vm.c revision 1.132 1 1.132 pooka /* $NetBSD: vm.c,v 1.132 2013/01/14 16:45:47 pooka Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.114 pooka * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.76 pooka * Development of this software was supported by
7 1.76 pooka * The Finnish Cultural Foundation and the Research Foundation of
8 1.76 pooka * The Helsinki University of Technology.
9 1.1 pooka *
10 1.1 pooka * Redistribution and use in source and binary forms, with or without
11 1.1 pooka * modification, are permitted provided that the following conditions
12 1.1 pooka * are met:
13 1.1 pooka * 1. Redistributions of source code must retain the above copyright
14 1.1 pooka * notice, this list of conditions and the following disclaimer.
15 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer in the
17 1.1 pooka * documentation and/or other materials provided with the distribution.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka */
31 1.1 pooka
32 1.1 pooka /*
33 1.88 pooka * Virtual memory emulation routines.
34 1.1 pooka */
35 1.1 pooka
36 1.1 pooka /*
37 1.5 pooka * XXX: we abuse pg->uanon for the virtual address of the storage
38 1.1 pooka * for each page. phys_addr would fit the job description better,
39 1.1 pooka * except that it will create unnecessary lossage on some platforms
40 1.1 pooka * due to not being a pointer type.
41 1.1 pooka */
42 1.1 pooka
43 1.48 pooka #include <sys/cdefs.h>
44 1.132 pooka __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.132 2013/01/14 16:45:47 pooka Exp $");
45 1.48 pooka
46 1.1 pooka #include <sys/param.h>
47 1.40 pooka #include <sys/atomic.h>
48 1.80 pooka #include <sys/buf.h>
49 1.80 pooka #include <sys/kernel.h>
50 1.67 pooka #include <sys/kmem.h>
51 1.121 para #include <sys/vmem.h>
52 1.69 pooka #include <sys/mman.h>
53 1.1 pooka #include <sys/null.h>
54 1.1 pooka #include <sys/vnode.h>
55 1.1 pooka
56 1.34 pooka #include <machine/pmap.h>
57 1.34 pooka
58 1.34 pooka #include <rump/rumpuser.h>
59 1.34 pooka
60 1.1 pooka #include <uvm/uvm.h>
61 1.56 pooka #include <uvm/uvm_ddb.h>
62 1.88 pooka #include <uvm/uvm_pdpolicy.h>
63 1.1 pooka #include <uvm/uvm_prot.h>
64 1.58 he #include <uvm/uvm_readahead.h>
65 1.1 pooka
66 1.13 pooka #include "rump_private.h"
67 1.91 pooka #include "rump_vfs_private.h"
68 1.1 pooka
69 1.25 ad kmutex_t uvm_pageqlock;
70 1.88 pooka kmutex_t uvm_swap_data_lock;
71 1.25 ad
72 1.1 pooka struct uvmexp uvmexp;
73 1.7 pooka struct uvm uvm;
74 1.1 pooka
75 1.112 pooka #ifdef __uvmexp_pagesize
76 1.123 martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
77 1.123 martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
78 1.123 martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
79 1.112 pooka #endif
80 1.112 pooka
81 1.1 pooka struct vm_map rump_vmmap;
82 1.1 pooka
83 1.121 para static struct vm_map kernel_map_store;
84 1.121 para struct vm_map *kernel_map = &kernel_map_store;
85 1.121 para
86 1.130 pooka static struct vm_map module_map_store;
87 1.130 pooka extern struct vm_map *module_map;
88 1.130 pooka
89 1.121 para vmem_t *kmem_arena;
90 1.121 para vmem_t *kmem_va_arena;
91 1.35 pooka
92 1.80 pooka static unsigned int pdaemon_waiters;
93 1.80 pooka static kmutex_t pdaemonmtx;
94 1.80 pooka static kcondvar_t pdaemoncv, oomwait;
95 1.80 pooka
96 1.91 pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
97 1.84 pooka static unsigned long curphysmem;
98 1.92 pooka static unsigned long dddlim; /* 90% of memory limit used */
99 1.92 pooka #define NEED_PAGEDAEMON() \
100 1.92 pooka (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
101 1.92 pooka
102 1.92 pooka /*
103 1.92 pooka * Try to free two pages worth of pages from objects.
104 1.92 pooka * If this succesfully frees a full page cache page, we'll
105 1.120 yamt * free the released page plus PAGE_SIZE/sizeof(vm_page).
106 1.92 pooka */
107 1.92 pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
108 1.92 pooka
109 1.92 pooka /*
110 1.92 pooka * Keep a list of least recently used pages. Since the only way a
111 1.92 pooka * rump kernel can "access" a page is via lookup, we put the page
112 1.92 pooka * at the back of queue every time a lookup for it is done. If the
113 1.92 pooka * page is in front of this global queue and we're short of memory,
114 1.92 pooka * it's a candidate for pageout.
115 1.92 pooka */
116 1.92 pooka static struct pglist vmpage_lruqueue;
117 1.92 pooka static unsigned vmpage_onqueue;
118 1.84 pooka
119 1.89 pooka static int
120 1.96 rmind pg_compare_key(void *ctx, const void *n, const void *key)
121 1.89 pooka {
122 1.89 pooka voff_t a = ((const struct vm_page *)n)->offset;
123 1.89 pooka voff_t b = *(const voff_t *)key;
124 1.89 pooka
125 1.89 pooka if (a < b)
126 1.96 rmind return -1;
127 1.96 rmind else if (a > b)
128 1.89 pooka return 1;
129 1.89 pooka else
130 1.89 pooka return 0;
131 1.89 pooka }
132 1.89 pooka
133 1.89 pooka static int
134 1.96 rmind pg_compare_nodes(void *ctx, const void *n1, const void *n2)
135 1.89 pooka {
136 1.89 pooka
137 1.96 rmind return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
138 1.89 pooka }
139 1.89 pooka
140 1.96 rmind const rb_tree_ops_t uvm_page_tree_ops = {
141 1.89 pooka .rbto_compare_nodes = pg_compare_nodes,
142 1.89 pooka .rbto_compare_key = pg_compare_key,
143 1.96 rmind .rbto_node_offset = offsetof(struct vm_page, rb_node),
144 1.96 rmind .rbto_context = NULL
145 1.89 pooka };
146 1.89 pooka
147 1.1 pooka /*
148 1.1 pooka * vm pages
149 1.1 pooka */
150 1.1 pooka
151 1.90 pooka static int
152 1.90 pooka pgctor(void *arg, void *obj, int flags)
153 1.90 pooka {
154 1.90 pooka struct vm_page *pg = obj;
155 1.90 pooka
156 1.90 pooka memset(pg, 0, sizeof(*pg));
157 1.103 pooka pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
158 1.103 pooka (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
159 1.103 pooka return pg->uanon == NULL;
160 1.90 pooka }
161 1.90 pooka
162 1.90 pooka static void
163 1.90 pooka pgdtor(void *arg, void *obj)
164 1.90 pooka {
165 1.90 pooka struct vm_page *pg = obj;
166 1.90 pooka
167 1.90 pooka rump_hyperfree(pg->uanon, PAGE_SIZE);
168 1.90 pooka }
169 1.90 pooka
170 1.90 pooka static struct pool_cache pagecache;
171 1.90 pooka
172 1.92 pooka /*
173 1.92 pooka * Called with the object locked. We don't support anons.
