vm.c revision 1.128 1 1.128 pooka /* $NetBSD: vm.c,v 1.128 2012/07/20 09:11:33 pooka Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.114 pooka * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.76 pooka * Development of this software was supported by
7 1.76 pooka * The Finnish Cultural Foundation and the Research Foundation of
8 1.76 pooka * The Helsinki University of Technology.
9 1.1 pooka *
10 1.1 pooka * Redistribution and use in source and binary forms, with or without
11 1.1 pooka * modification, are permitted provided that the following conditions
12 1.1 pooka * are met:
13 1.1 pooka * 1. Redistributions of source code must retain the above copyright
14 1.1 pooka * notice, this list of conditions and the following disclaimer.
15 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer in the
17 1.1 pooka * documentation and/or other materials provided with the distribution.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka */
31 1.1 pooka
32 1.1 pooka /*
33 1.88 pooka * Virtual memory emulation routines.
34 1.1 pooka */
35 1.1 pooka
36 1.1 pooka /*
37 1.5 pooka * XXX: we abuse pg->uanon for the virtual address of the storage
38 1.1 pooka * for each page. phys_addr would fit the job description better,
39 1.1 pooka * except that it will create unnecessary lossage on some platforms
40 1.1 pooka * due to not being a pointer type.
41 1.1 pooka */
42 1.1 pooka
43 1.48 pooka #include <sys/cdefs.h>
44 1.128 pooka __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.128 2012/07/20 09:11:33 pooka Exp $");
45 1.48 pooka
46 1.1 pooka #include <sys/param.h>
47 1.40 pooka #include <sys/atomic.h>
48 1.80 pooka #include <sys/buf.h>
49 1.80 pooka #include <sys/kernel.h>
50 1.67 pooka #include <sys/kmem.h>
51 1.121 para #include <sys/vmem.h>
52 1.69 pooka #include <sys/mman.h>
53 1.1 pooka #include <sys/null.h>
54 1.1 pooka #include <sys/vnode.h>
55 1.1 pooka
56 1.34 pooka #include <machine/pmap.h>
57 1.34 pooka
58 1.34 pooka #include <rump/rumpuser.h>
59 1.34 pooka
60 1.1 pooka #include <uvm/uvm.h>
61 1.56 pooka #include <uvm/uvm_ddb.h>
62 1.88 pooka #include <uvm/uvm_pdpolicy.h>
63 1.1 pooka #include <uvm/uvm_prot.h>
64 1.58 he #include <uvm/uvm_readahead.h>
65 1.1 pooka
66 1.13 pooka #include "rump_private.h"
67 1.91 pooka #include "rump_vfs_private.h"
68 1.1 pooka
69 1.25 ad kmutex_t uvm_pageqlock;
70 1.88 pooka kmutex_t uvm_swap_data_lock;
71 1.25 ad
72 1.1 pooka struct uvmexp uvmexp;
73 1.7 pooka struct uvm uvm;
74 1.1 pooka
75 1.112 pooka #ifdef __uvmexp_pagesize
76 1.123 martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
77 1.123 martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
78 1.123 martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
79 1.112 pooka #endif
80 1.112 pooka
81 1.1 pooka struct vm_map rump_vmmap;
82 1.1 pooka
83 1.121 para static struct vm_map kernel_map_store;
84 1.121 para struct vm_map *kernel_map = &kernel_map_store;
85 1.121 para
86 1.121 para vmem_t *kmem_arena;
87 1.121 para vmem_t *kmem_va_arena;
88 1.35 pooka
89 1.80 pooka static unsigned int pdaemon_waiters;
90 1.80 pooka static kmutex_t pdaemonmtx;
91 1.80 pooka static kcondvar_t pdaemoncv, oomwait;
92 1.80 pooka
93 1.91 pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
94 1.84 pooka static unsigned long curphysmem;
95 1.92 pooka static unsigned long dddlim; /* 90% of memory limit used */
96 1.92 pooka #define NEED_PAGEDAEMON() \
97 1.92 pooka (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
98 1.92 pooka
99 1.92 pooka /*
100 1.92 pooka * Try to free two pages worth of pages from objects.
101 1.92 pooka * If this succesfully frees a full page cache page, we'll
102 1.120 yamt * free the released page plus PAGE_SIZE/sizeof(vm_page).
103 1.92 pooka */
104 1.92 pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
105 1.92 pooka
106 1.92 pooka /*
107 1.92 pooka * Keep a list of least recently used pages. Since the only way a
108 1.92 pooka * rump kernel can "access" a page is via lookup, we put the page
109 1.92 pooka * at the back of queue every time a lookup for it is done. If the
110 1.92 pooka * page is in front of this global queue and we're short of memory,
111 1.92 pooka * it's a candidate for pageout.
112 1.92 pooka */
113 1.92 pooka static struct pglist vmpage_lruqueue;
114 1.92 pooka static unsigned vmpage_onqueue;
115 1.84 pooka
116 1.89 pooka static int
117 1.96 rmind pg_compare_key(void *ctx, const void *n, const void *key)
118 1.89 pooka {
119 1.89 pooka voff_t a = ((const struct vm_page *)n)->offset;
120 1.89 pooka voff_t b = *(const voff_t *)key;
121 1.89 pooka
122 1.89 pooka if (a < b)
123 1.96 rmind return -1;
124 1.96 rmind else if (a > b)
125 1.89 pooka return 1;
126 1.89 pooka else
127 1.89 pooka return 0;
128 1.89 pooka }
129 1.89 pooka
130 1.89 pooka static int
131 1.96 rmind pg_compare_nodes(void *ctx, const void *n1, const void *n2)
132 1.89 pooka {
133 1.89 pooka
134 1.96 rmind return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
135 1.89 pooka }
136 1.89 pooka
137 1.96 rmind const rb_tree_ops_t uvm_page_tree_ops = {
138 1.89 pooka .rbto_compare_nodes = pg_compare_nodes,
139 1.89 pooka .rbto_compare_key = pg_compare_key,
140 1.96 rmind .rbto_node_offset = offsetof(struct vm_page, rb_node),
141 1.96 rmind .rbto_context = NULL
142 1.89 pooka };
143 1.89 pooka
144 1.1 pooka /*
145 1.1 pooka * vm pages
146 1.1 pooka */
147 1.1 pooka
148 1.90 pooka static int
149 1.90 pooka pgctor(void *arg, void *obj, int flags)
150 1.90 pooka {
151 1.90 pooka struct vm_page *pg = obj;
152 1.90 pooka
153 1.90 pooka memset(pg, 0, sizeof(*pg));
154 1.103 pooka pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
155 1.103 pooka (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
156 1.103 pooka return pg->uanon == NULL;
157 1.90 pooka }
158 1.90 pooka
159 1.90 pooka static void
160 1.90 pooka pgdtor(void *arg, void *obj)
161 1.90 pooka {
162 1.90 pooka struct vm_page *pg = obj;
163 1.90 pooka
164 1.90 pooka rump_hyperfree(pg->uanon, PAGE_SIZE);
165 1.90 pooka }
166 1.90 pooka
167 1.90 pooka static struct pool_cache pagecache;
168 1.90 pooka
169 1.92 pooka /*
170 1.92 pooka * Called with the object locked. We don't support anons.
