h>
47 1.40 pooka #include <sys/atomic.h>
48 1.80 pooka #include <sys/buf.h>
49 1.80 pooka #include <sys/kernel.h>
50 1.67 pooka #include <sys/kmem.h>
51 1.120.2.5 yamt #include <sys/vmem.h>
52 1.69 pooka #include <sys/mman.h>
53 1.1 pooka #include <sys/null.h>
54 1.1 pooka #include <sys/vnode.h>
55 1.1 pooka
56 1.34 pooka #include <machine/pmap.h>
57 1.34 pooka
58 1.34 pooka #include <rump/rumpuser.h>
59 1.34 pooka
60 1.1 pooka #include <uvm/uvm.h>
61 1.56 pooka #include <uvm/uvm_ddb.h>
62 1.88 pooka #include <uvm/uvm_pdpolicy.h>
63 1.1 pooka #include <uvm/uvm_prot.h>
64 1.58 he #include <uvm/uvm_readahead.h>
65 1.1 pooka
66 1.13 pooka #include "rump_private.h"
67 1.91 pooka #include "rump_vfs_private.h"
68 1.1 pooka
69 1.25 ad kmutex_t uvm_pageqlock;
70 1.88 pooka kmutex_t uvm_swap_data_lock;
71 1.25 ad
72 1.1 pooka struct uvmexp uvmexp;
73 1.7 pooka struct uvm uvm;
74 1.1 pooka
75 1.112 pooka #ifdef __uvmexp_pagesize
76 1.120.2.5 yamt const int * const uvmexp_pagesize = &uvmexp.pagesize;
77 1.120.2.5 yamt const int * const uvmexp_pagemask = &uvmexp.pagemask;
78 1.120.2.5 yamt const int * const uvmexp_pageshift = &uvmexp.pageshift;
79 1.112 pooka #endif
80 1.112 pooka
81 1.1 pooka struct vm_map rump_vmmap;
82 1.1 pooka
83 1.120.2.5 yamt static struct vm_map kernel_map_store;
84 1.120.2.5 yamt struct vm_map *kernel_map = &kernel_map_store;
85 1.120.2.5 yamt
86 1.120.2.5 yamt vmem_t *kmem_arena;
87 1.120.2.5 yamt vmem_t *kmem_va_arena;
88 1.35 pooka
89 1.80 pooka static unsigned int pdaemon_waiters;
90 1.80 pooka static kmutex_t pdaemonmtx;
91 1.80 pooka static kcondvar_t pdaemoncv, oomwait;
92 1.80 pooka
93 1.91 pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
94 1.84 pooka static unsigned long curphysmem;
95 1.92 pooka static unsigned long dddlim; /* 90% of memory limit used */
96 1.92 pooka #define NEED_PAGEDAEMON() \
97 1.92 pooka (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
98 1.92 pooka
99 1.92 pooka /*
100 1.92 pooka * Try to free two pages worth of pages from objects.
101 1.92 pooka * If this succesfully frees a full page cache page, we'll
102 1.120 yamt * free the released page plus PAGE_SIZE/sizeof(vm_page).
103 1.92 pooka */
104 1.92 pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
105 1.92 pooka
106 1.92 pooka /*
107 1.92 pooka * Keep a list of least recently used pages. Since the only way a
108 1.92 pooka * rump kernel can "access" a page is via lookup, we put the page
109 1.92 pooka * at the back of queue every time a lookup for it is done. If the
110 1.92 pooka * page is in front of this global queue and we're short of memory,
111 1.92 pooka * it's a candidate for pageout.
112 1.92 pooka */
113 1.92 pooka static struct pglist vmpage_lruqueue;
114 1.92 pooka static unsigned vmpage_onqueue;
115 1.84 pooka
116 1.1 pooka /*
117 1.1 pooka * vm pages
118 1.1 pooka */
119 1.1 pooka
120 1.90 pooka static int
121 1.90 pooka pgctor(void *arg, void *obj, int flags)
122 1.90 pooka {
123 1.90 pooka struct vm_page *pg = obj;
124 1.90 pooka
125 1.90 pooka memset(pg, 0, sizeof(*pg));
126 1.103 pooka pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
127 1.103 pooka (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
128 1.103 pooka return pg->uanon == NULL;
129 1.90 pooka }
130 1.90 pooka
131 1.90 pooka static void
132 1.90 pooka pgdtor(void *arg, void *obj)
133 1.90 pooka {
134 1.90 pooka struct vm_page *pg = obj;
135 1.90 pooka
136 1.90 pooka rump_hyperfree(pg->uanon, PAGE_SIZE);
137 1.90 pooka }
138 1.90 pooka
139 1.90 pooka static struct pool_cache pagecache;
140 1.90 pooka
141 1.92 pooka /*
142 1.92 pooka * Called with the object locked. We don't support anons.
143 1.92 pooka */
144 1.1 pooka struct vm_page *
145 1.76 pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
146 1.76 pooka int flags, int strat, int free_list)
147 1.1 pooka {
148 1.1 pooka struct vm_page *pg;
149 1.120.2.1 yamt int error;
150 1.1 pooka
151 1.115 rmind KASSERT(uobj && mutex_owned(uobj->vmobjlock));
152 1.92 pooka KASSERT(anon == NULL);
153 1.92 pooka
154 1.103 pooka pg = pool_cache_get(&pagecache, PR_NOWAIT);
155 1.104 pooka if (__predict_false(pg == NULL)) {
156 1.103 pooka return NULL;
157 1.104 pooka }
158 1.103 pooka
159 1.1 pooka pg->offset = off;
160 1.5 pooka pg->uobject = uobj;
161 1.1 pooka
162 1.22 pooka pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
163 1.90 pooka if (flags & UVM_PGA_ZERO) {
164 1.90 pooka uvm_pagezero(pg);
165 1.90 pooka }
166 1.1 pooka
167 1.120.2.1 yamt error = radix_tree_insert_node(&uobj->uo_pages,
168 1.120.2.1 yamt pg->offset >> PAGE_SHIFT, pg);
169 1.120.2.1 yamt KASSERT(error == 0);
170 1.89 pooka
171 1.92 pooka /*
172 1.93 pooka * Don't put anons on the LRU page queue. We can't flush them
173 1.93 pooka * (there's no concept of swap in a rump kernel), so no reason
174 1.93 pooka * to bother with them.