174 1.92 pooka */
175 1.1 pooka struct vm_page *
176 1.76 pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
177 1.76 pooka int flags, int strat, int free_list)
178 1.1 pooka {
179 1.1 pooka struct vm_page *pg;
180 1.1 pooka
181 1.115 rmind KASSERT(uobj && mutex_owned(uobj->vmobjlock));
182 1.92 pooka KASSERT(anon == NULL);
183 1.92 pooka
184 1.103 pooka pg = pool_cache_get(&pagecache, PR_NOWAIT);
185 1.104 pooka if (__predict_false(pg == NULL)) {
186 1.103 pooka return NULL;
187 1.104 pooka }
188 1.103 pooka
189 1.1 pooka pg->offset = off;
190 1.5 pooka pg->uobject = uobj;
191 1.1 pooka
192 1.22 pooka pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
193 1.90 pooka if (flags & UVM_PGA_ZERO) {
194 1.90 pooka uvm_pagezero(pg);
195 1.90 pooka }
196 1.1 pooka
197 1.31 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
198 1.96 rmind (void)rb_tree_insert_node(&uobj->rb_tree, pg);
199 1.89 pooka
200 1.92 pooka /*
201 1.93 pooka * Don't put anons on the LRU page queue. We can't flush them
202 1.93 pooka * (there's no concept of swap in a rump kernel), so no reason
203 1.93 pooka * to bother with them.
204 1.92 pooka */
205 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
206 1.92 pooka atomic_inc_uint(&vmpage_onqueue);
207 1.92 pooka mutex_enter(&uvm_pageqlock);
208 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
209 1.92 pooka mutex_exit(&uvm_pageqlock);
210 1.92 pooka }
211 1.92 pooka
212 1.59 pooka uobj->uo_npages++;
213 1.21 pooka
214 1.1 pooka return pg;
215 1.1 pooka }
216 1.1 pooka
217 1.21 pooka /*
218 1.21 pooka * Release a page.
219 1.21 pooka *
220 1.22 pooka * Called with the vm object locked.
221 1.21 pooka */
222 1.1 pooka void
223 1.22 pooka uvm_pagefree(struct vm_page *pg)
224 1.1 pooka {
225 1.5 pooka struct uvm_object *uobj = pg->uobject;
226 1.1 pooka
227 1.92 pooka KASSERT(mutex_owned(&uvm_pageqlock));
228 1.115 rmind KASSERT(mutex_owned(uobj->vmobjlock));
229 1.92 pooka
230 1.22 pooka if (pg->flags & PG_WANTED)
231 1.22 pooka wakeup(pg);
232 1.22 pooka
233 1.92 pooka TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
234 1.92 pooka
235 1.59 pooka uobj->uo_npages--;
236 1.96 rmind rb_tree_remove_node(&uobj->rb_tree, pg);
237 1.92 pooka
238 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
239 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
240 1.92 pooka atomic_dec_uint(&vmpage_onqueue);
241 1.92 pooka }
242 1.92 pooka
243 1.90 pooka pool_cache_put(&pagecache, pg);
244 1.1 pooka }
245 1.1 pooka
246 1.15 pooka void
247 1.61 pooka uvm_pagezero(struct vm_page *pg)
248 1.15 pooka {
249 1.15 pooka
250 1.61 pooka pg->flags &= ~PG_CLEAN;
251 1.61 pooka memset((void *)pg->uanon, 0, PAGE_SIZE);
252 1.15 pooka }
253 1.15 pooka
254 1.1 pooka /*
255 1.1 pooka * Misc routines
256 1.1 pooka */
257 1.1 pooka
258 1.61 pooka static kmutex_t pagermtx;
259 1.61 pooka
260 1.1 pooka void
261 1.79 pooka uvm_init(void)
262 1.1 pooka {
263 1.84 pooka char buf[64];
264 1.84 pooka int error;
265 1.84 pooka
266 1.84 pooka if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
267 1.105 pooka unsigned long tmp;
268 1.105 pooka char *ep;
269 1.105 pooka int mult;
270 1.105 pooka
271 1.109 pooka tmp = strtoul(buf, &ep, 10);
272 1.105 pooka if (strlen(ep) > 1)
273 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
274 1.105 pooka
275 1.105 pooka /* mini-dehumanize-number */
276 1.105 pooka mult = 1;
277 1.105 pooka switch (*ep) {
278 1.105 pooka case 'k':
279 1.105 pooka mult = 1024;
280 1.105 pooka break;
281 1.105 pooka case 'm':
282 1.105 pooka mult = 1024*1024;
283 1.105 pooka break;
284 1.105 pooka case 'g':
285 1.105 pooka mult = 1024*1024*1024;
286 1.105 pooka break;
287 1.105 pooka case 0:
288 1.105 pooka break;
289 1.105 pooka default:
290 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
291 1.105 pooka }
292 1.105 pooka rump_physmemlimit = tmp * mult;
293 1.105 pooka
294 1.105 pooka if (rump_physmemlimit / mult != tmp)
295 1.105 pooka panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
296 1.84 pooka /* it's not like we'd get far with, say, 1 byte, but ... */
297 1.91 pooka if (rump_physmemlimit == 0)
298 1.105 pooka panic("uvm_init: no memory");
299 1.105 pooka
300 1.84 pooka #define HUMANIZE_BYTES 9
301 1.84 pooka CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
302 1.91 pooka format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
303 1.84 pooka #undef HUMANIZE_BYTES
304 1.92 pooka dddlim = 9 * (rump_physmemlimit / 10);
305 1.84 pooka } else {
306 1.84 pooka strlcpy(buf, "unlimited (host limit)", sizeof(buf));
307 1.84 pooka }
308 1.84 pooka aprint_verbose("total memory = %s\n", buf);
309 1.1 pooka
310 1.92 pooka TAILQ_INIT(&vmpage_lruqueue);
311 1.92 pooka
312 1.84 pooka uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
313 1.21 pooka
314 1.112 pooka #ifndef __uvmexp_pagesize
315 1.112 pooka uvmexp.pagesize = PAGE_SIZE;
316 1.112 pooka uvmexp.pagemask = PAGE_MASK;
317 1.112 pooka uvmexp.pageshift = PAGE_SHIFT;
318 1.112 pooka #else
319 1.112 pooka #define FAKE_PAGE_SHIFT 12
320 1.112 pooka uvmexp.pageshift = FAKE_PAGE_SHIFT;
321 1.112 pooka uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
322 1.112 pooka uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
323 1.112 pooka #undef FAKE_PAGE_SHIFT
324 1.112 pooka #endif
325 1.112 pooka
326 1.61 pooka mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
327 1.25 ad mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
328 1.88 pooka mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
329 1.35 pooka