171 1.92 pooka */
172 1.1 pooka struct vm_page *
173 1.76 pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
174 1.76 pooka int flags, int strat, int free_list)
175 1.1 pooka {
176 1.1 pooka struct vm_page *pg;
177 1.1 pooka
178 1.115 rmind KASSERT(uobj && mutex_owned(uobj->vmobjlock));
179 1.92 pooka KASSERT(anon == NULL);
180 1.92 pooka
181 1.103 pooka pg = pool_cache_get(&pagecache, PR_NOWAIT);
182 1.104 pooka if (__predict_false(pg == NULL)) {
183 1.103 pooka return NULL;
184 1.104 pooka }
185 1.103 pooka
186 1.1 pooka pg->offset = off;
187 1.5 pooka pg->uobject = uobj;
188 1.1 pooka
189 1.22 pooka pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
190 1.90 pooka if (flags & UVM_PGA_ZERO) {
191 1.90 pooka uvm_pagezero(pg);
192 1.90 pooka }
193 1.1 pooka
194 1.31 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
195 1.96 rmind (void)rb_tree_insert_node(&uobj->rb_tree, pg);
196 1.89 pooka
197 1.92 pooka /*
198 1.93 pooka * Don't put anons on the LRU page queue. We can't flush them
199 1.93 pooka * (there's no concept of swap in a rump kernel), so no reason
200 1.93 pooka * to bother with them.
201 1.92 pooka */
202 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
203 1.92 pooka atomic_inc_uint(&vmpage_onqueue);
204 1.92 pooka mutex_enter(&uvm_pageqlock);
205 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
206 1.92 pooka mutex_exit(&uvm_pageqlock);
207 1.92 pooka }
208 1.92 pooka
209 1.59 pooka uobj->uo_npages++;
210 1.21 pooka
211 1.1 pooka return pg;
212 1.1 pooka }
213 1.1 pooka
214 1.21 pooka /*
215 1.21 pooka * Release a page.
216 1.21 pooka *
217 1.22 pooka * Called with the vm object locked.
218 1.21 pooka */
219 1.1 pooka void
220 1.22 pooka uvm_pagefree(struct vm_page *pg)
221 1.1 pooka {
222 1.5 pooka struct uvm_object *uobj = pg->uobject;
223 1.1 pooka
224 1.92 pooka KASSERT(mutex_owned(&uvm_pageqlock));
225 1.115 rmind KASSERT(mutex_owned(uobj->vmobjlock));
226 1.92 pooka
227 1.22 pooka if (pg->flags & PG_WANTED)
228 1.22 pooka wakeup(pg);
229 1.22 pooka
230 1.92 pooka TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
231 1.92 pooka
232 1.59 pooka uobj->uo_npages--;
233 1.96 rmind rb_tree_remove_node(&uobj->rb_tree, pg);
234 1.92 pooka
235 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
236 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
237 1.92 pooka atomic_dec_uint(&vmpage_onqueue);
238 1.92 pooka }
239 1.92 pooka
240 1.90 pooka pool_cache_put(&pagecache, pg);
241 1.1 pooka }
242 1.1 pooka
243 1.15 pooka void
244 1.61 pooka uvm_pagezero(struct vm_page *pg)
245 1.15 pooka {
246 1.15 pooka
247 1.61 pooka pg->flags &= ~PG_CLEAN;
248 1.61 pooka memset((void *)pg->uanon, 0, PAGE_SIZE);
249 1.15 pooka }
250 1.15 pooka
251 1.1 pooka /*
252 1.1 pooka * Misc routines
253 1.1 pooka */
254 1.1 pooka
255 1.61 pooka static kmutex_t pagermtx;
256 1.61 pooka
257 1.1 pooka void
258 1.79 pooka uvm_init(void)
259 1.1 pooka {
260 1.84 pooka char buf[64];
261 1.84 pooka int error;
262 1.84 pooka
263 1.84 pooka if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
264 1.105 pooka unsigned long tmp;
265 1.105 pooka char *ep;
266 1.105 pooka int mult;
267 1.105 pooka
268 1.109 pooka tmp = strtoul(buf, &ep, 10);
269 1.105 pooka if (strlen(ep) > 1)
270 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
271 1.105 pooka
272 1.105 pooka /* mini-dehumanize-number */
273 1.105 pooka mult = 1;
274 1.105 pooka switch (*ep) {
275 1.105 pooka case 'k':
276 1.105 pooka mult = 1024;
277 1.105 pooka break;
278 1.105 pooka case 'm':
279 1.105 pooka mult = 1024*1024;
280 1.105 pooka break;
281 1.105 pooka case 'g':
282 1.105 pooka mult = 1024*1024*1024;
283 1.105 pooka break;
284 1.105 pooka case 0:
285 1.105 pooka break;
286 1.105 pooka default:
287 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
288 1.105 pooka }
289 1.105 pooka rump_physmemlimit = tmp * mult;
290 1.105 pooka
291 1.105 pooka if (rump_physmemlimit / mult != tmp)
292 1.105 pooka panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
293 1.84 pooka /* it's not like we'd get far with, say, 1 byte, but ... */
294 1.91 pooka if (rump_physmemlimit == 0)
295 1.105 pooka panic("uvm_init: no memory");
296 1.105 pooka
297 1.84 pooka #define HUMANIZE_BYTES 9
298 1.84 pooka CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
299 1.91 pooka format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
300 1.84 pooka #undef HUMANIZE_BYTES
301 1.92 pooka dddlim = 9 * (rump_physmemlimit / 10);
302 1.84 pooka } else {
303 1.84 pooka strlcpy(buf, "unlimited (host limit)", sizeof(buf));
304 1.84 pooka }
305 1.84 pooka aprint_verbose("total memory = %s\n", buf);
306 1.1 pooka
307 1.92 pooka TAILQ_INIT(&vmpage_lruqueue);
308 1.92 pooka
309 1.84 pooka uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
310 1.21 pooka
311 1.112 pooka #ifndef __uvmexp_pagesize
312 1.112 pooka uvmexp.pagesize = PAGE_SIZE;
313 1.112 pooka uvmexp.pagemask = PAGE_MASK;
314 1.112 pooka uvmexp.pageshift = PAGE_SHIFT;
315 1.112 pooka #else
316 1.112 pooka #define FAKE_PAGE_SHIFT 12
317 1.112 pooka uvmexp.pageshift = FAKE_PAGE_SHIFT;
318 1.112 pooka uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
319 1.112 pooka uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
320 1.112 pooka #undef FAKE_PAGE_SHIFT
321 1.112 pooka #endif
322 1.112 pooka
323 1.61 pooka mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
324 1.25 ad mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
325 1.88 pooka mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
326 1.35 pooka