175 1.92 pooka */
176 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
177 1.92 pooka atomic_inc_uint(&vmpage_onqueue);
178 1.92 pooka mutex_enter(&uvm_pageqlock);
179 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
180 1.92 pooka mutex_exit(&uvm_pageqlock);
181 1.92 pooka }
182 1.92 pooka
183 1.59 pooka uobj->uo_npages++;
184 1.21 pooka
185 1.1 pooka return pg;
186 1.1 pooka }
187 1.1 pooka
188 1.21 pooka /*
189 1.21 pooka * Release a page.
190 1.21 pooka *
191 1.22 pooka * Called with the vm object locked.
192 1.21 pooka */
193 1.1 pooka void
194 1.22 pooka uvm_pagefree(struct vm_page *pg)
195 1.1 pooka {
196 1.5 pooka struct uvm_object *uobj = pg->uobject;
197 1.120.2.1 yamt struct vm_page *opg;
198 1.1 pooka
199 1.92 pooka KASSERT(mutex_owned(&uvm_pageqlock));
200 1.115 rmind KASSERT(mutex_owned(uobj->vmobjlock));
201 1.92 pooka
202 1.22 pooka if (pg->flags & PG_WANTED)
203 1.22 pooka wakeup(pg);
204 1.22 pooka
205 1.59 pooka uobj->uo_npages--;
206 1.120.2.1 yamt opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
207 1.120.2.1 yamt KASSERT(pg == opg);
208 1.92 pooka
209 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
210 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
211 1.92 pooka atomic_dec_uint(&vmpage_onqueue);
212 1.92 pooka }
213 1.92 pooka
214 1.90 pooka pool_cache_put(&pagecache, pg);
215 1.1 pooka }
216 1.1 pooka
217 1.15 pooka void
218 1.61 pooka uvm_pagezero(struct vm_page *pg)
219 1.15 pooka {
220 1.15 pooka
221 1.120.2.1 yamt uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
222 1.61 pooka memset((void *)pg->uanon, 0, PAGE_SIZE);
223 1.15 pooka }
224 1.15 pooka
225 1.1 pooka /*
226 1.120.2.1 yamt * uvm_page_locked_p: return true if object associated with page is
227 1.120.2.1 yamt * locked. this is a weak check for runtime assertions only.
228 1.120.2.1 yamt */
229 1.120.2.1 yamt
230 1.120.2.1 yamt bool
231 1.120.2.1 yamt uvm_page_locked_p(struct vm_page *pg)
232 1.120.2.1 yamt {
233 1.120.2.1 yamt
234 1.120.2.1 yamt return mutex_owned(pg->uobject->vmobjlock);
235 1.120.2.1 yamt }
236 1.120.2.1 yamt
237 1.120.2.1 yamt /*
238 1.1 pooka * Misc routines
239 1.1 pooka */
240 1.1 pooka
241 1.61 pooka static kmutex_t pagermtx;
242 1.61 pooka
243 1.1 pooka void
244 1.79 pooka uvm_init(void)
245 1.1 pooka {
246 1.84 pooka char buf[64];
247 1.84 pooka int error;
248 1.84 pooka
249 1.84 pooka if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
250 1.105 pooka unsigned long tmp;
251 1.105 pooka char *ep;
252 1.105 pooka int mult;
253 1.105 pooka
254 1.109 pooka tmp = strtoul(buf, &ep, 10);
255 1.105 pooka if (strlen(ep) > 1)
256 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
257 1.105 pooka
258 1.105 pooka /* mini-dehumanize-number */
259 1.105 pooka mult = 1;
260 1.105 pooka switch (*ep) {
261 1.105 pooka case 'k':
262 1.105 pooka mult = 1024;
263 1.105 pooka break;
264 1.105 pooka case 'm':
265 1.105 pooka mult = 1024*1024;
266 1.105 pooka break;
267 1.105 pooka case 'g':
268 1.105 pooka mult = 1024*1024*1024;
269 1.105 pooka break;
270 1.105 pooka case 0:
271 1.105 pooka break;
272 1.105 pooka default:
273 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
274 1.105 pooka }
275 1.105 pooka rump_physmemlimit = tmp * mult;
276 1.105 pooka
277 1.105 pooka if (rump_physmemlimit / mult != tmp)
278 1.105 pooka panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
279 1.84 pooka /* it's not like we'd get far with, say, 1 byte, but ... */
280 1.91 pooka if (rump_physmemlimit == 0)
281 1.105 pooka panic("uvm_init: no memory");
282 1.105 pooka
283 1.84 pooka #define HUMANIZE_BYTES 9
284 1.84 pooka CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
285 1.91 pooka format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
286 1.84 pooka #undef HUMANIZE_BYTES
287 1.92 pooka dddlim = 9 * (rump_physmemlimit / 10);
288 1.84 pooka } else {
289 1.84 pooka strlcpy(buf, "unlimited (host limit)", sizeof(buf));
290 1.84 pooka }
291 1.84 pooka aprint_verbose("total memory = %s\n", buf);
292 1.1 pooka
293 1.92 pooka TAILQ_INIT(&vmpage_lruqueue);
294 1.92 pooka
295 1.84 pooka uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
296 1.21 pooka
297 1.112 pooka #ifndef __uvmexp_pagesize
298 1.112 pooka uvmexp.pagesize = PAGE_SIZE;
299 1.112 pooka uvmexp.pagemask = PAGE_MASK;
300 1.112 pooka uvmexp.pageshift = PAGE_SHIFT;
301 1.112 pooka #else
302 1.112 pooka #define FAKE_PAGE_SHIFT 12
303 1.112 pooka uvmexp.pageshift = FAKE_PAGE_SHIFT;
304 1.112 pooka uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
305 1.112 pooka uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
306 1.112 pooka #undef FAKE_PAGE_SHIFT
307 1.112 pooka #endif
308 1.112 pooka
309 1.61 pooka mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
310 1.25 ad mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
311 1.88 pooka mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
312 1.35 pooka
313 1.80 pooka mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
314 1.80 pooka cv_init(&pdaemoncv, "pdaemon");
315 1.80 pooka cv_init(&oomwait, "oomwait");
316 1.80 pooka
317 1.50 pooka kernel_map->pmap = pmap_kernel();
318 1.120.2.5 yamt
319 1.120.2.5 yamt pool_subsystem_init();
320 1.120.2.5 yamt vmem_bootstrap();
321 1.120.2.5 yamt kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