330 1.80 pooka mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
331 1.80 pooka cv_init(&pdaemoncv, "pdaemon");
332 1.80 pooka cv_init(&oomwait, "oomwait");
333 1.80 pooka
334 1.130 pooka module_map = &module_map_store;
335 1.130 pooka
336 1.50 pooka kernel_map->pmap = pmap_kernel();
337 1.121 para
338 1.122 njoly pool_subsystem_init();
339 1.128 pooka
340 1.129 pooka #ifndef RUMP_UNREAL_ALLOCATORS
341 1.121 para vmem_bootstrap();
342 1.121 para kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
343 1.121 para NULL, NULL, NULL,
344 1.121 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
345 1.121 para
346 1.121 para vmem_init(kmem_arena);
347 1.121 para
348 1.121 para kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
349 1.121 para vmem_alloc, vmem_free, kmem_arena,
350 1.124 para 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
351 1.129 pooka #endif /* !RUMP_UNREAL_ALLOCATORS */
352 1.90 pooka
353 1.90 pooka pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
354 1.90 pooka "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
355 1.1 pooka }
356 1.1 pooka
357 1.83 pooka void
358 1.83 pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
359 1.83 pooka {
360 1.83 pooka
361 1.83 pooka vm->vm_map.pmap = pmap_kernel();
362 1.83 pooka vm->vm_refcnt = 1;
363 1.83 pooka }
364 1.1 pooka
365 1.126 martin bool
366 1.126 martin uvm_page_locked_p(struct vm_page *pg)
367 1.126 martin {
368 1.126 martin
369 1.126 martin if (pg->uobject != NULL) {
370 1.126 martin return mutex_owned(pg->uobject->vmobjlock);
371 1.126 martin }
372 1.126 martin return true;
373 1.126 martin }
374 1.126 martin
375 1.1 pooka void
376 1.7 pooka uvm_pagewire(struct vm_page *pg)
377 1.7 pooka {
378 1.7 pooka
379 1.7 pooka /* nada */
380 1.7 pooka }
381 1.7 pooka
382 1.7 pooka void
383 1.7 pooka uvm_pageunwire(struct vm_page *pg)
384 1.7 pooka {
385 1.7 pooka
386 1.7 pooka /* nada */
387 1.7 pooka }
388 1.7 pooka
389 1.83 pooka /* where's your schmonz now? */
390 1.83 pooka #define PUNLIMIT(a) \
391 1.83 pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
392 1.83 pooka void
393 1.83 pooka uvm_init_limits(struct proc *p)
394 1.83 pooka {
395 1.83 pooka
396 1.83 pooka PUNLIMIT(RLIMIT_STACK);
397 1.83 pooka PUNLIMIT(RLIMIT_DATA);
398 1.83 pooka PUNLIMIT(RLIMIT_RSS);
399 1.83 pooka PUNLIMIT(RLIMIT_AS);
400 1.83 pooka /* nice, cascade */
401 1.83 pooka }
402 1.83 pooka #undef PUNLIMIT
403 1.83 pooka
404 1.69 pooka /*
405 1.69 pooka * This satisfies the "disgusting mmap hack" used by proplib.
406 1.69 pooka * We probably should grow some more assertables to make sure we're
407 1.103 pooka * not satisfying anything we shouldn't be satisfying.
408 1.69 pooka */
409 1.49 pooka int
410 1.49 pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
411 1.49 pooka vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
412 1.49 pooka {
413 1.69 pooka void *uaddr;
414 1.69 pooka int error;
415 1.49 pooka
416 1.69 pooka if (prot != (VM_PROT_READ | VM_PROT_WRITE))
417 1.69 pooka panic("uvm_mmap() variant unsupported");
418 1.69 pooka if (flags != (MAP_PRIVATE | MAP_ANON))
419 1.69 pooka panic("uvm_mmap() variant unsupported");
420 1.98 pooka
421 1.69 pooka /* no reason in particular, but cf. uvm_default_mapaddr() */
422 1.69 pooka if (*addr != 0)
423 1.69 pooka panic("uvm_mmap() variant unsupported");
424 1.69 pooka
425 1.106 pooka if (RUMP_LOCALPROC_P(curproc)) {
426 1.98 pooka uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
427 1.98 pooka } else {
428 1.102 pooka error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
429 1.102 pooka size, &uaddr);
430 1.98 pooka }
431 1.69 pooka if (uaddr == NULL)
432 1.69 pooka return error;
433 1.69 pooka
434 1.69 pooka *addr = (vaddr_t)uaddr;
435 1.69 pooka return 0;
436 1.49 pooka }
437 1.49 pooka
438 1.61 pooka struct pagerinfo {
439 1.61 pooka vaddr_t pgr_kva;
440 1.61 pooka int pgr_npages;
441 1.61 pooka struct vm_page **pgr_pgs;
442 1.61 pooka bool pgr_read;
443 1.61 pooka
444 1.61 pooka LIST_ENTRY(pagerinfo) pgr_entries;
445 1.61 pooka };
446 1.61 pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
447 1.61 pooka
448 1.61 pooka /*
449 1.61 pooka * Pager "map" in routine. Instead of mapping, we allocate memory
450 1.61 pooka * and copy page contents there. Not optimal or even strictly
451 1.61 pooka * correct (the caller might modify the page contents after mapping
452 1.61 pooka * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
453 1.61 pooka */
454 1.7 pooka vaddr_t
455 1.61 pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
456 1.7 pooka {
457 1.61 pooka struct pagerinfo *pgri;
458 1.61 pooka vaddr_t curkva;
459 1.61 pooka int i;
460 1.61 pooka
461 1.61 pooka /* allocate structures */
462 1.61 pooka pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
463 1.61 pooka pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
464 1.61 pooka pgri->pgr_npages = npages;
465 1.61 pooka pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
466 1.61 pooka pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
467 1.61 pooka
468 1.61 pooka /* copy contents to "mapped" memory */
469 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
470 1.61 pooka i < npages;
471 1.61 pooka i++, curkva += PAGE_SIZE) {
472 1.61 pooka /*
473 1.61 pooka * We need to copy the previous contents of the pages to
474 1.61 pooka * the window even if we are reading from the
475 1.61 pooka * device, since the device might not fill the contents of
476 1.61 pooka * the full mapped range and we will end up corrupting
477 1.61 pooka * data when we unmap the window.