327 1.80 pooka mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
328 1.80 pooka cv_init(&pdaemoncv, "pdaemon");
329 1.80 pooka cv_init(&oomwait, "oomwait");
330 1.80 pooka
331 1.50 pooka kernel_map->pmap = pmap_kernel();
332 1.121 para
333 1.122 njoly pool_subsystem_init();
334 1.128 pooka
335 1.128 pooka #ifndef RUMP_USE_UNREAL_ALLOCATORS
336 1.121 para vmem_bootstrap();
337 1.121 para kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
338 1.121 para NULL, NULL, NULL,
339 1.121 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
340 1.121 para
341 1.121 para vmem_init(kmem_arena);
342 1.121 para
343 1.121 para kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
344 1.121 para vmem_alloc, vmem_free, kmem_arena,
345 1.124 para 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
346 1.128 pooka #endif /* !RUMP_USE_UNREAL_ALLOCATORS */
347 1.90 pooka
348 1.90 pooka pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
349 1.90 pooka "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
350 1.1 pooka }
351 1.1 pooka
352 1.83 pooka void
353 1.83 pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
354 1.83 pooka {
355 1.83 pooka
356 1.83 pooka vm->vm_map.pmap = pmap_kernel();
357 1.83 pooka vm->vm_refcnt = 1;
358 1.83 pooka }
359 1.1 pooka
360 1.126 martin bool
361 1.126 martin uvm_page_locked_p(struct vm_page *pg)
362 1.126 martin {
363 1.126 martin
364 1.126 martin if (pg->uobject != NULL) {
365 1.126 martin return mutex_owned(pg->uobject->vmobjlock);
366 1.126 martin }
367 1.126 martin return true;
368 1.126 martin }
369 1.126 martin
370 1.1 pooka void
371 1.7 pooka uvm_pagewire(struct vm_page *pg)
372 1.7 pooka {
373 1.7 pooka
374 1.7 pooka /* nada */
375 1.7 pooka }
376 1.7 pooka
377 1.7 pooka void
378 1.7 pooka uvm_pageunwire(struct vm_page *pg)
379 1.7 pooka {
380 1.7 pooka
381 1.7 pooka /* nada */
382 1.7 pooka }
383 1.7 pooka
384 1.83 pooka /* where's your schmonz now? */
385 1.83 pooka #define PUNLIMIT(a) \
386 1.83 pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
387 1.83 pooka void
388 1.83 pooka uvm_init_limits(struct proc *p)
389 1.83 pooka {
390 1.83 pooka
391 1.83 pooka PUNLIMIT(RLIMIT_STACK);
392 1.83 pooka PUNLIMIT(RLIMIT_DATA);
393 1.83 pooka PUNLIMIT(RLIMIT_RSS);
394 1.83 pooka PUNLIMIT(RLIMIT_AS);
395 1.83 pooka /* nice, cascade */
396 1.83 pooka }
397 1.83 pooka #undef PUNLIMIT
398 1.83 pooka
399 1.69 pooka /*
400 1.69 pooka * This satisfies the "disgusting mmap hack" used by proplib.
401 1.69 pooka * We probably should grow some more assertables to make sure we're
402 1.103 pooka * not satisfying anything we shouldn't be satisfying.
403 1.69 pooka */
404 1.49 pooka int
405 1.49 pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
406 1.49 pooka vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
407 1.49 pooka {
408 1.69 pooka void *uaddr;
409 1.69 pooka int error;
410 1.49 pooka
411 1.69 pooka if (prot != (VM_PROT_READ | VM_PROT_WRITE))
412 1.69 pooka panic("uvm_mmap() variant unsupported");
413 1.69 pooka if (flags != (MAP_PRIVATE | MAP_ANON))
414 1.69 pooka panic("uvm_mmap() variant unsupported");
415 1.98 pooka
416 1.69 pooka /* no reason in particular, but cf. uvm_default_mapaddr() */
417 1.69 pooka if (*addr != 0)
418 1.69 pooka panic("uvm_mmap() variant unsupported");
419 1.69 pooka
420 1.106 pooka if (RUMP_LOCALPROC_P(curproc)) {
421 1.98 pooka uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
422 1.98 pooka } else {
423 1.102 pooka error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
424 1.102 pooka size, &uaddr);
425 1.98 pooka }
426 1.69 pooka if (uaddr == NULL)
427 1.69 pooka return error;
428 1.69 pooka
429 1.69 pooka *addr = (vaddr_t)uaddr;
430 1.69 pooka return 0;
431 1.49 pooka }
432 1.49 pooka
433 1.61 pooka struct pagerinfo {
434 1.61 pooka vaddr_t pgr_kva;
435 1.61 pooka int pgr_npages;
436 1.61 pooka struct vm_page **pgr_pgs;
437 1.61 pooka bool pgr_read;
438 1.61 pooka
439 1.61 pooka LIST_ENTRY(pagerinfo) pgr_entries;
440 1.61 pooka };
441 1.61 pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
442 1.61 pooka
443 1.61 pooka /*
444 1.61 pooka * Pager "map" in routine. Instead of mapping, we allocate memory
445 1.61 pooka * and copy page contents there. Not optimal or even strictly
446 1.61 pooka * correct (the caller might modify the page contents after mapping
447 1.61 pooka * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
448 1.61 pooka */
449 1.7 pooka vaddr_t
450 1.61 pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
451 1.7 pooka {
452 1.61 pooka struct pagerinfo *pgri;
453 1.61 pooka vaddr_t curkva;
454 1.61 pooka int i;
455 1.61 pooka
456 1.61 pooka /* allocate structures */
457 1.61 pooka pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
458 1.61 pooka pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
459 1.61 pooka pgri->pgr_npages = npages;
460 1.61 pooka pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
461 1.61 pooka pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
462 1.61 pooka
463 1.61 pooka /* copy contents to "mapped" memory */
464 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
465 1.61 pooka i < npages;
466 1.61 pooka i++, curkva += PAGE_SIZE) {
467 1.61 pooka /*
468 1.61 pooka * We need to copy the previous contents of the pages to
469 1.61 pooka * the window even if we are reading from the
470 1.61 pooka * device, since the device might not fill the contents of
471 1.61 pooka * the full mapped range and we will end up corrupting
472 1.61 pooka * data when we unmap the window.