322 1.120.2.5 yamt NULL, NULL, NULL,
323 1.120.2.5 yamt 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
324 1.120.2.5 yamt
325 1.120.2.5 yamt vmem_init(kmem_arena);
326 1.120.2.5 yamt
327 1.120.2.5 yamt kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
328 1.120.2.5 yamt vmem_alloc, vmem_free, kmem_arena,
329 1.120.2.5 yamt 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
330 1.90 pooka
331 1.90 pooka pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
332 1.90 pooka "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
333 1.1 pooka }
334 1.1 pooka
335 1.83 pooka void
336 1.83 pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
337 1.83 pooka {
338 1.83 pooka
339 1.83 pooka vm->vm_map.pmap = pmap_kernel();
340 1.83 pooka vm->vm_refcnt = 1;
341 1.83 pooka }
342 1.1 pooka
343 1.1 pooka void
344 1.7 pooka uvm_pagewire(struct vm_page *pg)
345 1.7 pooka {
346 1.7 pooka
347 1.7 pooka /* nada */
348 1.7 pooka }
349 1.7 pooka
350 1.7 pooka void
351 1.7 pooka uvm_pageunwire(struct vm_page *pg)
352 1.7 pooka {
353 1.7 pooka
354 1.7 pooka /* nada */
355 1.7 pooka }
356 1.7 pooka
357 1.83 pooka /* where's your schmonz now? */
358 1.83 pooka #define PUNLIMIT(a) \
359 1.83 pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
360 1.83 pooka void
361 1.83 pooka uvm_init_limits(struct proc *p)
362 1.83 pooka {
363 1.83 pooka
364 1.83 pooka PUNLIMIT(RLIMIT_STACK);
365 1.83 pooka PUNLIMIT(RLIMIT_DATA);
366 1.83 pooka PUNLIMIT(RLIMIT_RSS);
367 1.83 pooka PUNLIMIT(RLIMIT_AS);
368 1.83 pooka /* nice, cascade */
369 1.83 pooka }
370 1.83 pooka #undef PUNLIMIT
371 1.83 pooka
372 1.69 pooka /*
373 1.69 pooka * This satisfies the "disgusting mmap hack" used by proplib.
374 1.69 pooka * We probably should grow some more assertables to make sure we're
375 1.103 pooka * not satisfying anything we shouldn't be satisfying.
376 1.69 pooka */
377 1.49 pooka int
378 1.49 pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
379 1.49 pooka vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
380 1.49 pooka {
381 1.69 pooka void *uaddr;
382 1.69 pooka int error;
383 1.49 pooka
384 1.69 pooka if (prot != (VM_PROT_READ | VM_PROT_WRITE))
385 1.69 pooka panic("uvm_mmap() variant unsupported");
386 1.69 pooka if (flags != (MAP_PRIVATE | MAP_ANON))
387 1.69 pooka panic("uvm_mmap() variant unsupported");
388 1.98 pooka
389 1.69 pooka /* no reason in particular, but cf. uvm_default_mapaddr() */
390 1.69 pooka if (*addr != 0)
391 1.69 pooka panic("uvm_mmap() variant unsupported");
392 1.69 pooka
393 1.106 pooka if (RUMP_LOCALPROC_P(curproc)) {
394 1.98 pooka uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
395 1.98 pooka } else {
396 1.102 pooka error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
397 1.102 pooka size, &uaddr);
398 1.98 pooka }
399 1.69 pooka if (uaddr == NULL)
400 1.69 pooka return error;
401 1.69 pooka
402 1.69 pooka *addr = (vaddr_t)uaddr;
403 1.69 pooka return 0;
404 1.49 pooka }
405 1.49 pooka
406 1.61 pooka struct pagerinfo {
407 1.61 pooka vaddr_t pgr_kva;
408 1.61 pooka int pgr_npages;
409 1.61 pooka struct vm_page **pgr_pgs;
410 1.61 pooka bool pgr_read;
411 1.61 pooka
412 1.61 pooka LIST_ENTRY(pagerinfo) pgr_entries;
413 1.61 pooka };
414 1.61 pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
415 1.61 pooka
416 1.61 pooka /*
417 1.61 pooka * Pager "map" in routine. Instead of mapping, we allocate memory
418 1.61 pooka * and copy page contents there. Not optimal or even strictly
419 1.61 pooka * correct (the caller might modify the page contents after mapping
420 1.61 pooka * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
421 1.61 pooka */
422 1.7 pooka vaddr_t
423 1.61 pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
424 1.7 pooka {
425 1.61 pooka struct pagerinfo *pgri;
426 1.61 pooka vaddr_t curkva;
427 1.61 pooka int i;
428 1.61 pooka
429 1.61 pooka /* allocate structures */
430 1.61 pooka pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
431 1.61 pooka pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
432 1.61 pooka pgri->pgr_npages = npages;
433 1.61 pooka pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
434 1.61 pooka pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
435 1.61 pooka
436 1.61 pooka /* copy contents to "mapped" memory */
437 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
438 1.61 pooka i < npages;
439 1.61 pooka i++, curkva += PAGE_SIZE) {
440 1.61 pooka /*
441 1.61 pooka * We need to copy the previous contents of the pages to
442 1.61 pooka * the window even if we are reading from the
443 1.61 pooka * device, since the device might not fill the contents of
444 1.61 pooka * the full mapped range and we will end up corrupting
445 1.61 pooka * data when we unmap the window.
446 1.61 pooka */
447 1.61 pooka memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
448 1.61 pooka pgri->pgr_pgs[i] = pgs[i];
449 1.61 pooka }
450 1.61 pooka
451 1.61 pooka mutex_enter(&pagermtx);
452 1.61 pooka LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
453 1.61 pooka mutex_exit(&pagermtx);
454 1.7 pooka
455 1.61 pooka return pgri->pgr_kva;
456 1.7 pooka }
457 1.7 pooka
458 1.61 pooka /*
459 1.61 pooka * map out the pager window. return contents from VA to page storage
460 1.61 pooka * and free structures.