478 1.61 pooka */
479 1.61 pooka memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
480 1.61 pooka pgri->pgr_pgs[i] = pgs[i];
481 1.61 pooka }
482 1.61 pooka
483 1.61 pooka mutex_enter(&pagermtx);
484 1.61 pooka LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
485 1.61 pooka mutex_exit(&pagermtx);
486 1.7 pooka
487 1.61 pooka return pgri->pgr_kva;
488 1.7 pooka }
489 1.7 pooka
490 1.61 pooka /*
491 1.61 pooka * map out the pager window. return contents from VA to page storage
492 1.61 pooka * and free structures.
493 1.61 pooka *
494 1.61 pooka * Note: does not currently support partial frees
495 1.61 pooka */
496 1.61 pooka void
497 1.61 pooka uvm_pagermapout(vaddr_t kva, int npages)
498 1.7 pooka {
499 1.61 pooka struct pagerinfo *pgri;
500 1.61 pooka vaddr_t curkva;
501 1.61 pooka int i;
502 1.7 pooka
503 1.61 pooka mutex_enter(&pagermtx);
504 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
505 1.61 pooka if (pgri->pgr_kva == kva)
506 1.61 pooka break;
507 1.61 pooka }
508 1.61 pooka KASSERT(pgri);
509 1.61 pooka if (pgri->pgr_npages != npages)
510 1.61 pooka panic("uvm_pagermapout: partial unmapping not supported");
511 1.61 pooka LIST_REMOVE(pgri, pgr_entries);
512 1.61 pooka mutex_exit(&pagermtx);
513 1.61 pooka
514 1.61 pooka if (pgri->pgr_read) {
515 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
516 1.61 pooka i < pgri->pgr_npages;
517 1.61 pooka i++, curkva += PAGE_SIZE) {
518 1.61 pooka memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
519 1.21 pooka }
520 1.21 pooka }
521 1.10 pooka
522 1.61 pooka kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
523 1.61 pooka kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
524 1.61 pooka kmem_free(pgri, sizeof(*pgri));
525 1.7 pooka }
526 1.7 pooka
527 1.61 pooka /*
528 1.61 pooka * convert va in pager window to page structure.
529 1.61 pooka * XXX: how expensive is this (global lock, list traversal)?
530 1.61 pooka */
531 1.14 pooka struct vm_page *
532 1.14 pooka uvm_pageratop(vaddr_t va)
533 1.14 pooka {
534 1.61 pooka struct pagerinfo *pgri;
535 1.61 pooka struct vm_page *pg = NULL;
536 1.61 pooka int i;
537 1.14 pooka
538 1.61 pooka mutex_enter(&pagermtx);
539 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
540 1.61 pooka if (pgri->pgr_kva <= va
541 1.61 pooka && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
542 1.21 pooka break;
543 1.61 pooka }
544 1.61 pooka if (pgri) {
545 1.61 pooka i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
546 1.61 pooka pg = pgri->pgr_pgs[i];
547 1.61 pooka }
548 1.61 pooka mutex_exit(&pagermtx);
549 1.21 pooka
550 1.61 pooka return pg;
551 1.61 pooka }
552 1.15 pooka
553 1.97 pooka /*
554 1.97 pooka * Called with the vm object locked.
555 1.97 pooka *
556 1.97 pooka * Put vnode object pages at the end of the access queue to indicate
557 1.97 pooka * they have been recently accessed and should not be immediate
558 1.97 pooka * candidates for pageout. Do not do this for lookups done by
559 1.97 pooka * the pagedaemon to mimic pmap_kentered mappings which don't track
560 1.97 pooka * access information.