473 1.61 pooka */
474 1.61 pooka memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
475 1.61 pooka pgri->pgr_pgs[i] = pgs[i];
476 1.61 pooka }
477 1.61 pooka
478 1.61 pooka mutex_enter(&pagermtx);
479 1.61 pooka LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
480 1.61 pooka mutex_exit(&pagermtx);
481 1.7 pooka
482 1.61 pooka return pgri->pgr_kva;
483 1.7 pooka }
484 1.7 pooka
485 1.61 pooka /*
486 1.61 pooka * map out the pager window. return contents from VA to page storage
487 1.61 pooka * and free structures.
488 1.61 pooka *
489 1.61 pooka * Note: does not currently support partial frees
490 1.61 pooka */
491 1.61 pooka void
492 1.61 pooka uvm_pagermapout(vaddr_t kva, int npages)
493 1.7 pooka {
494 1.61 pooka struct pagerinfo *pgri;
495 1.61 pooka vaddr_t curkva;
496 1.61 pooka int i;
497 1.7 pooka
498 1.61 pooka mutex_enter(&pagermtx);
499 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
500 1.61 pooka if (pgri->pgr_kva == kva)
501 1.61 pooka break;
502 1.61 pooka }
503 1.61 pooka KASSERT(pgri);
504 1.61 pooka if (pgri->pgr_npages != npages)
505 1.61 pooka panic("uvm_pagermapout: partial unmapping not supported");
506 1.61 pooka LIST_REMOVE(pgri, pgr_entries);
507 1.61 pooka mutex_exit(&pagermtx);
508 1.61 pooka
509 1.61 pooka if (pgri->pgr_read) {
510 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
511 1.61 pooka i < pgri->pgr_npages;
512 1.61 pooka i++, curkva += PAGE_SIZE) {
513 1.61 pooka memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
514 1.21 pooka }
515 1.21 pooka }
516 1.10 pooka
517 1.61 pooka kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
518 1.61 pooka kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
519 1.61 pooka kmem_free(pgri, sizeof(*pgri));
520 1.7 pooka }
521 1.7 pooka
522 1.61 pooka /*
523 1.61 pooka * convert va in pager window to page structure.
524 1.61 pooka * XXX: how expensive is this (global lock, list traversal)?
525 1.61 pooka */
526 1.14 pooka struct vm_page *
527 1.14 pooka uvm_pageratop(vaddr_t va)
528 1.14 pooka {
529 1.61 pooka struct pagerinfo *pgri;
530 1.61 pooka struct vm_page *pg = NULL;
531 1.61 pooka int i;
532 1.14 pooka
533 1.61 pooka mutex_enter(&pagermtx);
534 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
535 1.61 pooka if (pgri->pgr_kva <= va
536 1.61 pooka && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
537 1.21 pooka break;
538 1.61 pooka }
539 1.61 pooka if (pgri) {
540 1.61 pooka i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
541 1.61 pooka pg = pgri->pgr_pgs[i];
542 1.61 pooka }
543 1.61 pooka mutex_exit(&pagermtx);
544 1.21 pooka
545 1.61 pooka return pg;
546 1.61 pooka }
547 1.15 pooka
548 1.97 pooka /*
549 1.97 pooka * Called with the vm object locked.
550 1.97 pooka *
551 1.97 pooka * Put vnode object pages at the end of the access queue to indicate
552 1.97 pooka * they have been recently accessed and should not be immediate
553 1.97 pooka * candidates for pageout. Do not do this for lookups done by
554 1.97 pooka * the pagedaemon to mimic pmap_kentered mappings which don't track
555 1.97 pooka * access information.
