Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.155
      1  1.155     pooka /*	$NetBSD: vm.c,v 1.155 2014/04/12 20:24:46 pooka Exp $	*/
      2    1.1     pooka 
      3    1.1     pooka /*
      4  1.114     pooka  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5    1.1     pooka  *
      6   1.76     pooka  * Development of this software was supported by
      7   1.76     pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8   1.76     pooka  * The Helsinki University of Technology.
      9    1.1     pooka  *
     10    1.1     pooka  * Redistribution and use in source and binary forms, with or without
     11    1.1     pooka  * modification, are permitted provided that the following conditions
     12    1.1     pooka  * are met:
     13    1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     14    1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     15    1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     17    1.1     pooka  *    documentation and/or other materials provided with the distribution.
     18    1.1     pooka  *
     19    1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20    1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21    1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22    1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23    1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24    1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25    1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26    1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27    1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28    1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29    1.1     pooka  * SUCH DAMAGE.
     30    1.1     pooka  */
     31    1.1     pooka 
     32    1.1     pooka /*
     33   1.88     pooka  * Virtual memory emulation routines.
     34    1.1     pooka  */
     35    1.1     pooka 
     36    1.1     pooka /*
     37    1.5     pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38    1.1     pooka  * for each page.  phys_addr would fit the job description better,
     39    1.1     pooka  * except that it will create unnecessary lossage on some platforms
     40    1.1     pooka  * due to not being a pointer type.
     41    1.1     pooka  */
     42    1.1     pooka 
     43   1.48     pooka #include <sys/cdefs.h>
     44  1.155     pooka __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.155 2014/04/12 20:24:46 pooka Exp $");
     45   1.48     pooka 
     46    1.1     pooka #include <sys/param.h>
     47   1.40     pooka #include <sys/atomic.h>
     48   1.80     pooka #include <sys/buf.h>
     49   1.80     pooka #include <sys/kernel.h>
     50   1.67     pooka #include <sys/kmem.h>
     51  1.121      para #include <sys/vmem.h>
     52   1.69     pooka #include <sys/mman.h>
     53    1.1     pooka #include <sys/null.h>
     54    1.1     pooka #include <sys/vnode.h>
     55    1.1     pooka 
     56   1.34     pooka #include <machine/pmap.h>
     57   1.34     pooka 
     58   1.34     pooka #include <rump/rumpuser.h>
     59   1.34     pooka 
     60    1.1     pooka #include <uvm/uvm.h>
     61   1.56     pooka #include <uvm/uvm_ddb.h>
     62   1.88     pooka #include <uvm/uvm_pdpolicy.h>
     63    1.1     pooka #include <uvm/uvm_prot.h>
     64   1.58        he #include <uvm/uvm_readahead.h>
     65    1.1     pooka 
     66   1.13     pooka #include "rump_private.h"
     67   1.91     pooka #include "rump_vfs_private.h"
     68    1.1     pooka 
     69  1.152     pooka kmutex_t uvm_pageqlock; /* non-free page lock */
     70  1.152     pooka kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     71   1.88     pooka kmutex_t uvm_swap_data_lock;
     72   1.25        ad 
     73    1.1     pooka struct uvmexp uvmexp;
     74    1.7     pooka struct uvm uvm;
     75    1.1     pooka 
     76  1.112     pooka #ifdef __uvmexp_pagesize
     77  1.123    martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
     78  1.123    martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
     79  1.123    martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
     80  1.112     pooka #endif
     81  1.112     pooka 
     82    1.1     pooka struct vm_map rump_vmmap;
     83    1.1     pooka 
     84  1.121      para static struct vm_map kernel_map_store;
     85  1.121      para struct vm_map *kernel_map = &kernel_map_store;
     86  1.121      para 
     87  1.130     pooka static struct vm_map module_map_store;
     88  1.130     pooka extern struct vm_map *module_map;
     89  1.130     pooka 
     90  1.121      para vmem_t *kmem_arena;
     91  1.121      para vmem_t *kmem_va_arena;
     92   1.35     pooka 
     93   1.80     pooka static unsigned int pdaemon_waiters;
     94   1.80     pooka static kmutex_t pdaemonmtx;
     95   1.80     pooka static kcondvar_t pdaemoncv, oomwait;
     96   1.80     pooka 
     97   1.91     pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     98  1.147     pooka static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
     99   1.84     pooka static unsigned long curphysmem;
    100   1.92     pooka static unsigned long dddlim;		/* 90% of memory limit used */
    101   1.92     pooka #define NEED_PAGEDAEMON() \
    102   1.92     pooka     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    103   1.92     pooka 
    104   1.92     pooka /*
    105   1.92     pooka  * Try to free two pages worth of pages from objects.