561 1.97 pooka */
562 1.61 pooka struct vm_page *
563 1.61 pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
564 1.61 pooka {
565 1.92 pooka struct vm_page *pg;
566 1.97 pooka bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
567 1.61 pooka
568 1.96 rmind pg = rb_tree_find_node(&uobj->rb_tree, &off);
569 1.97 pooka if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
570 1.92 pooka mutex_enter(&uvm_pageqlock);
571 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
572 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
573 1.92 pooka mutex_exit(&uvm_pageqlock);
574 1.92 pooka }
575 1.92 pooka
576 1.92 pooka return pg;
577 1.14 pooka }
578 1.14 pooka
579 1.7 pooka void
580 1.22 pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
581 1.22 pooka {
582 1.22 pooka struct vm_page *pg;
583 1.22 pooka int i;
584 1.22 pooka
585 1.94 pooka KASSERT(npgs > 0);
586 1.115 rmind KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
587 1.94 pooka
588 1.22 pooka for (i = 0; i < npgs; i++) {
589 1.22 pooka pg = pgs[i];
590 1.22 pooka if (pg == NULL)
591 1.22 pooka continue;
592 1.22 pooka
593 1.22 pooka KASSERT(pg->flags & PG_BUSY);
594 1.22 pooka if (pg->flags & PG_WANTED)
595 1.22 pooka wakeup(pg);
596 1.36 pooka if (pg->flags & PG_RELEASED)
597 1.36 pooka uvm_pagefree(pg);
598 1.36 pooka else
599 1.36 pooka pg->flags &= ~(PG_WANTED|PG_BUSY);
600 1.22 pooka }
601 1.22 pooka }
602 1.22 pooka
603 1.22 pooka void
604 1.7 pooka uvm_estimatepageable(int *active, int *inactive)
605 1.7 pooka {
606 1.7 pooka
607 1.19 pooka /* XXX: guessing game */
608 1.19 pooka *active = 1024;
609 1.19 pooka *inactive = 1024;
610 1.7 pooka }
611 1.7 pooka
612 1.41 pooka bool
613 1.41 pooka vm_map_starved_p(struct vm_map *map)
614 1.41 pooka {
615 1.41 pooka
616 1.80 pooka if (map->flags & VM_MAP_WANTVA)
617 1.80 pooka return true;
618 1.80 pooka
619 1.41 pooka return false;
620 1.41 pooka }
621 1.41 pooka
622 1.41 pooka int
623 1.41 pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
624 1.41 pooka {
625 1.41 pooka
626 1.41 pooka panic("%s: unimplemented", __func__);
627 1.41 pooka }
628 1.41 pooka
629 1.41 pooka void
630 1.41 pooka uvm_unloan(void *v, int npages, int flags)
631 1.41 pooka {
632 1.41 pooka
633 1.41 pooka panic("%s: unimplemented", __func__);
634 1.41 pooka }
635 1.41 pooka
636 1.43 pooka int
637 1.43 pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
638 1.43 pooka struct vm_page **opp)
639 1.43 pooka {
640 1.43 pooka
641 1.72 pooka return EBUSY;
642 1.43 pooka }
643 1.43 pooka
644 1.116 mrg struct vm_page *
645 1.116 mrg uvm_loanbreak(struct vm_page *pg)
646 1.116 mrg {
647 1.116 mrg
648 1.116 mrg panic("%s: unimplemented", __func__);
649 1.116 mrg }
650 1.116 mrg
651 1.116 mrg void
652 1.116 mrg ubc_purge(struct uvm_object *uobj)
653 1.116 mrg {
654 1.116 mrg
655 1.116 mrg }
656 1.116 mrg
657 1.73 pooka #ifdef DEBUGPRINT
658 1.56 pooka void
659 1.56 pooka uvm_object_printit(struct uvm_object *uobj, bool full,
660 1.56 pooka void (*pr)(const char *, ...))
661 1.56 pooka {
662 1.56 pooka
663 1.75 pooka pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
664 1.56 pooka }
665 1.73 pooka #endif
666 1.56 pooka
667 1.68 pooka vaddr_t
668 1.68 pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
669 1.68 pooka {
670 1.68 pooka
671 1.68 pooka return 0;
672 1.68 pooka }
673 1.68 pooka
674 1.71 pooka int
675 1.71 pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
676 1.71 pooka vm_prot_t prot, bool set_max)
677 1.71 pooka {
678 1.71 pooka
679 1.71 pooka return EOPNOTSUPP;
680 1.71 pooka }
681 1.71 pooka
682 1.9 pooka /*
683 1.12 pooka * UVM km
684 1.12 pooka */
685 1.12 pooka
686 1.12 pooka vaddr_t
687 1.12 pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
688 1.12 pooka {
689 1.82 pooka void *rv, *desired = NULL;
690 1.50 pooka int alignbit, error;
691 1.50 pooka
692 1.82 pooka #ifdef __x86_64__
693 1.82 pooka /*
694 1.82 pooka * On amd64, allocate all module memory from the lowest 2GB.
695 1.82 pooka * This is because NetBSD kernel modules are compiled
696 1.82 pooka * with -mcmodel=kernel and reserve only 4 bytes for
697 1.82 pooka * offsets. If we load code compiled with -mcmodel=kernel
698 1.82 pooka * anywhere except the lowest or highest 2GB, it will not
699 1.82 pooka * work. Since userspace does not have access to the highest
700 1.82 pooka * 2GB, use the lowest 2GB.
701 1.82 pooka *
702 1.82 pooka * Note: this assumes the rump kernel resides in
703 1.82 pooka * the lowest 2GB as well.
704 1.82 pooka *
705 1.82 pooka * Note2: yes, it's a quick hack, but since this the only
706 1.82 pooka * place where we care about the map we're allocating from,
707 1.82 pooka * just use a simple "if" instead of coming up with a fancy
708 1.82 pooka * generic solution.
709 1.82 pooka */
710 1.82 pooka if (map == module_map) {
711 1.82 pooka desired = (void *)(0x80000000 - size);
712 1.82 pooka }
713 1.82 pooka #endif
714 1.82 pooka
715 1.130 pooka if (__predict_false(map == module_map)) {
716 1.130 pooka alignbit = 0;
717 1.130 pooka if (align) {
718 1.130 pooka alignbit = ffs(align)-1;
719 1.130 pooka }
720 1.130 pooka rv = rumpuser_anonmmap(desired, size, alignbit,
721 1.130 pooka flags & UVM_KMF_EXEC, &error);
722 1.130 pooka } else {
723 1.130 pooka rv = rumpuser_malloc(size, align);
724 1.50 pooka }
725 1.50 pooka
726 1.50 pooka if (rv == NULL) {
727 1.50 pooka if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
728 1.50 pooka return 0;
729 1.50 pooka else
730 1.50 pooka panic("uvm_km_alloc failed");
731 1.50 pooka }
732 1.12 pooka
733 1.50 pooka if (flags & UVM_KMF_ZERO)
734 1.12 pooka memset(rv, 0, size);
735 1.12 pooka
736 1.12 pooka return (vaddr_t)rv;
737 1.12 pooka }
738 1.12 pooka
739 1.12 pooka void
740 1.12 pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
741 1.12 pooka {
742 1.12 pooka
743 1.130 pooka if (__predict_false(map == module_map))
744 1.130 pooka rumpuser_unmap((void *)vaddr, size);
745 1.130 pooka else
746 1.130 pooka rumpuser_free((void *)vaddr);
747 1.12 pooka }
748 1.12 pooka
749 1.12 pooka struct vm_map *
750 1.12 pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
751 1.121 para vsize_t size, int pageable, bool fixed, struct vm_map *submap)
752 1.12 pooka {
753 1.12 pooka
754 1.12 pooka return (struct vm_map *)417416;
755 1.12 pooka }
756 1.40 pooka
757 1.121 para int
758 1.121 para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
759 1.121 para vmem_addr_t *addr)
760 1.40 pooka {
761 1.121 para vaddr_t va;
762 1.121 para va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
763 1.121 para (flags & VM_SLEEP), "kmalloc");
764 1.40 pooka
765 1.121 para if (va) {
766 1.121 para *addr = va;
767 1.121 para return 0;
768 1.121 para } else {
769 1.121 para return ENOMEM;
770 1.121 para }
771 1.40 pooka }
772 1.40 pooka
773 1.40 pooka void
774 1.121 para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
775 1.40 pooka {
776 1.40 pooka
777 1.121 para rump_hyperfree((void *)addr, size);
778 1.74 pooka }
779 1.74 pooka
780 1.57 pooka /*
781 1.102 pooka * VM space locking routines. We don't really have to do anything,
782 1.102 pooka * since the pages are always "wired" (both local and remote processes).