556 1.97 pooka */
557 1.61 pooka struct vm_page *
558 1.61 pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
559 1.61 pooka {
560 1.92 pooka struct vm_page *pg;
561 1.97 pooka bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
562 1.61 pooka
563 1.96 rmind pg = rb_tree_find_node(&uobj->rb_tree, &off);
564 1.97 pooka if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
565 1.92 pooka mutex_enter(&uvm_pageqlock);
566 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
567 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
568 1.92 pooka mutex_exit(&uvm_pageqlock);
569 1.92 pooka }
570 1.92 pooka
571 1.92 pooka return pg;
572 1.14 pooka }
573 1.14 pooka
574 1.7 pooka void
575 1.22 pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
576 1.22 pooka {
577 1.22 pooka struct vm_page *pg;
578 1.22 pooka int i;
579 1.22 pooka
580 1.94 pooka KASSERT(npgs > 0);
581 1.115 rmind KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
582 1.94 pooka
583 1.22 pooka for (i = 0; i < npgs; i++) {
584 1.22 pooka pg = pgs[i];
585 1.22 pooka if (pg == NULL)
586 1.22 pooka continue;
587 1.22 pooka
588 1.22 pooka KASSERT(pg->flags & PG_BUSY);
589 1.22 pooka if (pg->flags & PG_WANTED)
590 1.22 pooka wakeup(pg);
591 1.36 pooka if (pg->flags & PG_RELEASED)
592 1.36 pooka uvm_pagefree(pg);
593 1.36 pooka else
594 1.36 pooka pg->flags &= ~(PG_WANTED|PG_BUSY);
595 1.22 pooka }
596 1.22 pooka }
597 1.22 pooka
598 1.22 pooka void
599 1.7 pooka uvm_estimatepageable(int *active, int *inactive)
600 1.7 pooka {
601 1.7 pooka
602 1.19 pooka /* XXX: guessing game */
603 1.19 pooka *active = 1024;
604 1.19 pooka *inactive = 1024;
605 1.7 pooka }
606 1.7 pooka
607 1.41 pooka bool
608 1.41 pooka vm_map_starved_p(struct vm_map *map)
609 1.41 pooka {
610 1.41 pooka
611 1.80 pooka if (map->flags & VM_MAP_WANTVA)
612 1.80 pooka return true;
613 1.80 pooka
614 1.41 pooka return false;
615 1.41 pooka }
616 1.41 pooka
617 1.41 pooka int
618 1.41 pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
619 1.41 pooka {
620 1.41 pooka
621 1.41 pooka panic("%s: unimplemented", __func__);
622 1.41 pooka }
623 1.41 pooka
624 1.41 pooka void
625 1.41 pooka uvm_unloan(void *v, int npages, int flags)
626 1.41 pooka {
627 1.41 pooka
628 1.41 pooka panic("%s: unimplemented", __func__);
629 1.41 pooka }
630 1.41 pooka
631 1.43 pooka int
632 1.43 pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
633 1.43 pooka struct vm_page **opp)
634 1.43 pooka {
635 1.43 pooka
636 1.72 pooka return EBUSY;
637 1.43 pooka }
638 1.43 pooka
639 1.116 mrg struct vm_page *
640 1.116 mrg uvm_loanbreak(struct vm_page *pg)
641 1.116 mrg {
642 1.116 mrg
643 1.116 mrg panic("%s: unimplemented", __func__);
644 1.116 mrg }
645 1.116 mrg
646 1.116 mrg void
647 1.116 mrg ubc_purge(struct uvm_object *uobj)
648 1.116 mrg {
649 1.116 mrg
650 1.116 mrg }
651 1.116 mrg
652 1.73 pooka #ifdef DEBUGPRINT
653 1.56 pooka void
654 1.56 pooka uvm_object_printit(struct uvm_object *uobj, bool full,
655 1.56 pooka void (*pr)(const char *, ...))
656 1.56 pooka {
657 1.56 pooka
658 1.75 pooka pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
659 1.56 pooka }
660 1.73 pooka #endif
661 1.56 pooka
662 1.68 pooka vaddr_t
663 1.68 pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
664 1.68 pooka {
665 1.68 pooka
666 1.68 pooka return 0;
667 1.68 pooka }
668 1.68 pooka
669 1.71 pooka int
670 1.71 pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
671 1.71 pooka vm_prot_t prot, bool set_max)
672 1.71 pooka {
673 1.71 pooka
674 1.71 pooka return EOPNOTSUPP;
675 1.71 pooka }
676 1.71 pooka
677 1.9 pooka /*
678 1.12 pooka * UVM km
679 1.12 pooka */
680 1.12 pooka
681 1.12 pooka vaddr_t
682 1.12 pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
683 1.12 pooka {
684 1.82 pooka void *rv, *desired = NULL;
685 1.50 pooka int alignbit, error;
686 1.50 pooka
687 1.82 pooka #ifdef __x86_64__
688 1.82 pooka /*
689 1.82 pooka * On amd64, allocate all module memory from the lowest 2GB.
690 1.82 pooka * This is because NetBSD kernel modules are compiled
691 1.82 pooka * with -mcmodel=kernel and reserve only 4 bytes for
692 1.82 pooka * offsets. If we load code compiled with -mcmodel=kernel
693 1.82 pooka * anywhere except the lowest or highest 2GB, it will not
694 1.82 pooka * work. Since userspace does not have access to the highest
695 1.82 pooka * 2GB, use the lowest 2GB.
696 1.82 pooka *
697 1.82 pooka * Note: this assumes the rump kernel resides in
698 1.82 pooka * the lowest 2GB as well.
699 1.82 pooka *
700 1.82 pooka * Note2: yes, it's a quick hack, but since this the only
701 1.82 pooka * place where we care about the map we're allocating from,
702 1.82 pooka * just use a simple "if" instead of coming up with a fancy
703 1.82 pooka * generic solution.
704 1.82 pooka */
705 1.82 pooka extern struct vm_map *module_map;
706 1.82 pooka if (map == module_map) {
707 1.82 pooka desired = (void *)(0x80000000 - size);
708 1.82 pooka }
709 1.82 pooka #endif
710 1.82 pooka
711 1.50 pooka alignbit = 0;
712 1.50 pooka if (align) {
713 1.50 pooka alignbit = ffs(align)-1;
714 1.50 pooka }
715 1.50 pooka
716 1.82 pooka rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
717 1.81 pooka &error);
718 1.50 pooka if (rv == NULL) {
719 1.50 pooka if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
720 1.50 pooka return 0;
721 1.50 pooka else
722 1.50 pooka panic("uvm_km_alloc failed");
723 1.50 pooka }
724 1.12 pooka
725 1.50 pooka if (flags & UVM_KMF_ZERO)
726 1.12 pooka memset(rv, 0, size);
727 1.12 pooka
728 1.12 pooka return (vaddr_t)rv;
729 1.12 pooka }
730 1.12 pooka
731 1.12 pooka void
732 1.12 pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
733 1.12 pooka {
734 1.12 pooka
735 1.50 pooka rumpuser_unmap((void *)vaddr, size);
736 1.12 pooka }
737 1.12 pooka
738 1.12 pooka struct vm_map *
739 1.12 pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
740 1.121 para vsize_t size, int pageable, bool fixed, struct vm_map *submap)
741 1.12 pooka {
742 1.12 pooka
743 1.12 pooka return (struct vm_map *)417416;
744 1.12 pooka }
745 1.40 pooka
746 1.121 para int
747 1.121 para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
748 1.121 para vmem_addr_t *addr)
749 1.40 pooka {
750 1.121 para vaddr_t va;
751 1.121 para va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
752 1.121 para (flags & VM_SLEEP), "kmalloc");
753 1.40 pooka
754 1.121 para if (va) {
755 1.121 para *addr = va;
756 1.121 para return 0;
757 1.121 para } else {
758 1.121 para return ENOMEM;
759 1.121 para }
760 1.40 pooka }
761 1.40 pooka
762 1.40 pooka void
763 1.121 para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
764 1.40 pooka {
765 1.40 pooka
766 1.121 para rump_hyperfree((void *)addr, size);
767 1.74 pooka }
768 1.74 pooka
769 1.57 pooka /*
770 1.102 pooka * VM space locking routines. We don't really have to do anything,
771 1.102 pooka * since the pages are always "wired" (both local and remote processes).