461 1.61 pooka *
462 1.61 pooka * Note: does not currently support partial frees
463 1.61 pooka */
464 1.61 pooka void
465 1.61 pooka uvm_pagermapout(vaddr_t kva, int npages)
466 1.7 pooka {
467 1.61 pooka struct pagerinfo *pgri;
468 1.61 pooka vaddr_t curkva;
469 1.61 pooka int i;
470 1.7 pooka
471 1.61 pooka mutex_enter(&pagermtx);
472 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
473 1.61 pooka if (pgri->pgr_kva == kva)
474 1.61 pooka break;
475 1.61 pooka }
476 1.61 pooka KASSERT(pgri);
477 1.61 pooka if (pgri->pgr_npages != npages)
478 1.61 pooka panic("uvm_pagermapout: partial unmapping not supported");
479 1.61 pooka LIST_REMOVE(pgri, pgr_entries);
480 1.61 pooka mutex_exit(&pagermtx);
481 1.61 pooka
482 1.61 pooka if (pgri->pgr_read) {
483 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
484 1.61 pooka i < pgri->pgr_npages;
485 1.61 pooka i++, curkva += PAGE_SIZE) {
486 1.61 pooka memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
487 1.21 pooka }
488 1.21 pooka }
489 1.10 pooka
490 1.61 pooka kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
491 1.61 pooka kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
492 1.61 pooka kmem_free(pgri, sizeof(*pgri));
493 1.7 pooka }
494 1.7 pooka
495 1.61 pooka /*
496 1.61 pooka * convert va in pager window to page structure.
497 1.61 pooka * XXX: how expensive is this (global lock, list traversal)?
498 1.61 pooka */
499 1.14 pooka struct vm_page *
500 1.14 pooka uvm_pageratop(vaddr_t va)
501 1.14 pooka {
502 1.61 pooka struct pagerinfo *pgri;
503 1.61 pooka struct vm_page *pg = NULL;
504 1.61 pooka int i;
505 1.14 pooka
506 1.61 pooka mutex_enter(&pagermtx);
507 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
508 1.61 pooka if (pgri->pgr_kva <= va
509 1.61 pooka && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
510 1.21 pooka break;
511 1.61 pooka }
512 1.61 pooka if (pgri) {
513 1.61 pooka i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
514 1.61 pooka pg = pgri->pgr_pgs[i];
515 1.61 pooka }
516 1.61 pooka mutex_exit(&pagermtx);
517 1.21 pooka
518 1.61 pooka return pg;
519 1.61 pooka }
520 1.15 pooka
521 1.97 pooka /*
522 1.97 pooka * Called with the vm object locked.
523 1.97 pooka *
524 1.97 pooka * Put vnode object pages at the end of the access queue to indicate
525 1.97 pooka * they have been recently accessed and should not be immediate
526 1.97 pooka * candidates for pageout. Do not do this for lookups done by
527 1.97 pooka * the pagedaemon to mimic pmap_kentered mappings which don't track
528 1.97 pooka * access information.
529 1.97 pooka */
530 1.61 pooka struct vm_page *
531 1.61 pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
532 1.61 pooka {
533 1.92 pooka struct vm_page *pg;
534 1.97 pooka bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
535 1.61 pooka
536 1.120.2.1 yamt pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
537 1.97 pooka if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
538 1.92 pooka mutex_enter(&uvm_pageqlock);
539 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
540 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
541 1.92 pooka mutex_exit(&uvm_pageqlock);
542 1.92 pooka }
543 1.92 pooka
544 1.92 pooka return pg;
545 1.14 pooka }
546 1.14 pooka
547 1.7 pooka void
548 1.22 pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
549 1.22 pooka {
550 1.22 pooka struct vm_page *pg;
551 1.22 pooka int i;
552 1.22 pooka
553 1.94 pooka KASSERT(npgs > 0);
554 1.115 rmind KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
555 1.94 pooka
556 1.22 pooka for (i = 0; i < npgs; i++) {
557 1.22 pooka pg = pgs[i];
558 1.22 pooka if (pg == NULL)
559 1.22 pooka continue;
560 1.22 pooka
561 1.22 pooka KASSERT(pg->flags & PG_BUSY);
562 1.22 pooka if (pg->flags & PG_WANTED)
563 1.22 pooka wakeup(pg);
564 1.36 pooka if (pg->flags & PG_RELEASED)
565 1.36 pooka uvm_pagefree(pg);
566 1.36 pooka else
567 1.36 pooka pg->flags &= ~(PG_WANTED|PG_BUSY);
568 1.22 pooka }
569 1.22 pooka }
570 1.22 pooka
571 1.22 pooka void
572 1.7 pooka uvm_estimatepageable(int *active, int *inactive)
573 1.7 pooka {
574 1.7 pooka
575 1.19 pooka /* XXX: guessing game */
576 1.19 pooka *active = 1024;
577 1.19 pooka *inactive = 1024;
578 1.7 pooka }
579 1.7 pooka
580 1.41 pooka bool
581 1.41 pooka vm_map_starved_p(struct vm_map *map)
582 1.41 pooka {
583 1.41 pooka
584 1.80 pooka if (map->flags & VM_MAP_WANTVA)
585 1.80 pooka return true;
586 1.80 pooka
587 1.41 pooka return false;
588 1.41 pooka }
589 1.41 pooka
590 1.41 pooka int
591 1.41 pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
592 1.41 pooka {
593 1.41 pooka
594 1.41 pooka panic("%s: unimplemented", __func__);
595 1.41 pooka }
596 1.41 pooka
597 1.41 pooka void
598 1.41 pooka uvm_unloan(void *v, int npages, int flags)
599 1.41 pooka {
600 1.41 pooka
601 1.41 pooka panic("%s: unimplemented", __func__);
602 1.41 pooka }
603 1.41 pooka
604 1.43 pooka int
605 1.43 pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
606 1.43 pooka struct vm_page **opp)
607 1.43 pooka {
608 1.43 pooka
609 1.72 pooka return EBUSY;
610 1.43 pooka }
611 1.43 pooka
612 1.116 mrg struct vm_page *
613 1.116 mrg uvm_loanbreak(struct vm_page *pg)
614 1.116 mrg {
615 1.116 mrg
616 1.116 mrg panic("%s: unimplemented", __func__);
617 1.116 mrg }
618 1.116 mrg
619 1.120.2.3 yamt int
620 1.120.2.4 yamt uvm_loanobj(struct uvm_object *uobj, struct uio *uio, int advice)
621 1.120.2.3 yamt {
622 1.120.2.3 yamt
623 1.120.2.3 yamt return ENOTSUP;
624 1.120.2.3 yamt }
625 1.120.2.3 yamt
626 1.116 mrg void
627 1.116 mrg ubc_purge(struct uvm_object *uobj)
628 1.116 mrg {
629 1.116 mrg
630 1.116 mrg }
631 1.116 mrg
632 1.73 pooka #ifdef DEBUGPRINT
633 1.56 pooka void
634 1.56 pooka uvm_object_printit(struct uvm_object *uobj, bool full,
635 1.56 pooka void (*pr)(const char *, ...))