783 1.57 pooka */
784 1.57 pooka int
785 1.57 pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
786 1.57 pooka {
787 1.57 pooka
788 1.57 pooka return 0;
789 1.57 pooka }
790 1.57 pooka
791 1.57 pooka void
792 1.57 pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
793 1.57 pooka {
794 1.57 pooka
795 1.57 pooka }
796 1.57 pooka
797 1.102 pooka /*
798 1.102 pooka * For the local case the buffer mappers don't need to do anything.
799 1.102 pooka * For the remote case we need to reserve space and copy data in or
800 1.102 pooka * out, depending on B_READ/B_WRITE.
801 1.102 pooka */
802 1.111 pooka int
803 1.57 pooka vmapbuf(struct buf *bp, vsize_t len)
804 1.57 pooka {
805 1.111 pooka int error = 0;
806 1.57 pooka
807 1.57 pooka bp->b_saveaddr = bp->b_data;
808 1.102 pooka
809 1.102 pooka /* remote case */
810 1.106 pooka if (!RUMP_LOCALPROC_P(curproc)) {
811 1.102 pooka bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
812 1.102 pooka if (BUF_ISWRITE(bp)) {
813 1.111 pooka error = copyin(bp->b_saveaddr, bp->b_data, len);
814 1.111 pooka if (error) {
815 1.111 pooka rump_hyperfree(bp->b_data, len);
816 1.111 pooka bp->b_data = bp->b_saveaddr;
817 1.111 pooka bp->b_saveaddr = 0;
818 1.111 pooka }
819 1.102 pooka }
820 1.102 pooka }
821 1.111 pooka
822 1.111 pooka return error;
823 1.57 pooka }
824 1.57 pooka
825 1.57 pooka void
826 1.57 pooka vunmapbuf(struct buf *bp, vsize_t len)
827 1.57 pooka {
828 1.57 pooka
829 1.102 pooka /* remote case */
830 1.106 pooka if (!RUMP_LOCALPROC_P(bp->b_proc)) {
831 1.102 pooka if (BUF_ISREAD(bp)) {
832 1.110 pooka bp->b_error = copyout_proc(bp->b_proc,
833 1.102 pooka bp->b_data, bp->b_saveaddr, len);
834 1.102 pooka }
835 1.102 pooka rump_hyperfree(bp->b_data, len);
836 1.102 pooka }
837 1.102 pooka
838 1.57 pooka bp->b_data = bp->b_saveaddr;
839 1.57 pooka bp->b_saveaddr = 0;
840 1.57 pooka }
841 1.61 pooka
842 1.61 pooka void
843 1.83 pooka uvmspace_addref(struct vmspace *vm)
844 1.83 pooka {
845 1.83 pooka
846 1.83 pooka /*
847 1.103 pooka * No dynamically allocated vmspaces exist.
848 1.83 pooka */
849 1.83 pooka }
850 1.83 pooka
851 1.83 pooka void
852 1.66 pooka uvmspace_free(struct vmspace *vm)
853 1.66 pooka {
854 1.66 pooka
855 1.66 pooka /* nothing for now */
856 1.66 pooka }
857 1.66 pooka
858 1.61 pooka /*
859 1.61 pooka * page life cycle stuff. it really doesn't exist, so just stubs.
860 1.61 pooka */
861 1.61 pooka
862 1.61 pooka void
863 1.61 pooka uvm_pageactivate(struct vm_page *pg)
864 1.61 pooka {
865 1.61 pooka
866 1.61 pooka /* nada */
867 1.61 pooka }
868 1.61 pooka
869 1.61 pooka void
870 1.61 pooka uvm_pagedeactivate(struct vm_page *pg)
871 1.61 pooka {
872 1.61 pooka
873 1.61 pooka /* nada */
874 1.61 pooka }
875 1.61 pooka
876 1.61 pooka void
877 1.61 pooka uvm_pagedequeue(struct vm_page *pg)
878 1.61 pooka {
879 1.61 pooka
880 1.61 pooka /* nada*/
881 1.61 pooka }
882 1.61 pooka
883 1.61 pooka void
884 1.61 pooka uvm_pageenqueue(struct vm_page *pg)
885 1.61 pooka {
886 1.61 pooka
887 1.61 pooka /* nada */
888 1.61 pooka }
889 1.80 pooka
890 1.88 pooka void
891 1.88 pooka uvmpdpol_anfree(struct vm_anon *an)
892 1.88 pooka {
893 1.88 pooka
894 1.88 pooka /* nada */
895 1.88 pooka }
896 1.88 pooka
897 1.80 pooka /*
898 1.99 uebayasi * Physical address accessors.
899 1.99 uebayasi */
900 1.99 uebayasi
901 1.99 uebayasi struct vm_page *
902 1.99 uebayasi uvm_phys_to_vm_page(paddr_t pa)
903 1.99 uebayasi {
904 1.99 uebayasi
905 1.99 uebayasi return NULL;
906 1.99 uebayasi }
907 1.99 uebayasi
908 1.99 uebayasi paddr_t
909 1.99 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
910 1.99 uebayasi {
911 1.99 uebayasi
912 1.99 uebayasi return 0;
913 1.99 uebayasi }
914 1.99 uebayasi
915 1.99 uebayasi /*
916 1.80 pooka * Routines related to the Page Baroness.
