Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.128
      1  1.128     pooka /*	$NetBSD: vm.c,v 1.128 2012/07/20 09:11:33 pooka Exp $	*/
      2    1.1     pooka 
      3    1.1     pooka /*
      4  1.114     pooka  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5    1.1     pooka  *
      6   1.76     pooka  * Development of this software was supported by
      7   1.76     pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8   1.76     pooka  * The Helsinki University of Technology.
      9    1.1     pooka  *
     10    1.1     pooka  * Redistribution and use in source and binary forms, with or without
     11    1.1     pooka  * modification, are permitted provided that the following conditions
     12    1.1     pooka  * are met:
     13    1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     14    1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     15    1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     17    1.1     pooka  *    documentation and/or other materials provided with the distribution.
     18    1.1     pooka  *
     19    1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20    1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21    1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22    1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23    1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24    1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25    1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26    1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27    1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28    1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29    1.1     pooka  * SUCH DAMAGE.
     30    1.1     pooka  */
     31    1.1     pooka 
     32    1.1     pooka /*
     33   1.88     pooka  * Virtual memory emulation routines.
     34    1.1     pooka  */
     35    1.1     pooka 
     36    1.1     pooka /*
     37    1.5     pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38    1.1     pooka  * for each page.  phys_addr would fit the job description better,
     39    1.1     pooka  * except that it will create unnecessary lossage on some platforms
     40    1.1     pooka  * due to not being a pointer type.
     41    1.1     pooka  */
     42    1.1     pooka 
     43   1.48     pooka #include <sys/cdefs.h>
     44  1.128     pooka __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.128 2012/07/20 09:11:33 pooka Exp $");
     45   1.48     pooka 
     46    1.1     pooka #include <sys/param.h>
     47   1.40     pooka #include <sys/atomic.h>
     48   1.80     pooka #include <sys/buf.h>
     49   1.80     pooka #include <sys/kernel.h>
     50   1.67     pooka #include <sys/kmem.h>
     51  1.121      para #include <sys/vmem.h>
     52   1.69     pooka #include <sys/mman.h>
     53    1.1     pooka #include <sys/null.h>
     54    1.1     pooka #include <sys/vnode.h>
     55    1.1     pooka 
     56   1.34     pooka #include <machine/pmap.h>
     57   1.34     pooka 
     58   1.34     pooka #include <rump/rumpuser.h>
     59   1.34     pooka 
     60    1.1     pooka #include <uvm/uvm.h>
     61   1.56     pooka #include <uvm/uvm_ddb.h>
     62   1.88     pooka #include <uvm/uvm_pdpolicy.h>
     63    1.1     pooka #include <uvm/uvm_prot.h>
     64   1.58        he #include <uvm/uvm_readahead.h>
     65    1.1     pooka 
     66   1.13     pooka #include "rump_private.h"
     67   1.91     pooka #include "rump_vfs_private.h"
     68    1.1     pooka 
     69   1.25        ad kmutex_t uvm_pageqlock;
     70   1.88     pooka kmutex_t uvm_swap_data_lock;
     71   1.25        ad 
     72    1.1     pooka struct uvmexp uvmexp;
     73    1.7     pooka struct uvm uvm;
     74    1.1     pooka 
     75  1.112     pooka #ifdef __uvmexp_pagesize
     76  1.123    martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
     77  1.123    martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
     78  1.123    martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
     79  1.112     pooka #endif
     80  1.112     pooka 
     81    1.1     pooka struct vm_map rump_vmmap;
     82    1.1     pooka 
     83  1.121      para static struct vm_map kernel_map_store;
     84  1.121      para struct vm_map *kernel_map = &kernel_map_store;
     85  1.121      para 
     86  1.121      para vmem_t *kmem_arena;
     87  1.121      para vmem_t *kmem_va_arena;
     88   1.35     pooka 
     89   1.80     pooka static unsigned int pdaemon_waiters;
     90   1.80     pooka static kmutex_t pdaemonmtx;
     91   1.80     pooka static kcondvar_t pdaemoncv, oomwait;
     92   1.80     pooka 
     93   1.91     pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     94   1.84     pooka static unsigned long curphysmem;
     95   1.92     pooka static unsigned long dddlim;		/* 90% of memory limit used */
     96   1.92     pooka #define NEED_PAGEDAEMON() \
     97   1.92     pooka     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
     98   1.92     pooka 
     99   1.92     pooka /*
    100   1.92     pooka  * Try to free two pages worth of pages from objects.
    101   1.92     pooka  * If this succesfully frees a full page cache page, we'll
    102  1.120      yamt  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    103   1.92     pooka  */
    104   1.92     pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    105   1.92     pooka 
    106   1.92     pooka /*
    107   1.92     pooka  * Keep a list of least recently used pages.  Since the only way a
    108   1.92     pooka  * rump kernel can "access" a page is via lookup, we put the page
    109   1.92     pooka  * at the back of queue every time a lookup for it is done.  If the
    110   1.92     pooka  * page is in front of this global queue and we're short of memory,
    111   1.92     pooka  * it's a candidate for pageout.
    112   1.92     pooka  */
    113   1.92     pooka static struct pglist vmpage_lruqueue;
    114   1.92     pooka static unsigned vmpage_onqueue;
    115   1.84     pooka 
    116   1.89     pooka static int
    117   1.96     rmind pg_compare_key(void *ctx, const void *n, const void *key)
    118   1.89     pooka {
    119   1.89     pooka 	voff_t a = ((const struct vm_page *)n)->offset;
    120   1.89     pooka 	voff_t b = *(const voff_t *)key;
    121   1.89     pooka 
    122   1.89     pooka 	if (a < b)
    123   1.96     rmind 		return -1;
    124   1.96     rmind 	else if (a > b)
    125   1.89     pooka 		return 1;
    126   1.89     pooka 	else
    127   1.89     pooka 		return 0;
    128   1.89     pooka }
    129   1.89     pooka 
    130   1.89     pooka static int
    131   1.96     rmind pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    132   1.89     pooka {
    133   1.89     pooka 
    134   1.96     rmind 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    135   1.89     pooka }
    136   1.89     pooka 
    137   1.96     rmind const rb_tree_ops_t uvm_page_tree_ops = {
    138   1.89     pooka 	.rbto_compare_nodes = pg_compare_nodes,
    139   1.89     pooka 	.rbto_compare_key = pg_compare_key,
    140   1.96     rmind 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    141   1.96     rmind 	.rbto_context = NULL
    142   1.89     pooka };
    143   1.89     pooka 
    144    1.1     pooka /*
    145    1.1     pooka  * vm pages
    146    1.1     pooka  */
    147    1.1     pooka 
    148   1.90     pooka static int
    149   1.90     pooka pgctor(void *arg, void *obj, int flags)
    150   1.90     pooka {
    151   1.90     pooka 	struct vm_page *pg = obj;
    152   1.90     pooka 
    153   1.90     pooka 	memset(pg, 0, sizeof(*pg));
    154  1.103     pooka 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    155  1.103     pooka 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    156  1.103     pooka 	return pg->uanon == NULL;
    157   1.90     pooka }
    158   1.90     pooka 
    159   1.90     pooka static void
    160   1.90     pooka pgdtor(void *arg, void *obj)
    161   1.90     pooka {
    162   1.90     pooka 	struct vm_page *pg = obj;
    163   1.90     pooka 
    164   1.90     pooka 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    165   1.90     pooka }
    166   1.90     pooka 
    167   1.90     pooka static struct pool_cache pagecache;
    168   1.90     pooka 
    169   1.92     pooka /*
    170   1.92     pooka  * Called with the object locked.  We don't support anons.