772 1.57 pooka */
773 1.57 pooka int
774 1.57 pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
775 1.57 pooka {
776 1.57 pooka
777 1.57 pooka return 0;
778 1.57 pooka }
779 1.57 pooka
780 1.57 pooka void
781 1.57 pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
782 1.57 pooka {
783 1.57 pooka
784 1.57 pooka }
785 1.57 pooka
786 1.102 pooka /*
787 1.102 pooka * For the local case the buffer mappers don't need to do anything.
788 1.102 pooka * For the remote case we need to reserve space and copy data in or
789 1.102 pooka * out, depending on B_READ/B_WRITE.
790 1.102 pooka */
791 1.111 pooka int
792 1.57 pooka vmapbuf(struct buf *bp, vsize_t len)
793 1.57 pooka {
794 1.111 pooka int error = 0;
795 1.57 pooka
796 1.57 pooka bp->b_saveaddr = bp->b_data;
797 1.102 pooka
798 1.102 pooka /* remote case */
799 1.106 pooka if (!RUMP_LOCALPROC_P(curproc)) {
800 1.102 pooka bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
801 1.102 pooka if (BUF_ISWRITE(bp)) {
802 1.111 pooka error = copyin(bp->b_saveaddr, bp->b_data, len);
803 1.111 pooka if (error) {
804 1.111 pooka rump_hyperfree(bp->b_data, len);
805 1.111 pooka bp->b_data = bp->b_saveaddr;
806 1.111 pooka bp->b_saveaddr = 0;
807 1.111 pooka }
808 1.102 pooka }
809 1.102 pooka }
810 1.111 pooka
811 1.111 pooka return error;
812 1.57 pooka }
813 1.57 pooka
814 1.57 pooka void
815 1.57 pooka vunmapbuf(struct buf *bp, vsize_t len)
816 1.57 pooka {
817 1.57 pooka
818 1.102 pooka /* remote case */
819 1.106 pooka if (!RUMP_LOCALPROC_P(bp->b_proc)) {
820 1.102 pooka if (BUF_ISREAD(bp)) {
821 1.110 pooka bp->b_error = copyout_proc(bp->b_proc,
822 1.102 pooka bp->b_data, bp->b_saveaddr, len);
823 1.102 pooka }
824 1.102 pooka rump_hyperfree(bp->b_data, len);
825 1.102 pooka }
826 1.102 pooka
827 1.57 pooka bp->b_data = bp->b_saveaddr;
828 1.57 pooka bp->b_saveaddr = 0;
829 1.57 pooka }
830 1.61 pooka
831 1.61 pooka void
832 1.83 pooka uvmspace_addref(struct vmspace *vm)
833 1.83 pooka {
834 1.83 pooka
835 1.83 pooka /*
836 1.103 pooka * No dynamically allocated vmspaces exist.
837 1.83 pooka */
838 1.83 pooka }
839 1.83 pooka
840 1.83 pooka void
841 1.66 pooka uvmspace_free(struct vmspace *vm)
842 1.66 pooka {
843 1.66 pooka
844 1.66 pooka /* nothing for now */
845 1.66 pooka }
846 1.66 pooka
847 1.61 pooka /*
848 1.61 pooka * page life cycle stuff. it really doesn't exist, so just stubs.
849 1.61 pooka */
850 1.61 pooka
851 1.61 pooka void
852 1.61 pooka uvm_pageactivate(struct vm_page *pg)
853 1.61 pooka {
854 1.61 pooka
855 1.61 pooka /* nada */
856 1.61 pooka }
857 1.61 pooka
858 1.61 pooka void
859 1.61 pooka uvm_pagedeactivate(struct vm_page *pg)
860 1.61 pooka {
861 1.61 pooka
862 1.61 pooka /* nada */
863 1.61 pooka }
864 1.61 pooka
865 1.61 pooka void
866 1.61 pooka uvm_pagedequeue(struct vm_page *pg)
867 1.61 pooka {
868 1.61 pooka
869 1.61 pooka /* nada*/
870 1.61 pooka }
871 1.61 pooka
872 1.61 pooka void
873 1.61 pooka uvm_pageenqueue(struct vm_page *pg)
874 1.61 pooka {
875 1.61 pooka
876 1.61 pooka /* nada */
877 1.61 pooka }
878 1.80 pooka
879 1.88 pooka void
880 1.88 pooka uvmpdpol_anfree(struct vm_anon *an)
881 1.88 pooka {
882 1.88 pooka
883 1.88 pooka /* nada */
884 1.88 pooka }
885 1.88 pooka
886 1.80 pooka /*
887 1.99 uebayasi * Physical address accessors.
888 1.99 uebayasi */
889 1.99 uebayasi
890 1.99 uebayasi struct vm_page *
891 1.99 uebayasi uvm_phys_to_vm_page(paddr_t pa)
892 1.99 uebayasi {
893 1.99 uebayasi
894 1.99 uebayasi return NULL;
895 1.99 uebayasi }
896 1.99 uebayasi
897 1.99 uebayasi paddr_t
898 1.99 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
899 1.99 uebayasi {
900 1.99 uebayasi
901 1.99 uebayasi return 0;
902 1.99 uebayasi }
903 1.99 uebayasi
904 1.99 uebayasi /*
905 1.80 pooka * Routines related to the Page Baroness.