917 1.80 pooka */
918 1.80 pooka
919 1.80 pooka void
920 1.80 pooka uvm_wait(const char *msg)
921 1.80 pooka {
922 1.80 pooka
923 1.80 pooka if (__predict_false(curlwp == uvm.pagedaemon_lwp))
924 1.80 pooka panic("pagedaemon out of memory");
925 1.80 pooka if (__predict_false(rump_threads == 0))
926 1.80 pooka panic("pagedaemon missing (RUMP_THREADS = 0)");
927 1.80 pooka
928 1.80 pooka mutex_enter(&pdaemonmtx);
929 1.80 pooka pdaemon_waiters++;
930 1.80 pooka cv_signal(&pdaemoncv);
931 1.80 pooka cv_wait(&oomwait, &pdaemonmtx);
932 1.80 pooka mutex_exit(&pdaemonmtx);
933 1.80 pooka }
934 1.80 pooka
935 1.80 pooka void
936 1.80 pooka uvm_pageout_start(int npages)
937 1.80 pooka {
938 1.80 pooka
939 1.113 pooka mutex_enter(&pdaemonmtx);
940 1.113 pooka uvmexp.paging += npages;
941 1.113 pooka mutex_exit(&pdaemonmtx);
942 1.80 pooka }
943 1.80 pooka
944 1.80 pooka void
945 1.80 pooka uvm_pageout_done(int npages)
946 1.80 pooka {
947 1.80 pooka
948 1.113 pooka if (!npages)
949 1.113 pooka return;
950 1.113 pooka
951 1.113 pooka mutex_enter(&pdaemonmtx);
952 1.113 pooka KASSERT(uvmexp.paging >= npages);
953 1.113 pooka uvmexp.paging -= npages;
954 1.113 pooka
955 1.113 pooka if (pdaemon_waiters) {
956 1.113 pooka pdaemon_waiters = 0;
957 1.113 pooka cv_broadcast(&oomwait);
958 1.113 pooka }
959 1.113 pooka mutex_exit(&pdaemonmtx);
960 1.80 pooka }
961 1.80 pooka
962 1.95 pooka static bool
963 1.104 pooka processpage(struct vm_page *pg, bool *lockrunning)
964 1.95 pooka {
965 1.95 pooka struct uvm_object *uobj;
966 1.95 pooka
967 1.95 pooka uobj = pg->uobject;
968 1.115 rmind if (mutex_tryenter(uobj->vmobjlock)) {
969 1.95 pooka if ((pg->flags & PG_BUSY) == 0) {
970 1.95 pooka mutex_exit(&uvm_pageqlock);
971 1.95 pooka uobj->pgops->pgo_put(uobj, pg->offset,
972 1.95 pooka pg->offset + PAGE_SIZE,
973 1.95 pooka PGO_CLEANIT|PGO_FREE);
974 1.115 rmind KASSERT(!mutex_owned(uobj->vmobjlock));
975 1.95 pooka return true;
976 1.95 pooka } else {
977 1.115 rmind mutex_exit(uobj->vmobjlock);
978 1.95 pooka }
979 1.104 pooka } else if (*lockrunning == false && ncpu > 1) {
980 1.104 pooka CPU_INFO_ITERATOR cii;
981 1.104 pooka struct cpu_info *ci;
982 1.104 pooka struct lwp *l;
983 1.104 pooka
984 1.115 rmind l = mutex_owner(uobj->vmobjlock);
985 1.104 pooka for (CPU_INFO_FOREACH(cii, ci)) {
986 1.104 pooka if (ci->ci_curlwp == l) {
987 1.104 pooka *lockrunning = true;
988 1.104 pooka break;
989 1.104 pooka }
990 1.104 pooka }
991 1.95 pooka }
992 1.95 pooka
993 1.95 pooka return false;
994 1.95 pooka }
995 1.95 pooka
996 1.80 pooka /*
997 1.92 pooka * The Diabolical pageDaemon Director (DDD).
998 1.113 pooka *
999 1.113 pooka * This routine can always use better heuristics.
1000 1.80 pooka */
1001 1.80 pooka void
1002 1.80 pooka uvm_pageout(void *arg)
1003 1.80 pooka {
1004 1.92 pooka struct vm_page *pg;
1005 1.80 pooka struct pool *pp, *pp_first;
1006 1.92 pooka int cleaned, skip, skipped;
1007 1.113 pooka bool succ;
1008 1.104 pooka bool lockrunning;
1009 1.80 pooka
1010 1.80 pooka mutex_enter(&pdaemonmtx);
1011 1.80 pooka for (;;) {
1012 1.113 pooka if (!NEED_PAGEDAEMON()) {
1013 1.92 pooka kernel_map->flags &= ~VM_MAP_WANTVA;
1014 1.92 pooka }
1015 1.92 pooka
1016 1.113 pooka if (pdaemon_waiters) {
1017 1.113 pooka pdaemon_waiters = 0;
1018 1.113 pooka cv_broadcast(&oomwait);
1019 1.104 pooka }
1020 1.92 pooka
1021 1.113 pooka cv_wait(&pdaemoncv, &pdaemonmtx);
1022 1.113 pooka uvmexp.pdwoke++;
1023 1.113 pooka
1024 1.92 pooka /* tell the world that we are hungry */
1025 1.80 pooka kernel_map->flags |= VM_MAP_WANTVA;
1026 1.80 pooka mutex_exit(&pdaemonmtx);
1027 1.80 pooka
1028 1.92 pooka /*
1029 1.92 pooka * step one: reclaim the page cache. this should give
1030 1.92 pooka * us the biggest earnings since whole pages are released
1031 1.92 pooka * into backing memory.
1032 1.92 pooka */
1033 1.92 pooka pool_cache_reclaim(&pagecache);
1034 1.92 pooka if (!NEED_PAGEDAEMON()) {
1035 1.92 pooka mutex_enter(&pdaemonmtx);
1036 1.92 pooka continue;
1037 1.92 pooka }
1038 1.92 pooka
1039 1.92 pooka /*
1040 1.92 pooka * Ok, so that didn't help. Next, try to hunt memory
1041 1.92 pooka * by pushing out vnode pages. The pages might contain
1042 1.92 pooka * useful cached data, but we need the memory.
1043 1.92 pooka */
1044 1.92 pooka cleaned = 0;
1045 1.92 pooka skip = 0;
1046 1.104 pooka lockrunning = false;
1047 1.92 pooka again:
1048 1.92 pooka mutex_enter(&uvm_pageqlock);
1049 1.92 pooka while (cleaned < PAGEDAEMON_OBJCHUNK) {
1050 1.92 pooka skipped = 0;
1051 1.92 pooka TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1052 1.92 pooka
1053 1.92 pooka /*
1054 1.92 pooka * skip over pages we _might_ have tried
1055 1.92 pooka * to handle earlier. they might not be
1056 1.92 pooka * exactly the same ones, but I'm not too
1057 1.92 pooka * concerned.