    171   1.92     pooka  */
    172    1.1     pooka struct vm_page *
    173   1.76     pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    174   1.76     pooka 	int flags, int strat, int free_list)
    175    1.1     pooka {
    176    1.1     pooka 	struct vm_page *pg;
    177    1.1     pooka 
    178  1.115     rmind 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    179   1.92     pooka 	KASSERT(anon == NULL);
    180   1.92     pooka 
    181  1.103     pooka 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    182  1.104     pooka 	if (__predict_false(pg == NULL)) {
    183  1.103     pooka 		return NULL;
    184  1.104     pooka 	}
    185  1.103     pooka 
    186    1.1     pooka 	pg->offset = off;
    187    1.5     pooka 	pg->uobject = uobj;
    188    1.1     pooka 
    189   1.22     pooka 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    190   1.90     pooka 	if (flags & UVM_PGA_ZERO) {
    191   1.90     pooka 		uvm_pagezero(pg);
    192   1.90     pooka 	}
    193    1.1     pooka 
    194   1.31        ad 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    195   1.96     rmind 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    196   1.89     pooka 
    197   1.92     pooka 	/*
    198   1.93     pooka 	 * Don't put anons on the LRU page queue.  We can't flush them
    199   1.93     pooka 	 * (there's no concept of swap in a rump kernel), so no reason
    200   1.93     pooka 	 * to bother with them.
    201   1.92     pooka 	 */
    202   1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    203   1.92     pooka 		atomic_inc_uint(&vmpage_onqueue);
    204   1.92     pooka 		mutex_enter(&uvm_pageqlock);
    205   1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    206   1.92     pooka 		mutex_exit(&uvm_pageqlock);
    207   1.92     pooka 	}
    208   1.92     pooka 
    209   1.59     pooka 	uobj->uo_npages++;
    210   1.21     pooka 
    211    1.1     pooka 	return pg;
    212    1.1     pooka }
    213    1.1     pooka 
    214   1.21     pooka /*
    215   1.21     pooka  * Release a page.
    216   1.21     pooka  *
    217   1.22     pooka  * Called with the vm object locked.
    218   1.21     pooka  */
    219    1.1     pooka void
    220   1.22     pooka uvm_pagefree(struct vm_page *pg)
    221    1.1     pooka {
    222    1.5     pooka 	struct uvm_object *uobj = pg->uobject;
    223    1.1     pooka 
    224   1.92     pooka 	KASSERT(mutex_owned(&uvm_pageqlock));
    225  1.115     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    226   1.92     pooka 
    227   1.22     pooka 	if (pg->flags & PG_WANTED)
    228   1.22     pooka 		wakeup(pg);
    229   1.22     pooka 
    230   1.92     pooka 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    231   1.92     pooka 
    232   1.59     pooka 	uobj->uo_npages--;
    233   1.96     rmind 	rb_tree_remove_node(&uobj->rb_tree, pg);
    234   1.92     pooka 
    235   1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    236   1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    237   1.92     pooka 		atomic_dec_uint(&vmpage_onqueue);
    238   1.92     pooka 	}
    239   1.92     pooka 
    240   1.90     pooka 	pool_cache_put(&pagecache, pg);
    241    1.1     pooka }
    242    1.1     pooka 
    243   1.15     pooka void
    244   1.61     pooka uvm_pagezero(struct vm_page *pg)
    245   1.15     pooka {
    246   1.15     pooka 
    247   1.61     pooka 	pg->flags &= ~PG_CLEAN;
    248   1.61     pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    249   1.15     pooka }
    250   1.15     pooka 
    251    1.1     pooka /*
    252    1.1     pooka  * Misc routines
    253    1.1     pooka  */
    254    1.1     pooka 
    255   1.61     pooka static kmutex_t pagermtx;
    256   1.61     pooka 
    257    1.1     pooka void
    258   1.79     pooka uvm_init(void)
    259    1.1     pooka {
    260   1.84     pooka 	char buf[64];
    261   1.84     pooka 	int error;
    262   1.84     pooka 
    263   1.84     pooka 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    264  1.105     pooka 		unsigned long tmp;
    265  1.105     pooka 		char *ep;
    266  1.105     pooka 		int mult;
    267  1.105     pooka 
    268  1.109     pooka 		tmp = strtoul(buf, &ep, 10);
    269  1.105     pooka 		if (strlen(ep) > 1)
    270  1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    271  1.105     pooka 
    272  1.105     pooka 		/* mini-dehumanize-number */
    273  1.105     pooka 		mult = 1;
    274  1.105     pooka 		switch (*ep) {
    275  1.105     pooka 		case 'k':
    276  1.105     pooka 			mult = 1024;
    277  1.105     pooka 			break;
    278  1.105     pooka 		case 'm':
    279  1.105     pooka 			mult = 1024*1024;
    280  1.105     pooka 			break;
    281  1.105     pooka 		case 'g':
    282  1.105     pooka 			mult = 1024*1024*1024;
    283  1.105     pooka 			break;
    284  1.105     pooka 		case 0:
    285  1.105     pooka 			break;
    286  1.105     pooka 		default:
    287  1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    288  1.105     pooka 		}
    289  1.105     pooka 		rump_physmemlimit = tmp * mult;
    290  1.105     pooka 
    291  1.105     pooka 		if (rump_physmemlimit / mult != tmp)
    292  1.105     pooka 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    293   1.84     pooka 		/* it's not like we'd get far with, say, 1 byte, but ... */
    294   1.91     pooka 		if (rump_physmemlimit == 0)
    295  1.105     pooka 			panic("uvm_init: no memory");
    296  1.105     pooka 
    297   1.84     pooka #define HUMANIZE_BYTES 9
    298   1.84     pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    299   1.91     pooka 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    300   1.84     pooka #undef HUMANIZE_BYTES
    301   1.92     pooka 		dddlim = 9 * (rump_physmemlimit / 10);
    302   1.84     pooka 	} else {
    303   1.84     pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    304   1.84     pooka 	}
    305   1.84     pooka 	aprint_verbose("total memory = %s\n", buf);
    306    1.1     pooka 
    307   1.92     pooka 	TAILQ_INIT(&vmpage_lruqueue);
    308   1.92     pooka 
    309   1.84     pooka 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    310   1.21     pooka 
    311  1.112     pooka #ifndef __uvmexp_pagesize
    312  1.112     pooka 	uvmexp.pagesize = PAGE_SIZE;
    313  1.112     pooka 	uvmexp.pagemask = PAGE_MASK;
    314  1.112     pooka 	uvmexp.pageshift = PAGE_SHIFT;
    315  1.112     pooka #else
    316  1.112     pooka #define FAKE_PAGE_SHIFT 12
    317  1.112     pooka 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    318  1.112     pooka 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    319  1.112     pooka 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    320  1.112     pooka #undef FAKE_PAGE_SHIFT
    321  1.112     pooka #endif
    322  1.112     pooka 
    323   1.61     pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    324   1.25        ad 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    325   1.88     pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    326   1.35     pooka 