636 1.56 pooka {
637 1.56 pooka
638 1.75 pooka pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
639 1.56 pooka }
640 1.73 pooka #endif
641 1.56 pooka
642 1.68 pooka vaddr_t
643 1.68 pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
644 1.68 pooka {
645 1.68 pooka
646 1.68 pooka return 0;
647 1.68 pooka }
648 1.68 pooka
649 1.71 pooka int
650 1.71 pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
651 1.71 pooka vm_prot_t prot, bool set_max)
652 1.71 pooka {
653 1.71 pooka
654 1.71 pooka return EOPNOTSUPP;
655 1.71 pooka }
656 1.71 pooka
657 1.9 pooka /*
658 1.12 pooka * UVM km
659 1.12 pooka */
660 1.12 pooka
661 1.12 pooka vaddr_t
662 1.12 pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
663 1.12 pooka {
664 1.82 pooka void *rv, *desired = NULL;
665 1.50 pooka int alignbit, error;
666 1.50 pooka
667 1.82 pooka #ifdef __x86_64__
668 1.82 pooka /*
669 1.82 pooka * On amd64, allocate all module memory from the lowest 2GB.
670 1.82 pooka * This is because NetBSD kernel modules are compiled
671 1.82 pooka * with -mcmodel=kernel and reserve only 4 bytes for
672 1.82 pooka * offsets. If we load code compiled with -mcmodel=kernel
673 1.82 pooka * anywhere except the lowest or highest 2GB, it will not
674 1.82 pooka * work. Since userspace does not have access to the highest
675 1.82 pooka * 2GB, use the lowest 2GB.
676 1.82 pooka *
677 1.82 pooka * Note: this assumes the rump kernel resides in
678 1.82 pooka * the lowest 2GB as well.
679 1.82 pooka *
680 1.82 pooka * Note2: yes, it's a quick hack, but since this the only
681 1.82 pooka * place where we care about the map we're allocating from,
682 1.82 pooka * just use a simple "if" instead of coming up with a fancy
683 1.82 pooka * generic solution.
684 1.82 pooka */
685 1.82 pooka extern struct vm_map *module_map;
686 1.82 pooka if (map == module_map) {
687 1.82 pooka desired = (void *)(0x80000000 - size);
688 1.82 pooka }
689 1.82 pooka #endif
690 1.82 pooka
691 1.50 pooka alignbit = 0;
692 1.50 pooka if (align) {
693 1.50 pooka alignbit = ffs(align)-1;
694 1.50 pooka }
695 1.50 pooka
696 1.82 pooka rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
697 1.81 pooka &error);
698 1.50 pooka if (rv == NULL) {
699 1.50 pooka if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
700 1.50 pooka return 0;
701 1.50 pooka else
702 1.50 pooka panic("uvm_km_alloc failed");
703 1.50 pooka }
704 1.12 pooka
705 1.50 pooka if (flags & UVM_KMF_ZERO)
706 1.12 pooka memset(rv, 0, size);
707 1.12 pooka
708 1.12 pooka return (vaddr_t)rv;
709 1.12 pooka }
710 1.12 pooka
711 1.12 pooka void
712 1.12 pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
713 1.12 pooka {
714 1.12 pooka
715 1.50 pooka rumpuser_unmap((void *)vaddr, size);
716 1.12 pooka }
717 1.12 pooka
718 1.12 pooka struct vm_map *
719 1.12 pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
720 1.120.2.5 yamt vsize_t size, int pageable, bool fixed, struct vm_map *submap)
721 1.12 pooka {
722 1.12 pooka
723 1.12 pooka return (struct vm_map *)417416;
724 1.12 pooka }
725 1.40 pooka
726 1.120.2.5 yamt int
727 1.120.2.5 yamt uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
728 1.120.2.5 yamt vmem_addr_t *addr)
729 1.50 pooka {
730 1.120.2.5 yamt vaddr_t va;
731 1.120.2.5 yamt va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
732 1.120.2.5 yamt (flags & VM_SLEEP), "kmalloc");
733 1.120.2.5 yamt
734 1.120.2.5 yamt if (va) {
735 1.120.2.5 yamt *addr = va;
736 1.120.2.5 yamt return 0;
737 1.120.2.5 yamt } else {
738 1.120.2.5 yamt return ENOMEM;
739 1.120.2.5 yamt }
740 1.40 pooka }
741 1.57 pooka
742 1.74 pooka void
743 1.120.2.5 yamt uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
744 1.74 pooka {
745 1.74 pooka
746 1.120.2.5 yamt rump_hyperfree((void *)addr, size);
747 1.74 pooka }
748 1.74 pooka
749 1.57 pooka /*
750 1.102 pooka * VM space locking routines. We don't really have to do anything,
751 1.102 pooka * since the pages are always "wired" (both local and remote processes).