1058 1.92 pooka */
1059 1.92 pooka while (skipped++ < skip)
1060 1.92 pooka continue;
1061 1.92 pooka
1062 1.104 pooka if (processpage(pg, &lockrunning)) {
1063 1.95 pooka cleaned++;
1064 1.95 pooka goto again;
1065 1.92 pooka }
1066 1.92 pooka
1067 1.92 pooka skip++;
1068 1.92 pooka }
1069 1.92 pooka break;
1070 1.92 pooka }
1071 1.92 pooka mutex_exit(&uvm_pageqlock);
1072 1.92 pooka
1073 1.92 pooka /*
1074 1.104 pooka * Ok, someone is running with an object lock held.
1075 1.104 pooka * We want to yield the host CPU to make sure the
1076 1.104 pooka * thread is not parked on the host. Since sched_yield()
1077 1.104 pooka * doesn't appear to do anything on NetBSD, nanosleep
1078 1.104 pooka * for the smallest possible time and hope we're back in
1079 1.104 pooka * the game soon.
1080 1.104 pooka */
1081 1.104 pooka if (cleaned == 0 && lockrunning) {
1082 1.104 pooka uint64_t sec, nsec;
1083 1.104 pooka
1084 1.104 pooka sec = 0;
1085 1.104 pooka nsec = 1;
1086 1.104 pooka rumpuser_nanosleep(&sec, &nsec, NULL);
1087 1.104 pooka
1088 1.104 pooka lockrunning = false;
1089 1.104 pooka skip = 0;
1090 1.104 pooka
1091 1.104 pooka /* and here we go again */
1092 1.104 pooka goto again;
1093 1.104 pooka }
1094 1.104 pooka
1095 1.104 pooka /*
1096 1.92 pooka * And of course we need to reclaim the page cache
1097 1.92 pooka * again to actually release memory.
1098 1.92 pooka */
1099 1.92 pooka pool_cache_reclaim(&pagecache);
1100 1.92 pooka if (!NEED_PAGEDAEMON()) {
1101 1.92 pooka mutex_enter(&pdaemonmtx);
1102 1.92 pooka continue;
1103 1.92 pooka }
1104 1.92 pooka
1105 1.92 pooka /*
1106 1.92 pooka * And then drain the pools. Wipe them out ... all of them.
1107 1.92 pooka */
1108 1.127 jym for (pp_first = NULL;;) {
1109 1.132 pooka if (rump_vfs_drainbufs)
1110 1.132 pooka rump_vfs_drainbufs(10 /* XXX: estimate! */);
1111 1.92 pooka
1112 1.127 jym succ = pool_drain(&pp);
1113 1.127 jym if (succ || pp == pp_first)
1114 1.80 pooka break;
1115 1.127 jym
1116 1.127 jym if (pp_first == NULL)
1117 1.127 jym pp_first = pp;
1118 1.80 pooka }
1119 1.92 pooka
1120 1.92 pooka /*
1121 1.92 pooka * Need to use PYEC on our bag of tricks.
1122 1.92 pooka * Unfortunately, the wife just borrowed it.
1123 1.92 pooka */
1124 1.80 pooka
1125 1.113 pooka mutex_enter(&pdaemonmtx);
1126 1.113 pooka if (!succ && cleaned == 0 && pdaemon_waiters &&
1127 1.113 pooka uvmexp.paging == 0) {
1128 1.80 pooka rumpuser_dprintf("pagedaemoness: failed to reclaim "
1129 1.80 pooka "memory ... sleeping (deadlock?)\n");
1130 1.113 pooka cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1131 1.80 pooka }
1132 1.80 pooka }
1133 1.80 pooka
1134 1.80 pooka panic("you can swap out any time you like, but you can never leave");
1135 1.80 pooka }
1136 1.80 pooka
1137 1.80 pooka void
1138 1.80 pooka uvm_kick_pdaemon()
1139 1.80 pooka {
1140 1.80 pooka
1141 1.92 pooka /*
1142 1.92 pooka * Wake up the diabolical pagedaemon director if we are over
1143 1.92 pooka * 90% of the memory limit. This is a complete and utter
1144 1.92 pooka * stetson-harrison decision which you are allowed to finetune.
1145 1.92 pooka * Don't bother locking. If we have some unflushed caches,
1146 1.92 pooka * other waker-uppers will deal with the issue.
1147 1.92 pooka */
1148 1.92 pooka if (NEED_PAGEDAEMON()) {
1149 1.92 pooka cv_signal(&pdaemoncv);
1150 1.92 pooka }
1151 1.80 pooka }
1152 1.80 pooka
1153 1.80 pooka void *
1154 1.80 pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1155 1.80 pooka {
1156 1.84 pooka unsigned long newmem;
1157 1.80 pooka void *rv;
1158 1.80 pooka
1159 1.92 pooka uvm_kick_pdaemon(); /* ouch */
1160 1.92 pooka
1161 1.84 pooka /* first we must be within the limit */
1162 1.84 pooka limitagain:
1163 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1164 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, howmuch);
1165 1.91 pooka if (newmem > rump_physmemlimit) {
1166 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1167 1.103 pooka if (!waitok) {
1168 1.84 pooka return NULL;
1169 1.103 pooka }
1170 1.84 pooka uvm_wait(wmsg);
1171 1.84 pooka goto limitagain;
1172 1.84 pooka }
1173 1.84 pooka }
1174 1.84 pooka
1175 1.84 pooka /* second, we must get something from the backend */
1176 1.80 pooka again:
1177 1.80 pooka rv = rumpuser_malloc(howmuch, alignment);
1178 1.80 pooka if (__predict_false(rv == NULL && waitok)) {
1179 1.80 pooka uvm_wait(wmsg);
1180 1.80 pooka goto again;
1181 1.80 pooka }
1182 1.80 pooka
1183 1.80 pooka return rv;
1184 1.80 pooka }
1185 1.84 pooka
1186 1.84 pooka void
1187 1.84 pooka rump_hyperfree(void *what, size_t size)
1188 1.84 pooka {
1189 1.84 pooka
1190 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1191 1.84 pooka atomic_add_long(&curphysmem, -size);
1192 1.84 pooka }
1193 1.84 pooka rumpuser_free(what);
1194 1.84 pooka }
1195