    327   1.80     pooka 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    328   1.80     pooka 	cv_init(&pdaemoncv, "pdaemon");
    329   1.80     pooka 	cv_init(&oomwait, "oomwait");
    330   1.80     pooka 
    331   1.50     pooka 	kernel_map->pmap = pmap_kernel();
    332  1.121      para 
    333  1.122     njoly 	pool_subsystem_init();
    334  1.128     pooka 
    335  1.128     pooka #ifndef RUMP_USE_UNREAL_ALLOCATORS
    336  1.121      para 	vmem_bootstrap();
    337  1.121      para 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    338  1.121      para 	    NULL, NULL, NULL,
    339  1.121      para 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    340  1.121      para 
    341  1.121      para 	vmem_init(kmem_arena);
    342  1.121      para 
    343  1.121      para 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    344  1.121      para 	    vmem_alloc, vmem_free, kmem_arena,
    345  1.124      para 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    346  1.128     pooka #endif /* !RUMP_USE_UNREAL_ALLOCATORS */
    347   1.90     pooka 
    348   1.90     pooka 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    349   1.90     pooka 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    350    1.1     pooka }
    351    1.1     pooka 
    352   1.83     pooka void
    353   1.83     pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    354   1.83     pooka {
    355   1.83     pooka 
    356   1.83     pooka 	vm->vm_map.pmap = pmap_kernel();
    357   1.83     pooka 	vm->vm_refcnt = 1;
    358   1.83     pooka }
    359    1.1     pooka 
    360  1.126    martin bool
    361  1.126    martin uvm_page_locked_p(struct vm_page *pg)
    362  1.126    martin {
    363  1.126    martin 
    364  1.126    martin 	if (pg->uobject != NULL) {
    365  1.126    martin 		return mutex_owned(pg->uobject->vmobjlock);
    366  1.126    martin 	}
    367  1.126    martin 	return true;
    368  1.126    martin }
    369  1.126    martin 
    370    1.1     pooka void
    371    1.7     pooka uvm_pagewire(struct vm_page *pg)
    372    1.7     pooka {
    373    1.7     pooka 
    374    1.7     pooka 	/* nada */
    375    1.7     pooka }
    376    1.7     pooka 
    377    1.7     pooka void
    378    1.7     pooka uvm_pageunwire(struct vm_page *pg)
    379    1.7     pooka {
    380    1.7     pooka 
    381    1.7     pooka 	/* nada */
    382    1.7     pooka }
    383    1.7     pooka 
    384   1.83     pooka /* where's your schmonz now? */
    385   1.83     pooka #define PUNLIMIT(a)	\
    386   1.83     pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    387   1.83     pooka void
    388   1.83     pooka uvm_init_limits(struct proc *p)
    389   1.83     pooka {
    390   1.83     pooka 
    391   1.83     pooka 	PUNLIMIT(RLIMIT_STACK);
    392   1.83     pooka 	PUNLIMIT(RLIMIT_DATA);
    393   1.83     pooka 	PUNLIMIT(RLIMIT_RSS);
    394   1.83     pooka 	PUNLIMIT(RLIMIT_AS);
    395   1.83     pooka 	/* nice, cascade */
    396   1.83     pooka }
    397   1.83     pooka #undef PUNLIMIT
    398   1.83     pooka 
    399   1.69     pooka /*
    400   1.69     pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    401   1.69     pooka  * We probably should grow some more assertables to make sure we're
    402  1.103     pooka  * not satisfying anything we shouldn't be satisfying.
    403   1.69     pooka  */
    404   1.49     pooka int
    405   1.49     pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    406   1.49     pooka 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    407   1.49     pooka {
    408   1.69     pooka 	void *uaddr;
    409   1.69     pooka 	int error;
    410   1.49     pooka 
    411   1.69     pooka 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    412   1.69     pooka 		panic("uvm_mmap() variant unsupported");
    413   1.69     pooka 	if (flags != (MAP_PRIVATE | MAP_ANON))
    414   1.69     pooka 		panic("uvm_mmap() variant unsupported");
    415   1.98     pooka 
    416   1.69     pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    417   1.69     pooka 	if (*addr != 0)
    418   1.69     pooka 		panic("uvm_mmap() variant unsupported");
    419   1.69     pooka 
    420  1.106     pooka 	if (RUMP_LOCALPROC_P(curproc)) {
    421   1.98     pooka 		uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    422   1.98     pooka 	} else {
    423  1.102     pooka 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
    424  1.102     pooka 		    size, &uaddr);
    425   1.98     pooka 	}
    426   1.69     pooka 	if (uaddr == NULL)
    427   1.69     pooka 		return error;
    428   1.69     pooka 
    429   1.69     pooka 	*addr = (vaddr_t)uaddr;
    430   1.69     pooka 	return 0;
    431   1.49     pooka }
    432   1.49     pooka 
    433   1.61     pooka struct pagerinfo {
    434   1.61     pooka 	vaddr_t pgr_kva;
    435   1.61     pooka 	int pgr_npages;
    436   1.61     pooka 	struct vm_page **pgr_pgs;
    437   1.61     pooka 	bool pgr_read;
    438   1.61     pooka 
    439   1.61     pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    440   1.61     pooka };
    441   1.61     pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    442   1.61     pooka 
    443   1.61     pooka /*
    444   1.61     pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    445   1.61     pooka  * and copy page contents there.  Not optimal or even strictly
    446   1.61     pooka  * correct (the caller might modify the page contents after mapping
    447   1.61     pooka  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    448   1.61     pooka  */
    449    1.7     pooka vaddr_t
    450   1.61     pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    451    1.7     pooka {
    452   1.61     pooka 	struct pagerinfo *pgri;
    453   1.61     pooka 	vaddr_t curkva;
    454   1.61     pooka 	int i;
    455   1.61     pooka 
    456   1.61     pooka 	/* allocate structures */
    457   1.61     pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    458   1.61     pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    459   1.61     pooka 	pgri->pgr_npages = npages;
    460   1.61     pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    461   1.61     pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    462   1.61     pooka 
    463   1.61     pooka 	/* copy contents to "mapped" memory */
    464   1.61     pooka 	for (i = 0, curkva = pgri->pgr_kva;
    465   1.61     pooka 	    i < npages;
    466   1.61     pooka 	    i++, curkva += PAGE_SIZE) {
    467   1.61     pooka 		/*
    468   1.61     pooka 		 * We need to copy the previous contents of the pages to
    469   1.61     pooka 		 * the window even if we are reading from the
    470   1.61     pooka 		 * device, since the device might not fill the contents of
    471   1.61     pooka 		 * the full mapped range and we will end up corrupting
    472   1.61     pooka 		 * data when we unmap the window.