752 1.57 pooka */
753 1.57 pooka int
754 1.57 pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
755 1.57 pooka {
756 1.57 pooka
757 1.57 pooka return 0;
758 1.57 pooka }
759 1.57 pooka
760 1.57 pooka void
761 1.57 pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
762 1.57 pooka {
763 1.57 pooka
764 1.57 pooka }
765 1.57 pooka
766 1.102 pooka /*
767 1.102 pooka * For the local case the buffer mappers don't need to do anything.
768 1.102 pooka * For the remote case we need to reserve space and copy data in or
769 1.102 pooka * out, depending on B_READ/B_WRITE.
770 1.102 pooka */
771 1.111 pooka int
772 1.57 pooka vmapbuf(struct buf *bp, vsize_t len)
773 1.57 pooka {
774 1.111 pooka int error = 0;
775 1.57 pooka
776 1.57 pooka bp->b_saveaddr = bp->b_data;
777 1.102 pooka
778 1.102 pooka /* remote case */
779 1.106 pooka if (!RUMP_LOCALPROC_P(curproc)) {
780 1.102 pooka bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
781 1.102 pooka if (BUF_ISWRITE(bp)) {
782 1.111 pooka error = copyin(bp->b_saveaddr, bp->b_data, len);
783 1.111 pooka if (error) {
784 1.111 pooka rump_hyperfree(bp->b_data, len);
785 1.111 pooka bp->b_data = bp->b_saveaddr;
786 1.111 pooka bp->b_saveaddr = 0;
787 1.111 pooka }
788 1.102 pooka }
789 1.102 pooka }
790 1.111 pooka
791 1.111 pooka return error;
792 1.57 pooka }
793 1.57 pooka
794 1.57 pooka void
795 1.57 pooka vunmapbuf(struct buf *bp, vsize_t len)
796 1.57 pooka {
797 1.57 pooka
798 1.102 pooka /* remote case */
799 1.106 pooka if (!RUMP_LOCALPROC_P(bp->b_proc)) {
800 1.102 pooka if (BUF_ISREAD(bp)) {
801 1.110 pooka bp->b_error = copyout_proc(bp->b_proc,
802 1.102 pooka bp->b_data, bp->b_saveaddr, len);
803 1.102 pooka }
804 1.102 pooka rump_hyperfree(bp->b_data, len);
805 1.102 pooka }
806 1.102 pooka
807 1.57 pooka bp->b_data = bp->b_saveaddr;
808 1.57 pooka bp->b_saveaddr = 0;
809 1.57 pooka }
810 1.61 pooka
811 1.61 pooka void
812 1.83 pooka uvmspace_addref(struct vmspace *vm)
813 1.83 pooka {
814 1.83 pooka
815 1.83 pooka /*
816 1.103 pooka * No dynamically allocated vmspaces exist.
817 1.83 pooka */
818 1.83 pooka }
819 1.83 pooka
820 1.83 pooka void
821 1.66 pooka uvmspace_free(struct vmspace *vm)
822 1.66 pooka {
823 1.66 pooka
824 1.66 pooka /* nothing for now */
825 1.66 pooka }
826 1.66 pooka
827 1.61 pooka /*
828 1.61 pooka * page life cycle stuff. it really doesn't exist, so just stubs.
829 1.61 pooka */
830 1.61 pooka
831 1.61 pooka void
832 1.61 pooka uvm_pageactivate(struct vm_page *pg)
833 1.61 pooka {
834 1.61 pooka
835 1.61 pooka /* nada */
836 1.61 pooka }
837 1.61 pooka
838 1.61 pooka void
839 1.61 pooka uvm_pagedeactivate(struct vm_page *pg)
840 1.61 pooka {
841 1.61 pooka
842 1.61 pooka /* nada */
843 1.61 pooka }
844 1.61 pooka
845 1.61 pooka void
846 1.61 pooka uvm_pagedequeue(struct vm_page *pg)
847 1.61 pooka {
848 1.61 pooka
849 1.61 pooka /* nada*/
850 1.61 pooka }
851 1.61 pooka
852 1.61 pooka void
853 1.61 pooka uvm_pageenqueue(struct vm_page *pg)
854 1.61 pooka {
855 1.61 pooka
856 1.61 pooka /* nada */
857 1.61 pooka }
858 1.80 pooka
859 1.88 pooka void
860 1.88 pooka uvmpdpol_anfree(struct vm_anon *an)
861 1.88 pooka {
862 1.88 pooka
863 1.88 pooka /* nada */
864 1.88 pooka }
865 1.88 pooka
866 1.80 pooka /*
867 1.99 uebayasi * Physical address accessors.
868 1.99 uebayasi */
869 1.99 uebayasi
870 1.99 uebayasi struct vm_page *
871 1.99 uebayasi uvm_phys_to_vm_page(paddr_t pa)
872 1.99 uebayasi {
873 1.99 uebayasi
874 1.99 uebayasi return NULL;
875 1.99 uebayasi }
876 1.99 uebayasi
877 1.99 uebayasi paddr_t
878 1.99 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
879 1.99 uebayasi {
880 1.99 uebayasi
881 1.99 uebayasi return 0;
882 1.99 uebayasi }
883 1.99 uebayasi
884 1.99 uebayasi /*
885 1.80 pooka * Routines related to the Page Baroness.