906 1.80 pooka */
907 1.80 pooka
908 1.80 pooka void
909 1.80 pooka uvm_wait(const char *msg)
910 1.80 pooka {
911 1.80 pooka
912 1.80 pooka if (__predict_false(curlwp == uvm.pagedaemon_lwp))
913 1.80 pooka panic("pagedaemon out of memory");
914 1.80 pooka if (__predict_false(rump_threads == 0))
915 1.80 pooka panic("pagedaemon missing (RUMP_THREADS = 0)");
916 1.80 pooka
917 1.80 pooka mutex_enter(&pdaemonmtx);
918 1.80 pooka pdaemon_waiters++;
919 1.80 pooka cv_signal(&pdaemoncv);
920 1.80 pooka cv_wait(&oomwait, &pdaemonmtx);
921 1.80 pooka mutex_exit(&pdaemonmtx);
922 1.80 pooka }
923 1.80 pooka
924 1.80 pooka void
925 1.80 pooka uvm_pageout_start(int npages)
926 1.80 pooka {
927 1.80 pooka
928 1.113 pooka mutex_enter(&pdaemonmtx);
929 1.113 pooka uvmexp.paging += npages;
930 1.113 pooka mutex_exit(&pdaemonmtx);
931 1.80 pooka }
932 1.80 pooka
933 1.80 pooka void
934 1.80 pooka uvm_pageout_done(int npages)
935 1.80 pooka {
936 1.80 pooka
937 1.113 pooka if (!npages)
938 1.113 pooka return;
939 1.113 pooka
940 1.113 pooka mutex_enter(&pdaemonmtx);
941 1.113 pooka KASSERT(uvmexp.paging >= npages);
942 1.113 pooka uvmexp.paging -= npages;
943 1.113 pooka
944 1.113 pooka if (pdaemon_waiters) {
945 1.113 pooka pdaemon_waiters = 0;
946 1.113 pooka cv_broadcast(&oomwait);
947 1.113 pooka }
948 1.113 pooka mutex_exit(&pdaemonmtx);
949 1.80 pooka }
950 1.80 pooka
951 1.95 pooka static bool
952 1.104 pooka processpage(struct vm_page *pg, bool *lockrunning)
953 1.95 pooka {
954 1.95 pooka struct uvm_object *uobj;
955 1.95 pooka
956 1.95 pooka uobj = pg->uobject;
957 1.115 rmind if (mutex_tryenter(uobj->vmobjlock)) {
958 1.95 pooka if ((pg->flags & PG_BUSY) == 0) {
959 1.95 pooka mutex_exit(&uvm_pageqlock);
960 1.95 pooka uobj->pgops->pgo_put(uobj, pg->offset,
961 1.95 pooka pg->offset + PAGE_SIZE,
962 1.95 pooka PGO_CLEANIT|PGO_FREE);
963 1.115 rmind KASSERT(!mutex_owned(uobj->vmobjlock));
964 1.95 pooka return true;
965 1.95 pooka } else {
966 1.115 rmind mutex_exit(uobj->vmobjlock);
967 1.95 pooka }
968 1.104 pooka } else if (*lockrunning == false && ncpu > 1) {
969 1.104 pooka CPU_INFO_ITERATOR cii;
970 1.104 pooka struct cpu_info *ci;
971 1.104 pooka struct lwp *l;
972 1.104 pooka
973 1.115 rmind l = mutex_owner(uobj->vmobjlock);
974 1.104 pooka for (CPU_INFO_FOREACH(cii, ci)) {
975 1.104 pooka if (ci->ci_curlwp == l) {
976 1.104 pooka *lockrunning = true;
977 1.104 pooka break;
978 1.104 pooka }
979 1.104 pooka }
980 1.95 pooka }
981 1.95 pooka
982 1.95 pooka return false;
983 1.95 pooka }
984 1.95 pooka
985 1.80 pooka /*
986 1.92 pooka * The Diabolical pageDaemon Director (DDD).
987 1.113 pooka *
988 1.113 pooka * This routine can always use better heuristics.
989 1.80 pooka */
990 1.80 pooka void
991 1.80 pooka uvm_pageout(void *arg)
992 1.80 pooka {
993 1.92 pooka struct vm_page *pg;
994 1.80 pooka struct pool *pp, *pp_first;
995 1.92 pooka int cleaned, skip, skipped;
996 1.113 pooka int waspaging;
997 1.113 pooka bool succ;
998 1.104 pooka bool lockrunning;
999 1.80 pooka
1000 1.80 pooka mutex_enter(&pdaemonmtx);
1001 1.80 pooka for (;;) {
1002 1.113 pooka if (!NEED_PAGEDAEMON()) {
1003 1.92 pooka kernel_map->flags &= ~VM_MAP_WANTVA;
1004 1.92 pooka }
1005 1.92 pooka
1006 1.113 pooka if (pdaemon_waiters) {
1007 1.113 pooka pdaemon_waiters = 0;
1008 1.113 pooka cv_broadcast(&oomwait);
1009 1.104 pooka }
1010 1.92 pooka
1011 1.113 pooka cv_wait(&pdaemoncv, &pdaemonmtx);
1012 1.113 pooka uvmexp.pdwoke++;
1013 1.113 pooka waspaging = uvmexp.paging;
1014 1.113 pooka
1015 1.92 pooka /* tell the world that we are hungry */
1016 1.80 pooka kernel_map->flags |= VM_MAP_WANTVA;
1017 1.80 pooka mutex_exit(&pdaemonmtx);
1018 1.80 pooka
1019 1.92 pooka /*
1020 1.92 pooka * step one: reclaim the page cache. this should give
1021 1.92 pooka * us the biggest earnings since whole pages are released
1022 1.92 pooka * into backing memory.
1023 1.92 pooka */
1024 1.92 pooka pool_cache_reclaim(&pagecache);
1025 1.92 pooka if (!NEED_PAGEDAEMON()) {
1026 1.92 pooka mutex_enter(&pdaemonmtx);
1027 1.92 pooka continue;
1028 1.92 pooka }
1029 1.92 pooka
1030 1.92 pooka /*
1031 1.92 pooka * Ok, so that didn't help. Next, try to hunt memory
1032 1.92 pooka * by pushing out vnode pages. The pages might contain
1033 1.92 pooka * useful cached data, but we need the memory.
1034 1.92 pooka */
1035 1.92 pooka cleaned = 0;
1036 1.92 pooka skip = 0;
1037 1.104 pooka lockrunning = false;
1038 1.92 pooka again:
1039 1.92 pooka mutex_enter(&uvm_pageqlock);
1040 1.92 pooka while (cleaned < PAGEDAEMON_OBJCHUNK) {
1041 1.92 pooka skipped = 0;
1042 1.92 pooka TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1043 1.92 pooka
1044 1.92 pooka /*
1045 1.92 pooka * skip over pages we _might_ have tried
1046 1.92 pooka * to handle earlier. they might not be
1047 1.92 pooka * exactly the same ones, but I'm not too
1048 1.92 pooka * concerned.