    473   1.61     pooka 		 */
    474   1.61     pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    475   1.61     pooka 		pgri->pgr_pgs[i] = pgs[i];
    476   1.61     pooka 	}
    477   1.61     pooka 
    478   1.61     pooka 	mutex_enter(&pagermtx);
    479   1.61     pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    480   1.61     pooka 	mutex_exit(&pagermtx);
    481    1.7     pooka 
    482   1.61     pooka 	return pgri->pgr_kva;
    483    1.7     pooka }
    484    1.7     pooka 
    485   1.61     pooka /*
    486   1.61     pooka  * map out the pager window.  return contents from VA to page storage
    487   1.61     pooka  * and free structures.
    488   1.61     pooka  *
    489   1.61     pooka  * Note: does not currently support partial frees
    490   1.61     pooka  */
    491   1.61     pooka void
    492   1.61     pooka uvm_pagermapout(vaddr_t kva, int npages)
    493    1.7     pooka {
    494   1.61     pooka 	struct pagerinfo *pgri;
    495   1.61     pooka 	vaddr_t curkva;
    496   1.61     pooka 	int i;
    497    1.7     pooka 
    498   1.61     pooka 	mutex_enter(&pagermtx);
    499   1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    500   1.61     pooka 		if (pgri->pgr_kva == kva)
    501   1.61     pooka 			break;
    502   1.61     pooka 	}
    503   1.61     pooka 	KASSERT(pgri);
    504   1.61     pooka 	if (pgri->pgr_npages != npages)
    505   1.61     pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    506   1.61     pooka 	LIST_REMOVE(pgri, pgr_entries);
    507   1.61     pooka 	mutex_exit(&pagermtx);
    508   1.61     pooka 
    509   1.61     pooka 	if (pgri->pgr_read) {
    510   1.61     pooka 		for (i = 0, curkva = pgri->pgr_kva;
    511   1.61     pooka 		    i < pgri->pgr_npages;
    512   1.61     pooka 		    i++, curkva += PAGE_SIZE) {
    513   1.61     pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    514   1.21     pooka 		}
    515   1.21     pooka 	}
    516   1.10     pooka 
    517   1.61     pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    518   1.61     pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    519   1.61     pooka 	kmem_free(pgri, sizeof(*pgri));
    520    1.7     pooka }
    521    1.7     pooka 
    522   1.61     pooka /*
    523   1.61     pooka  * convert va in pager window to page structure.
    524   1.61     pooka  * XXX: how expensive is this (global lock, list traversal)?
    525   1.61     pooka  */
    526   1.14     pooka struct vm_page *
    527   1.14     pooka uvm_pageratop(vaddr_t va)
    528   1.14     pooka {
    529   1.61     pooka 	struct pagerinfo *pgri;
    530   1.61     pooka 	struct vm_page *pg = NULL;
    531   1.61     pooka 	int i;
    532   1.14     pooka 
    533   1.61     pooka 	mutex_enter(&pagermtx);
    534   1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    535   1.61     pooka 		if (pgri->pgr_kva <= va
    536   1.61     pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    537   1.21     pooka 			break;
    538   1.61     pooka 	}
    539   1.61     pooka 	if (pgri) {
    540   1.61     pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    541   1.61     pooka 		pg = pgri->pgr_pgs[i];
    542   1.61     pooka 	}
    543   1.61     pooka 	mutex_exit(&pagermtx);
    544   1.21     pooka 
    545   1.61     pooka 	return pg;
    546   1.61     pooka }
    547   1.15     pooka 
    548   1.97     pooka /*
    549   1.97     pooka  * Called with the vm object locked.
    550   1.97     pooka  *
    551   1.97     pooka  * Put vnode object pages at the end of the access queue to indicate
    552   1.97     pooka  * they have been recently accessed and should not be immediate
    553   1.97     pooka  * candidates for pageout.  Do not do this for lookups done by
    554   1.97     pooka  * the pagedaemon to mimic pmap_kentered mappings which don't track
    555   1.97     pooka  * access information.