886 1.80 pooka */
887 1.80 pooka
888 1.80 pooka void
889 1.80 pooka uvm_wait(const char *msg)
890 1.80 pooka {
891 1.80 pooka
892 1.80 pooka if (__predict_false(curlwp == uvm.pagedaemon_lwp))
893 1.80 pooka panic("pagedaemon out of memory");
894 1.80 pooka if (__predict_false(rump_threads == 0))
895 1.80 pooka panic("pagedaemon missing (RUMP_THREADS = 0)");
896 1.80 pooka
897 1.80 pooka mutex_enter(&pdaemonmtx);
898 1.80 pooka pdaemon_waiters++;
899 1.80 pooka cv_signal(&pdaemoncv);
900 1.80 pooka cv_wait(&oomwait, &pdaemonmtx);
901 1.80 pooka mutex_exit(&pdaemonmtx);
902 1.80 pooka }
903 1.80 pooka
904 1.80 pooka void
905 1.80 pooka uvm_pageout_start(int npages)
906 1.80 pooka {
907 1.80 pooka
908 1.113 pooka mutex_enter(&pdaemonmtx);
909 1.113 pooka uvmexp.paging += npages;
910 1.113 pooka mutex_exit(&pdaemonmtx);
911 1.80 pooka }
912 1.80 pooka
913 1.80 pooka void
914 1.80 pooka uvm_pageout_done(int npages)
915 1.80 pooka {
916 1.80 pooka
917 1.113 pooka if (!npages)
918 1.113 pooka return;
919 1.113 pooka
920 1.113 pooka mutex_enter(&pdaemonmtx);
921 1.113 pooka KASSERT(uvmexp.paging >= npages);
922 1.113 pooka uvmexp.paging -= npages;
923 1.113 pooka
924 1.113 pooka if (pdaemon_waiters) {
925 1.113 pooka pdaemon_waiters = 0;
926 1.113 pooka cv_broadcast(&oomwait);
927 1.113 pooka }
928 1.113 pooka mutex_exit(&pdaemonmtx);
929 1.80 pooka }
930 1.80 pooka
931 1.95 pooka static bool
932 1.104 pooka processpage(struct vm_page *pg, bool *lockrunning)
933 1.95 pooka {
934 1.95 pooka struct uvm_object *uobj;
935 1.95 pooka
936 1.95 pooka uobj = pg->uobject;
937 1.115 rmind if (mutex_tryenter(uobj->vmobjlock)) {
938 1.95 pooka if ((pg->flags & PG_BUSY) == 0) {
939 1.95 pooka mutex_exit(&uvm_pageqlock);
940 1.95 pooka uobj->pgops->pgo_put(uobj, pg->offset,
941 1.95 pooka pg->offset + PAGE_SIZE,
942 1.95 pooka PGO_CLEANIT|PGO_FREE);
943 1.115 rmind KASSERT(!mutex_owned(uobj->vmobjlock));
944 1.95 pooka return true;
945 1.95 pooka } else {
946 1.115 rmind mutex_exit(uobj->vmobjlock);
947 1.95 pooka }
948 1.104 pooka } else if (*lockrunning == false && ncpu > 1) {
949 1.104 pooka CPU_INFO_ITERATOR cii;
950 1.104 pooka struct cpu_info *ci;
951 1.104 pooka struct lwp *l;
952 1.104 pooka
953 1.115 rmind l = mutex_owner(uobj->vmobjlock);
954 1.104 pooka for (CPU_INFO_FOREACH(cii, ci)) {
955 1.104 pooka if (ci->ci_curlwp == l) {
956 1.104 pooka *lockrunning = true;
957 1.104 pooka break;
958 1.104 pooka }
959 1.104 pooka }
960 1.95 pooka }
961 1.95 pooka
962 1.95 pooka return false;
963 1.95 pooka }
964 1.95 pooka
965 1.80 pooka /*
966 1.92 pooka * The Diabolical pageDaemon Director (DDD).
967 1.113 pooka *
968 1.113 pooka * This routine can always use better heuristics.
969 1.80 pooka */
970 1.80 pooka void
971 1.80 pooka uvm_pageout(void *arg)
972 1.80 pooka {
973 1.92 pooka struct vm_page *pg;
974 1.80 pooka struct pool *pp, *pp_first;
975 1.80 pooka uint64_t where;
976 1.92 pooka int cleaned, skip, skipped;
977 1.113 pooka int waspaging;
978 1.113 pooka bool succ;
979 1.104 pooka bool lockrunning;
980 1.80 pooka
981 1.80 pooka mutex_enter(&pdaemonmtx);
982 1.80 pooka for (;;) {
983 1.113 pooka if (!NEED_PAGEDAEMON()) {
984 1.92 pooka kernel_map->flags &= ~VM_MAP_WANTVA;
985 1.92 pooka }
986 1.92 pooka
987 1.113 pooka if (pdaemon_waiters) {
988 1.113 pooka pdaemon_waiters = 0;
989 1.113 pooka cv_broadcast(&oomwait);
990 1.104 pooka }
991 1.92 pooka
992 1.113 pooka cv_wait(&pdaemoncv, &pdaemonmtx);
993 1.113 pooka uvmexp.pdwoke++;
994 1.113 pooka waspaging = uvmexp.paging;
995 1.113 pooka
996 1.92 pooka /* tell the world that we are hungry */
997 1.80 pooka kernel_map->flags |= VM_MAP_WANTVA;
998 1.80 pooka mutex_exit(&pdaemonmtx);
999 1.80 pooka
1000 1.92 pooka /*
1001 1.92 pooka * step one: reclaim the page cache. this should give
1002 1.92 pooka * us the biggest earnings since whole pages are released
1003 1.92 pooka * into backing memory.
1004 1.92 pooka */
1005 1.92 pooka pool_cache_reclaim(&pagecache);
1006 1.92 pooka if (!NEED_PAGEDAEMON()) {
1007 1.92 pooka mutex_enter(&pdaemonmtx);
1008 1.92 pooka continue;
1009 1.92 pooka }
1010 1.92 pooka
1011 1.92 pooka /*
1012 1.92 pooka * Ok, so that didn't help. Next, try to hunt memory
1013 1.92 pooka * by pushing out vnode pages. The pages might contain
1014 1.92 pooka * useful cached data, but we need the memory.
1015 1.92 pooka */
1016 1.92 pooka cleaned = 0;
1017 1.92 pooka skip = 0;
1018 1.104 pooka lockrunning = false;
1019 1.92 pooka again:
1020 1.92 pooka mutex_enter(&uvm_pageqlock);
1021 1.92 pooka while (cleaned < PAGEDAEMON_OBJCHUNK) {
1022 1.92 pooka skipped = 0;
1023 1.92 pooka TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1024 1.92 pooka
1025 1.92 pooka /*
1026 1.92 pooka * skip over pages we _might_ have tried
1027 1.92 pooka * to handle earlier. they might not be
1028 1.92 pooka * exactly the same ones, but I'm not too
1029 1.92 pooka * concerned.