1049 1.92 pooka */
1050 1.92 pooka while (skipped++ < skip)
1051 1.92 pooka continue;
1052 1.92 pooka
1053 1.104 pooka if (processpage(pg, &lockrunning)) {
1054 1.95 pooka cleaned++;
1055 1.95 pooka goto again;
1056 1.92 pooka }
1057 1.92 pooka
1058 1.92 pooka skip++;
1059 1.92 pooka }
1060 1.92 pooka break;
1061 1.92 pooka }
1062 1.92 pooka mutex_exit(&uvm_pageqlock);
1063 1.92 pooka
1064 1.92 pooka /*
1065 1.104 pooka * Ok, someone is running with an object lock held.
1066 1.104 pooka * We want to yield the host CPU to make sure the
1067 1.104 pooka * thread is not parked on the host. Since sched_yield()
1068 1.104 pooka * doesn't appear to do anything on NetBSD, nanosleep
1069 1.104 pooka * for the smallest possible time and hope we're back in
1070 1.104 pooka * the game soon.
1071 1.104 pooka */
1072 1.104 pooka if (cleaned == 0 && lockrunning) {
1073 1.104 pooka uint64_t sec, nsec;
1074 1.104 pooka
1075 1.104 pooka sec = 0;
1076 1.104 pooka nsec = 1;
1077 1.104 pooka rumpuser_nanosleep(&sec, &nsec, NULL);
1078 1.104 pooka
1079 1.104 pooka lockrunning = false;
1080 1.104 pooka skip = 0;
1081 1.104 pooka
1082 1.104 pooka /* and here we go again */
1083 1.104 pooka goto again;
1084 1.104 pooka }
1085 1.104 pooka
1086 1.104 pooka /*
1087 1.92 pooka * And of course we need to reclaim the page cache
1088 1.92 pooka * again to actually release memory.
1089 1.92 pooka */
1090 1.92 pooka pool_cache_reclaim(&pagecache);
1091 1.92 pooka if (!NEED_PAGEDAEMON()) {
1092 1.92 pooka mutex_enter(&pdaemonmtx);
1093 1.92 pooka continue;
1094 1.92 pooka }
1095 1.92 pooka
1096 1.92 pooka /*
1097 1.92 pooka * And then drain the pools. Wipe them out ... all of them.
1098 1.92 pooka */
1099 1.127 jym for (pp_first = NULL;;) {
1100 1.127 jym rump_vfs_drainbufs(10 /* XXX: estimate better */);
1101 1.92 pooka
1102 1.127 jym succ = pool_drain(&pp);
1103 1.127 jym if (succ || pp == pp_first)
1104 1.80 pooka break;
1105 1.127 jym
1106 1.127 jym if (pp_first == NULL)
1107 1.127 jym pp_first = pp;
1108 1.80 pooka }
1109 1.92 pooka
1110 1.92 pooka /*
1111 1.92 pooka * Need to use PYEC on our bag of tricks.
1112 1.92 pooka * Unfortunately, the wife just borrowed it.
1113 1.92 pooka */
1114 1.80 pooka
1115 1.113 pooka mutex_enter(&pdaemonmtx);
1116 1.113 pooka if (!succ && cleaned == 0 && pdaemon_waiters &&
1117 1.113 pooka uvmexp.paging == 0) {
1118 1.80 pooka rumpuser_dprintf("pagedaemoness: failed to reclaim "
1119 1.80 pooka "memory ... sleeping (deadlock?)\n");
1120 1.113 pooka cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1121 1.80 pooka }
1122 1.80 pooka }
1123 1.80 pooka
1124 1.80 pooka panic("you can swap out any time you like, but you can never leave");
1125 1.80 pooka }
1126 1.80 pooka
1127 1.80 pooka void
1128 1.80 pooka uvm_kick_pdaemon()
1129 1.80 pooka {
1130 1.80 pooka
1131 1.92 pooka /*
1132 1.92 pooka * Wake up the diabolical pagedaemon director if we are over
1133 1.92 pooka * 90% of the memory limit. This is a complete and utter
1134 1.92 pooka * stetson-harrison decision which you are allowed to finetune.
1135 1.92 pooka * Don't bother locking. If we have some unflushed caches,
1136 1.92 pooka * other waker-uppers will deal with the issue.
1137 1.92 pooka */
1138 1.92 pooka if (NEED_PAGEDAEMON()) {
1139 1.92 pooka cv_signal(&pdaemoncv);
1140 1.92 pooka }
1141 1.80 pooka }
1142 1.80 pooka
1143 1.80 pooka void *
1144 1.80 pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1145 1.80 pooka {
1146 1.84 pooka unsigned long newmem;
1147 1.80 pooka void *rv;
1148 1.80 pooka
1149 1.92 pooka uvm_kick_pdaemon(); /* ouch */
1150 1.92 pooka
1151 1.84 pooka /* first we must be within the limit */
1152 1.84 pooka limitagain:
1153 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1154 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, howmuch);
1155 1.91 pooka if (newmem > rump_physmemlimit) {
1156 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1157 1.103 pooka if (!waitok) {
1158 1.84 pooka return NULL;
1159 1.103 pooka }
1160 1.84 pooka uvm_wait(wmsg);
1161 1.84 pooka goto limitagain;
1162 1.84 pooka }
1163 1.84 pooka }
1164 1.84 pooka
1165 1.84 pooka /* second, we must get something from the backend */
1166 1.80 pooka again:
1167 1.80 pooka rv = rumpuser_malloc(howmuch, alignment);
1168 1.80 pooka if (__predict_false(rv == NULL && waitok)) {
1169 1.80 pooka uvm_wait(wmsg);
1170 1.80 pooka goto again;
1171 1.80 pooka }
1172 1.80 pooka
1173 1.80 pooka return rv;
1174 1.80 pooka }
1175 1.84 pooka
1176 1.84 pooka void
1177 1.84 pooka rump_hyperfree(void *what, size_t size)
1178 1.84 pooka {
1179 1.84 pooka
1180 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1181 1.84 pooka atomic_add_long(&curphysmem, -size);
1182 1.84 pooka }
1183 1.84 pooka rumpuser_free(what);
1184 1.84 pooka }
1185