    556   1.97     pooka  */
    557   1.61     pooka struct vm_page *
    558   1.61     pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    559   1.61     pooka {
    560   1.92     pooka 	struct vm_page *pg;
    561   1.97     pooka 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    562   1.61     pooka 
    563   1.96     rmind 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    564   1.97     pooka 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    565   1.92     pooka 		mutex_enter(&uvm_pageqlock);
    566   1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    567   1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    568   1.92     pooka 		mutex_exit(&uvm_pageqlock);
    569   1.92     pooka 	}
    570   1.92     pooka 
    571   1.92     pooka 	return pg;
    572   1.14     pooka }
    573   1.14     pooka 
    574    1.7     pooka void
    575   1.22     pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    576   1.22     pooka {
    577   1.22     pooka 	struct vm_page *pg;
    578   1.22     pooka 	int i;
    579   1.22     pooka 
    580   1.94     pooka 	KASSERT(npgs > 0);
    581  1.115     rmind 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    582   1.94     pooka 
    583   1.22     pooka 	for (i = 0; i < npgs; i++) {
    584   1.22     pooka 		pg = pgs[i];
    585   1.22     pooka 		if (pg == NULL)
    586   1.22     pooka 			continue;
    587   1.22     pooka 
    588   1.22     pooka 		KASSERT(pg->flags & PG_BUSY);
    589   1.22     pooka 		if (pg->flags & PG_WANTED)
    590   1.22     pooka 			wakeup(pg);
    591   1.36     pooka 		if (pg->flags & PG_RELEASED)
    592   1.36     pooka 			uvm_pagefree(pg);
    593   1.36     pooka 		else
    594   1.36     pooka 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    595   1.22     pooka 	}
    596   1.22     pooka }
    597   1.22     pooka 
    598   1.22     pooka void
    599    1.7     pooka uvm_estimatepageable(int *active, int *inactive)
    600    1.7     pooka {
    601    1.7     pooka 
    602   1.19     pooka 	/* XXX: guessing game */
    603   1.19     pooka 	*active = 1024;
    604   1.19     pooka 	*inactive = 1024;
    605    1.7     pooka }
    606    1.7     pooka 
    607   1.41     pooka bool
    608   1.41     pooka vm_map_starved_p(struct vm_map *map)
    609   1.41     pooka {
    610   1.41     pooka 
    611   1.80     pooka 	if (map->flags & VM_MAP_WANTVA)
    612   1.80     pooka 		return true;
    613   1.80     pooka 
    614   1.41     pooka 	return false;
    615   1.41     pooka }
    616   1.41     pooka 
    617   1.41     pooka int
    618   1.41     pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    619   1.41     pooka {
    620   1.41     pooka 
    621   1.41     pooka 	panic("%s: unimplemented", __func__);
    622   1.41     pooka }
    623   1.41     pooka 
    624   1.41     pooka void
    625   1.41     pooka uvm_unloan(void *v, int npages, int flags)
    626   1.41     pooka {
    627   1.41     pooka 
    628   1.41     pooka 	panic("%s: unimplemented", __func__);
    629   1.41     pooka }
    630   1.41     pooka 
    631   1.43     pooka int
    632   1.43     pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    633   1.43     pooka 	struct vm_page **opp)
    634   1.43     pooka {
    635   1.43     pooka 
    636   1.72     pooka 	return EBUSY;
    637   1.43     pooka }
    638   1.43     pooka 
    639  1.116       mrg struct vm_page *
    640  1.116       mrg uvm_loanbreak(struct vm_page *pg)
    641  1.116       mrg {
    642  1.116       mrg 
    643  1.116       mrg 	panic("%s: unimplemented", __func__);
    644  1.116       mrg }
    645  1.116       mrg 
    646  1.116       mrg void
    647  1.116       mrg ubc_purge(struct uvm_object *uobj)
    648  1.116       mrg {
    649  1.116       mrg 
    650  1.116       mrg }
    651  1.116       mrg 
    652   1.73     pooka #ifdef DEBUGPRINT
    653   1.56     pooka void
    654   1.56     pooka uvm_object_printit(struct uvm_object *uobj, bool full,
    655   1.56     pooka 	void (*pr)(const char *, ...))
    656   1.56     pooka {
    657   1.56     pooka 
    658   1.75     pooka 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    659   1.56     pooka }
    660   1.73     pooka #endif
    661   1.56     pooka 
    662   1.68     pooka vaddr_t
    663   1.68     pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    664   1.68     pooka {
    665   1.68     pooka 
    666   1.68     pooka 	return 0;
    667   1.68     pooka }
    668   1.68     pooka 
    669   1.71     pooka int
    670   1.71     pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    671   1.71     pooka 	vm_prot_t prot, bool set_max)
    672   1.71     pooka {
    673   1.71     pooka 
    674   1.71     pooka 	return EOPNOTSUPP;
    675   1.71     pooka }
    676   1.71     pooka 
    677    1.9     pooka /*
    678   1.12     pooka  * UVM km
    679   1.12     pooka  */
    680   1.12     pooka 
    681   1.12     pooka vaddr_t
    682   1.12     pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    683   1.12     pooka {
    684   1.82     pooka 	void *rv, *desired = NULL;
    685   1.50     pooka 	int alignbit, error;
    686   1.50     pooka 
    687   1.82     pooka #ifdef __x86_64__
    688   1.82     pooka 	/*
    689   1.82     pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    690   1.82     pooka 	 * This is because NetBSD kernel modules are compiled
    691   1.82     pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    692   1.82     pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    693   1.82     pooka 	 * anywhere except the lowest or highest 2GB, it will not
    694   1.82     pooka 	 * work.  Since userspace does not have access to the highest
    695   1.82     pooka 	 * 2GB, use the lowest 2GB.
    696   1.82     pooka 	 *
    697   1.82     pooka 	 * Note: this assumes the rump kernel resides in
    698   1.82     pooka 	 * the lowest 2GB as well.
    699   1.82     pooka 	 *
    700   1.82     pooka 	 * Note2: yes, it's a quick hack, but since this the only
    701   1.82     pooka 	 * place where we care about the map we're allocating from,
    702   1.82     pooka 	 * just use a simple "if" instead of coming up with a fancy
    703   1.82     pooka 	 * generic solution.
    704   1.82     pooka 	 */
    705   1.82     pooka 	extern struct vm_map *module_map;
    706   1.82     pooka 	if (map == module_map) {
    707   1.82     pooka 		desired = (void *)(0x80000000 - size);
    708   1.82     pooka 	}
    709   1.82     pooka #endif
    710   1.82     pooka 
    711   1.50     pooka 	alignbit = 0;
    712   1.50     pooka 	if (align) {
    713   1.50     pooka 		alignbit = ffs(align)-1;
    714   1.50     pooka 	}
    715   1.50     pooka 
    716   1.82     pooka 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    717   1.81     pooka 	    &error);
    718   1.50     pooka 	if (rv == NULL) {
    719   1.50     pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    720   1.50     pooka 			return 0;
    721   1.50     pooka 		else
    722   1.50     pooka 			panic("uvm_km_alloc failed");
    723   1.50     pooka 	}
    724   1.12     pooka 
    725   1.50     pooka 	if (flags & UVM_KMF_ZERO)
    726   1.12     pooka 		memset(rv, 0, size);
    727   1.12     pooka 
    728   1.12     pooka 	return (vaddr_t)rv;
    729   1.12     pooka }
    730   1.12     pooka 
    731   1.12     pooka void
    732   1.12     pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    733   1.12     pooka {
    734   1.12     pooka 
    735   1.50     pooka 	rumpuser_unmap((void *)vaddr, size);
    736   1.12     pooka }
    737   1.12     pooka 
    738   1.12     pooka struct vm_map *
    739   1.12     pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    740  1.121      para 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    741   1.12     pooka {
    742   1.12     pooka 
    743   1.12     pooka 	return (struct vm_map *)417416;
    744   1.12     pooka }
    745   1.40     pooka 
    746  1.121      para int
    747  1.121      para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    748  1.121      para     vmem_addr_t *addr)
    749   1.40     pooka {
    750  1.121      para 	vaddr_t va;
    751  1.121      para 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    752  1.121      para 	    (flags & VM_SLEEP), "kmalloc");
    753   1.40     pooka 
    754  1.121      para 	if (va) {
    755  1.121      para 		*addr = va;
    756  1.121      para 		return 0;
    757  1.121      para 	} else {
    758  1.121      para 		return ENOMEM;
    759  1.121      para 	}
    760   1.40     pooka }
    761   1.40     pooka 
    762   1.40     pooka void
    763  1.121      para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    764   1.40     pooka {
    765   1.40     pooka 
    766  1.121      para 	rump_hyperfree((void *)addr, size);
    767   1.74     pooka }
    768   1.74     pooka 
    769   1.57     pooka /*
    770  1.102     pooka  * VM space locking routines.  We don't really have to do anything,
    771  1.102     pooka  * since the pages are always "wired" (both local and remote processes).