1030 1.92 pooka */
1031 1.92 pooka while (skipped++ < skip)
1032 1.92 pooka continue;
1033 1.92 pooka
1034 1.104 pooka if (processpage(pg, &lockrunning)) {
1035 1.95 pooka cleaned++;
1036 1.95 pooka goto again;
1037 1.92 pooka }
1038 1.92 pooka
1039 1.92 pooka skip++;
1040 1.92 pooka }
1041 1.92 pooka break;
1042 1.92 pooka }
1043 1.92 pooka mutex_exit(&uvm_pageqlock);
1044 1.92 pooka
1045 1.92 pooka /*
1046 1.104 pooka * Ok, someone is running with an object lock held.
1047 1.104 pooka * We want to yield the host CPU to make sure the
1048 1.104 pooka * thread is not parked on the host. Since sched_yield()
1049 1.104 pooka * doesn't appear to do anything on NetBSD, nanosleep
1050 1.104 pooka * for the smallest possible time and hope we're back in
1051 1.104 pooka * the game soon.
1052 1.104 pooka */
1053 1.104 pooka if (cleaned == 0 && lockrunning) {
1054 1.104 pooka uint64_t sec, nsec;
1055 1.104 pooka
1056 1.104 pooka sec = 0;
1057 1.104 pooka nsec = 1;
1058 1.104 pooka rumpuser_nanosleep(&sec, &nsec, NULL);
1059 1.104 pooka
1060 1.104 pooka lockrunning = false;
1061 1.104 pooka skip = 0;
1062 1.104 pooka
1063 1.104 pooka /* and here we go again */
1064 1.104 pooka goto again;
1065 1.104 pooka }
1066 1.104 pooka
1067 1.104 pooka /*
1068 1.92 pooka * And of course we need to reclaim the page cache
1069 1.92 pooka * again to actually release memory.
1070 1.92 pooka */
1071 1.92 pooka pool_cache_reclaim(&pagecache);
1072 1.92 pooka if (!NEED_PAGEDAEMON()) {
1073 1.92 pooka mutex_enter(&pdaemonmtx);
1074 1.92 pooka continue;
1075 1.92 pooka }
1076 1.92 pooka
1077 1.92 pooka /*
1078 1.92 pooka * And then drain the pools. Wipe them out ... all of them.
1079 1.92 pooka */
1080 1.92 pooka
1081 1.80 pooka pool_drain_start(&pp_first, &where);
1082 1.80 pooka pp = pp_first;
1083 1.80 pooka for (;;) {
1084 1.91 pooka rump_vfs_drainbufs(10 /* XXX: estimate better */);
1085 1.80 pooka succ = pool_drain_end(pp, where);
1086 1.80 pooka if (succ)
1087 1.80 pooka break;
1088 1.80 pooka pool_drain_start(&pp, &where);
1089 1.80 pooka if (pp == pp_first) {
1090 1.80 pooka succ = pool_drain_end(pp, where);
1091 1.80 pooka break;
1092 1.80 pooka }
1093 1.80 pooka }
1094 1.92 pooka
1095 1.92 pooka /*
1096 1.92 pooka * Need to use PYEC on our bag of tricks.
1097 1.92 pooka * Unfortunately, the wife just borrowed it.
1098 1.92 pooka */
1099 1.80 pooka
1100 1.113 pooka mutex_enter(&pdaemonmtx);
1101 1.113 pooka if (!succ && cleaned == 0 && pdaemon_waiters &&
1102 1.113 pooka uvmexp.paging == 0) {
1103 1.80 pooka rumpuser_dprintf("pagedaemoness: failed to reclaim "
1104 1.80 pooka "memory ... sleeping (deadlock?)\n");
1105 1.113 pooka cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1106 1.80 pooka }
1107 1.80 pooka }
1108 1.80 pooka
1109 1.80 pooka panic("you can swap out any time you like, but you can never leave");
1110 1.80 pooka }
1111 1.80 pooka
1112 1.80 pooka void
1113 1.80 pooka uvm_kick_pdaemon()
1114 1.80 pooka {
1115 1.80 pooka
1116 1.92 pooka /*
1117 1.92 pooka * Wake up the diabolical pagedaemon director if we are over
1118 1.92 pooka * 90% of the memory limit. This is a complete and utter
1119 1.92 pooka * stetson-harrison decision which you are allowed to finetune.
1120 1.92 pooka * Don't bother locking. If we have some unflushed caches,
1121 1.92 pooka * other waker-uppers will deal with the issue.
1122 1.92 pooka */
1123 1.92 pooka if (NEED_PAGEDAEMON()) {
1124 1.92 pooka cv_signal(&pdaemoncv);
1125 1.92 pooka }
1126 1.80 pooka }
1127 1.80 pooka
1128 1.80 pooka void *
1129 1.80 pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1130 1.80 pooka {
1131 1.84 pooka unsigned long newmem;
1132 1.80 pooka void *rv;
1133 1.80 pooka
1134 1.92 pooka uvm_kick_pdaemon(); /* ouch */
1135 1.92 pooka
1136 1.84 pooka /* first we must be within the limit */
1137 1.84 pooka limitagain:
1138 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1139 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, howmuch);
1140 1.91 pooka if (newmem > rump_physmemlimit) {
1141 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1142 1.103 pooka if (!waitok) {
1143 1.84 pooka return NULL;
1144 1.103 pooka }
1145 1.84 pooka uvm_wait(wmsg);
1146 1.84 pooka goto limitagain;
1147 1.84 pooka }
1148 1.84 pooka }
1149 1.84 pooka
1150 1.84 pooka /* second, we must get something from the backend */
1151 1.80 pooka again:
1152 1.80 pooka rv = rumpuser_malloc(howmuch, alignment);
1153 1.80 pooka if (__predict_false(rv == NULL && waitok)) {
1154 1.80 pooka uvm_wait(wmsg);
1155 1.80 pooka goto again;
1156 1.80 pooka }
1157 1.80 pooka
1158 1.80 pooka return rv;
1159 1.80 pooka }
1160 1.84 pooka
1161 1.84 pooka void
1162 1.84 pooka rump_hyperfree(void *what, size_t size)
1163 1.84 pooka {
1164 1.84 pooka
1165 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1166 1.84 pooka atomic_add_long(&curphysmem, -size);
1167 1.84 pooka }
1168 1.84 pooka rumpuser_free(what);
1169 1.84 pooka }
1170