    772   1.57     pooka  */
    773   1.57     pooka int
    774   1.57     pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    775   1.57     pooka {
    776   1.57     pooka 
    777   1.57     pooka 	return 0;
    778   1.57     pooka }
    779   1.57     pooka 
    780   1.57     pooka void
    781   1.57     pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    782   1.57     pooka {
    783   1.57     pooka 
    784   1.57     pooka }
    785   1.57     pooka 
    786  1.102     pooka /*
    787  1.102     pooka  * For the local case the buffer mappers don't need to do anything.
    788  1.102     pooka  * For the remote case we need to reserve space and copy data in or
    789  1.102     pooka  * out, depending on B_READ/B_WRITE.
    790  1.102     pooka  */
    791  1.111     pooka int
    792   1.57     pooka vmapbuf(struct buf *bp, vsize_t len)
    793   1.57     pooka {
    794  1.111     pooka 	int error = 0;
    795   1.57     pooka 
    796   1.57     pooka 	bp->b_saveaddr = bp->b_data;
    797  1.102     pooka 
    798  1.102     pooka 	/* remote case */
    799  1.106     pooka 	if (!RUMP_LOCALPROC_P(curproc)) {
    800  1.102     pooka 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    801  1.102     pooka 		if (BUF_ISWRITE(bp)) {
    802  1.111     pooka 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    803  1.111     pooka 			if (error) {
    804  1.111     pooka 				rump_hyperfree(bp->b_data, len);
    805  1.111     pooka 				bp->b_data = bp->b_saveaddr;
    806  1.111     pooka 				bp->b_saveaddr = 0;
    807  1.111     pooka 			}
    808  1.102     pooka 		}
    809  1.102     pooka 	}
    810  1.111     pooka 
    811  1.111     pooka 	return error;
    812   1.57     pooka }
    813   1.57     pooka 
    814   1.57     pooka void
    815   1.57     pooka vunmapbuf(struct buf *bp, vsize_t len)
    816   1.57     pooka {
    817   1.57     pooka 
    818  1.102     pooka 	/* remote case */
    819  1.106     pooka 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    820  1.102     pooka 		if (BUF_ISREAD(bp)) {
    821  1.110     pooka 			bp->b_error = copyout_proc(bp->b_proc,
    822  1.102     pooka 			    bp->b_data, bp->b_saveaddr, len);
    823  1.102     pooka 		}
    824  1.102     pooka 		rump_hyperfree(bp->b_data, len);
    825  1.102     pooka 	}
    826  1.102     pooka 
    827   1.57     pooka 	bp->b_data = bp->b_saveaddr;
    828   1.57     pooka 	bp->b_saveaddr = 0;
    829   1.57     pooka }
    830   1.61     pooka 
    831   1.61     pooka void
    832   1.83     pooka uvmspace_addref(struct vmspace *vm)
    833   1.83     pooka {
    834   1.83     pooka 
    835   1.83     pooka 	/*
    836  1.103     pooka 	 * No dynamically allocated vmspaces exist.
    837   1.83     pooka 	 */
    838   1.83     pooka }
    839   1.83     pooka 
    840   1.83     pooka void
    841   1.66     pooka uvmspace_free(struct vmspace *vm)
    842   1.66     pooka {
    843   1.66     pooka 
    844   1.66     pooka 	/* nothing for now */
    845   1.66     pooka }
    846   1.66     pooka 
    847   1.61     pooka /*
    848   1.61     pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    849   1.61     pooka  */
    850   1.61     pooka 
    851   1.61     pooka void
    852   1.61     pooka uvm_pageactivate(struct vm_page *pg)
    853   1.61     pooka {
    854   1.61     pooka 
    855   1.61     pooka 	/* nada */
    856   1.61     pooka }
    857   1.61     pooka 
    858   1.61     pooka void
    859   1.61     pooka uvm_pagedeactivate(struct vm_page *pg)
    860   1.61     pooka {
    861   1.61     pooka 
    862   1.61     pooka 	/* nada */
    863   1.61     pooka }
    864   1.61     pooka 
    865   1.61     pooka void
    866   1.61     pooka uvm_pagedequeue(struct vm_page *pg)
    867   1.61     pooka {
    868   1.61     pooka 
    869   1.61     pooka 	/* nada*/
    870   1.61     pooka }
    871   1.61     pooka 
    872   1.61     pooka void
    873   1.61     pooka uvm_pageenqueue(struct vm_page *pg)
    874   1.61     pooka {
    875   1.61     pooka 
    876   1.61     pooka 	/* nada */
    877   1.61     pooka }
    878   1.80     pooka 
    879   1.88     pooka void
    880   1.88     pooka uvmpdpol_anfree(struct vm_anon *an)
    881   1.88     pooka {
    882   1.88     pooka 
    883   1.88     pooka 	/* nada */
    884   1.88     pooka }
    885   1.88     pooka 
    886   1.80     pooka /*
    887   1.99  uebayasi  * Physical address accessors.
    888   1.99  uebayasi  */
    889   1.99  uebayasi 
    890   1.99  uebayasi struct vm_page *
    891   1.99  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    892   1.99  uebayasi {
    893   1.99  uebayasi 
    894   1.99  uebayasi 	return NULL;
    895   1.99  uebayasi }
    896   1.99  uebayasi 
    897   1.99  uebayasi paddr_t
    898   1.99  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
    899   1.99  uebayasi {
    900   1.99  uebayasi 
    901   1.99  uebayasi 	return 0;
    902   1.99  uebayasi }
    903   1.99  uebayasi 
    904   1.99  uebayasi /*
    905   1.80     pooka  * Routines related to the Page Baroness.
    906   1.80     pooka  */
    907   1.80     pooka 
    908   1.80     pooka void
    909   1.80     pooka uvm_wait(const char *msg)
    910   1.80     pooka {
    911   1.80     pooka 
    912   1.80     pooka 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    913   1.80     pooka 		panic("pagedaemon out of memory");
    914   1.80     pooka 	if (__predict_false(rump_threads == 0))
    915   1.80     pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    916   1.80     pooka 
    917   1.80     pooka 	mutex_enter(&pdaemonmtx);
    918   1.80     pooka 	pdaemon_waiters++;
    919   1.80     pooka 	cv_signal(&pdaemoncv);
    920   1.80     pooka 	cv_wait(&oomwait, &pdaemonmtx);
    921   1.80     pooka 	mutex_exit(&pdaemonmtx);
    922   1.80     pooka }
    923   1.80     pooka 
    924   1.80     pooka void
    925   1.80     pooka uvm_pageout_start(int npages)
    926   1.80     pooka {
    927   1.80     pooka 
    928  1.113     pooka 	mutex_enter(&pdaemonmtx);
    929  1.113     pooka 	uvmexp.paging += npages;
    930  1.113     pooka 	mutex_exit(&pdaemonmtx);
    931   1.80     pooka }
    932   1.80     pooka 
    933   1.80     pooka void
    934   1.80     pooka uvm_pageout_done(int npages)
    935   1.80     pooka {
    936   1.80     pooka 
    937  1.113     pooka 	if (!npages)
    938  1.113     pooka 		return;
    939  1.113     pooka 
    940  1.113     pooka 	mutex_enter(&pdaemonmtx);
    941  1.113     pooka 	KASSERT(uvmexp.paging >= npages);
    942  1.113     pooka 	uvmexp.paging -= npages;
    943  1.113     pooka 
    944  1.113     pooka 	if (pdaemon_waiters) {
    945  1.113     pooka 		pdaemon_waiters = 0;
    946  1.113     pooka 		cv_broadcast(&oomwait);
    947  1.113     pooka 	}
    948  1.113     pooka 	mutex_exit(&pdaemonmtx);
    949   1.80     pooka }
    950   1.80     pooka 
    951   1.95     pooka static bool
    952  1.104     pooka processpage(struct vm_page *pg, bool *lockrunning)
    953   1.95     pooka {
    954   1.95     pooka 	struct uvm_object *uobj;
    955   1.95     pooka 
    956   1.95     pooka 	uobj = pg->uobject;
    957  1.115     rmind 	if (mutex_tryenter(uobj->vmobjlock)) {
    958   1.95     pooka 		if ((pg->flags & PG_BUSY) == 0) {
    959   1.95     pooka 			mutex_exit(&uvm_pageqlock);
    960   1.95     pooka 			uobj->pgops->pgo_put(uobj, pg->offset,
    961   1.95     pooka 			    pg->offset + PAGE_SIZE,
    962   1.95     pooka 			    PGO_CLEANIT|PGO_FREE);
    963  1.115     rmind 			KASSERT(!mutex_owned(uobj->vmobjlock));
    964   1.95     pooka 			return true;
    965   1.95     pooka 		} else {
    966  1.115     rmind 			mutex_exit(uobj->vmobjlock);
    967   1.95     pooka 		}
    968  1.104     pooka 	} else if (*lockrunning == false && ncpu > 1) {
    969  1.104     pooka 		CPU_INFO_ITERATOR cii;
    970  1.104     pooka 		struct cpu_info *ci;
    971  1.104     pooka 		struct lwp *l;
    972  1.104     pooka 
    973  1.115     rmind 		l = mutex_owner(uobj->vmobjlock);
    974  1.104     pooka 		for (CPU_INFO_FOREACH(cii, ci)) {
    975  1.104     pooka 			if (ci->ci_curlwp == l) {
    976  1.104     pooka 				*lockrunning = true;
    977  1.104     pooka 				break;
    978  1.104     pooka 			}
    979  1.104     pooka 		}
    980   1.95     pooka 	}
    981   1.95     pooka 
    982   1.95     pooka 	return false;
    983   1.95     pooka }
    984   1.95     pooka 
    985   1.80     pooka /*
    986   1.92     pooka  * The Diabolical pageDaemon Director (DDD).
    987  1.113     pooka  *
    988  1.113     pooka  * This routine can always use better heuristics.
    989   1.80     pooka  */
    990   1.80     pooka void
    991   1.80     pooka uvm_pageout(void *arg)
    992   1.80     pooka {
    993   1.92     pooka 	struct vm_page *pg;
    994   1.80     pooka 	struct pool *pp, *pp_first;
    995   1.92     pooka 	int cleaned, skip, skipped;
    996  1.113     pooka 	int waspaging;
    997  1.113     pooka 	bool succ;
    998  1.104     pooka 	bool lockrunning;
    999   1.80     pooka 
   1000   1.80     pooka 	mutex_enter(&pdaemonmtx);
   1001   1.80     pooka 	for (;;) {
   1002  1.113     pooka 		if (!NEED_PAGEDAEMON()) {
   1003   1.92     pooka 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1004   1.92     pooka 		}
   1005   1.92     pooka 
   1006  1.113     pooka 		if (pdaemon_waiters) {
   1007  1.113     pooka 			pdaemon_waiters = 0;
   1008  1.113     pooka 			cv_broadcast(&oomwait);
   1009  1.104     pooka 		}
   1010   1.92     pooka 
   1011  1.113     pooka 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1012  1.113     pooka 		uvmexp.pdwoke++;
   1013  1.113     pooka 		waspaging = uvmexp.paging;
   1014  1.113     pooka 
   1015   1.92     pooka 		/* tell the world that we are hungry */
   1016   1.80     pooka 		kernel_map->flags |= VM_MAP_WANTVA;
   1017   1.80     pooka 		mutex_exit(&pdaemonmtx);
   1018   1.80     pooka 
   1019   1.92     pooka 		/*
   1020   1.92     pooka 		 * step one: reclaim the page cache.  this should give
   1021   1.92     pooka 		 * us the biggest earnings since whole pages are released
   1022   1.92     pooka 		 * into backing memory.
   1023   1.92     pooka 		 */
   1024   1.92     pooka 		pool_cache_reclaim(&pagecache);
   1025   1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1026   1.92     pooka 			mutex_enter(&pdaemonmtx);
   1027   1.92     pooka 			continue;
   1028   1.92     pooka 		}
   1029   1.92     pooka 
   1030   1.92     pooka 		/*
   1031   1.92     pooka 		 * Ok, so that didn't help.  Next, try to hunt memory
   1032   1.92     pooka 		 * by pushing out vnode pages.  The pages might contain
   1033   1.92     pooka 		 * useful cached data, but we need the memory.
   1034   1.92     pooka 		 */
   1035   1.92     pooka 		cleaned = 0;
   1036   1.92     pooka 		skip = 0;
   1037  1.104     pooka 		lockrunning = false;
   1038   1.92     pooka  again:
   1039   1.92     pooka 		mutex_enter(&uvm_pageqlock);
   1040   1.92     pooka 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1041   1.92     pooka 			skipped = 0;
   1042   1.92     pooka 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1043   1.92     pooka 
   1044   1.92     pooka 				/*
   1045   1.92     pooka 				 * skip over pages we _might_ have tried
   1046   1.92     pooka 				 * to handle earlier.  they might not be
   1047   1.92     pooka 				 * exactly the same ones, but I'm not too
   1048   1.92     pooka 				 * concerned.
   1049   1.92     pooka 				 */
   1050   1.92     pooka 				while (skipped++ < skip)
   1051   1.92     pooka 					continue;
   1052   1.92     pooka 
   1053  1.104     pooka 				if (processpage(pg, &lockrunning)) {
   1054   1.95     pooka 					cleaned++;
   1055   1.95     pooka 					goto again;
   1056   1.92     pooka 				}
   1057   1.92     pooka 
   1058   1.92     pooka 				skip++;
   1059   1.92     pooka 			}
   1060   1.92     pooka 			break;
   1061   1.92     pooka 		}
   1062   1.92     pooka 		mutex_exit(&uvm_pageqlock);
   1063   1.92     pooka 
   1064   1.92     pooka 		/*
   1065  1.104     pooka 		 * Ok, someone is running with an object lock held.
   1066  1.104     pooka 		 * We want to yield the host CPU to make sure the
   1067  1.104     pooka 		 * thread is not parked on the host.  Since sched_yield()
   1068  1.104     pooka 		 * doesn't appear to do anything on NetBSD, nanosleep
   1069  1.104     pooka 		 * for the smallest possible time and hope we're back in
   1070  1.104     pooka 		 * the game soon.
   1071  1.104     pooka 		 */
   1072  1.104     pooka 		if (cleaned == 0 && lockrunning) {
   1073  1.104     pooka 			uint64_t sec, nsec;
   1074  1.104     pooka 
   1075  1.104     pooka 			sec = 0;
   1076  1.104     pooka 			nsec = 1;
   1077  1.104     pooka 			rumpuser_nanosleep(&sec, &nsec, NULL);
   1078  1.104     pooka 
   1079  1.104     pooka 			lockrunning = false;
   1080  1.104     pooka 			skip = 0;
   1081  1.104     pooka 
   1082  1.104     pooka 			/* and here we go again */
   1083  1.104     pooka 			goto again;
   1084  1.104     pooka 		}
   1085  1.104     pooka 
   1086  1.104     pooka 		/*
   1087   1.92     pooka 		 * And of course we need to reclaim the page cache
   1088   1.92     pooka 		 * again to actually release memory.
   1089   1.92     pooka 		 */
   1090   1.92     pooka 		pool_cache_reclaim(&pagecache);
   1091   1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1092   1.92     pooka 			mutex_enter(&pdaemonmtx);
   1093   1.92     pooka 			continue;
   1094   1.92     pooka 		}
   1095   1.92     pooka 
   1096   1.92     pooka 		/*
   1097   1.92     pooka 		 * And then drain the pools.  Wipe them out ... all of them.
   1098   1.92     pooka 		 */
   1099  1.127       jym 		for (pp_first = NULL;;) {
   1100  1.127       jym 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
   1101   1.92     pooka 
   1102  1.127       jym 			succ = pool_drain(&pp);
   1103  1.127       jym 			if (succ || pp == pp_first)
   1104   1.80     pooka 				break;
   1105  1.127       jym 
   1106  1.127       jym 			if (pp_first == NULL)
   1107  1.127       jym 				pp_first = pp;
   1108   1.80     pooka 		}
   1109   1.92     pooka 
   1110   1.92     pooka 		/*
   1111   1.92     pooka 		 * Need to use PYEC on our bag of tricks.
   1112   1.92     pooka 		 * Unfortunately, the wife just borrowed it.
   1113   1.92     pooka 		 */
   1114   1.80     pooka 
   1115  1.113     pooka 		mutex_enter(&pdaemonmtx);
   1116  1.113     pooka 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1117  1.113     pooka 		    uvmexp.paging == 0) {
   1118   1.80     pooka 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1119   1.80     pooka 			    "memory ... sleeping (deadlock?)\n");
   1120  1.113     pooka 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
   1121   1.80     pooka 		}
   1122   1.80     pooka 	}
   1123   1.80     pooka 
   1124   1.80     pooka 	panic("you can swap out any time you like, but you can never leave");
   1125   1.80     pooka }
   1126   1.80     pooka 
   1127   1.80     pooka void
   1128   1.80     pooka uvm_kick_pdaemon()
   1129   1.80     pooka {
   1130   1.80     pooka 
   1131   1.92     pooka 	/*
   1132   1.92     pooka 	 * Wake up the diabolical pagedaemon director if we are over
   1133   1.92     pooka 	 * 90% of the memory limit.  This is a complete and utter
   1134   1.92     pooka 	 * stetson-harrison decision which you are allowed to finetune.
   1135   1.92     pooka 	 * Don't bother locking.  If we have some unflushed caches,
   1136   1.92     pooka 	 * other waker-uppers will deal with the issue.
   1137   1.92     pooka 	 */
   1138   1.92     pooka 	if (NEED_PAGEDAEMON()) {
   1139   1.92     pooka 		cv_signal(&pdaemoncv);
   1140   1.92     pooka 	}
   1141   1.80     pooka }
   1142   1.80     pooka 
   1143   1.80     pooka void *
   1144   1.80     pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1145   1.80     pooka {
   1146   1.84     pooka 	unsigned long newmem;
   1147   1.80     pooka 	void *rv;
   1148   1.80     pooka 
   1149   1.92     pooka 	uvm_kick_pdaemon(); /* ouch */
   1150   1.92     pooka 
   1151   1.84     pooka 	/* first we must be within the limit */
   1152   1.84     pooka  limitagain:
   1153   1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1154   1.84     pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1155   1.91     pooka 		if (newmem > rump_physmemlimit) {
   1156   1.84     pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1157  1.103     pooka 			if (!waitok) {
   1158   1.84     pooka 				return NULL;
   1159  1.103     pooka 			}
   1160   1.84     pooka 			uvm_wait(wmsg);
   1161   1.84     pooka 			goto limitagain;
   1162   1.84     pooka 		}
   1163   1.84     pooka 	}
   1164   1.84     pooka 
   1165   1.84     pooka 	/* second, we must get something from the backend */
   1166   1.80     pooka  again:
   1167   1.80     pooka 	rv = rumpuser_malloc(howmuch, alignment);
   1168   1.80     pooka 	if (__predict_false(rv == NULL && waitok)) {
   1169   1.80     pooka 		uvm_wait(wmsg);
   1170   1.80     pooka 		goto again;
   1171   1.80     pooka 	}
   1172   1.80     pooka 
   1173   1.80     pooka 	return rv;
   1174   1.80     pooka }
   1175   1.84     pooka 
   1176   1.84     pooka void
   1177   1.84     pooka rump_hyperfree(void *what, size_t size)
   1178   1.84     pooka {
   1179   1.84     pooka 
   1180   1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1181   1.84     pooka 		atomic_add_long(&curphysmem, -size);
   1182   1.84     pooka 	}
   1183   1.84     pooka 	rumpuser_free(what);
   1184   1.84     pooka }
   1185