    106   1.92     pooka  * If this succesfully frees a full page cache page, we'll
    107  1.120      yamt  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    108   1.92     pooka  */
    109   1.92     pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    110   1.92     pooka 
    111   1.92     pooka /*
    112   1.92     pooka  * Keep a list of least recently used pages.  Since the only way a
    113   1.92     pooka  * rump kernel can "access" a page is via lookup, we put the page
    114   1.92     pooka  * at the back of queue every time a lookup for it is done.  If the
    115   1.92     pooka  * page is in front of this global queue and we're short of memory,
    116   1.92     pooka  * it's a candidate for pageout.
    117   1.92     pooka  */
    118   1.92     pooka static struct pglist vmpage_lruqueue;
    119   1.92     pooka static unsigned vmpage_onqueue;
    120   1.84     pooka 
    121   1.89     pooka static int
    122   1.96     rmind pg_compare_key(void *ctx, const void *n, const void *key)
    123   1.89     pooka {
    124   1.89     pooka 	voff_t a = ((const struct vm_page *)n)->offset;
    125   1.89     pooka 	voff_t b = *(const voff_t *)key;
    126   1.89     pooka 
    127   1.89     pooka 	if (a < b)
    128   1.96     rmind 		return -1;
    129   1.96     rmind 	else if (a > b)
    130   1.89     pooka 		return 1;
    131   1.89     pooka 	else
    132   1.89     pooka 		return 0;
    133   1.89     pooka }
    134   1.89     pooka 
    135   1.89     pooka static int
    136   1.96     rmind pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    137   1.89     pooka {
    138   1.89     pooka 
    139   1.96     rmind 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    140   1.89     pooka }
    141   1.89     pooka 
    142   1.96     rmind const rb_tree_ops_t uvm_page_tree_ops = {
    143   1.89     pooka 	.rbto_compare_nodes = pg_compare_nodes,
    144   1.89     pooka 	.rbto_compare_key = pg_compare_key,
    145   1.96     rmind 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    146   1.96     rmind 	.rbto_context = NULL
    147   1.89     pooka };
    148   1.89     pooka 
    149    1.1     pooka /*
    150    1.1     pooka  * vm pages
    151    1.1     pooka  */
    152    1.1     pooka 
    153   1.90     pooka static int
    154   1.90     pooka pgctor(void *arg, void *obj, int flags)
    155   1.90     pooka {
    156   1.90     pooka 	struct vm_page *pg = obj;
    157   1.90     pooka 
    158   1.90     pooka 	memset(pg, 0, sizeof(*pg));
    159  1.103     pooka 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    160  1.103     pooka 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    161  1.103     pooka 	return pg->uanon == NULL;
    162   1.90     pooka }
    163   1.90     pooka 
    164   1.90     pooka static void
    165   1.90     pooka pgdtor(void *arg, void *obj)
    166   1.90     pooka {
    167   1.90     pooka 	struct vm_page *pg = obj;
    168   1.90     pooka 
    169   1.90     pooka 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    170   1.90     pooka }
    171   1.90     pooka 
    172   1.90     pooka static struct pool_cache pagecache;
    173   1.90     pooka 
    174   1.92     pooka /*
    175   1.92     pooka  * Called with the object locked.  We don't support anons.
    176   1.92     pooka  */
    177    1.1     pooka struct vm_page *
    178   1.76     pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    179   1.76     pooka 	int flags, int strat, int free_list)
    180    1.1     pooka {
    181    1.1     pooka 	struct vm_page *pg;
    182    1.1     pooka 
    183  1.115     rmind 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    184   1.92     pooka 	KASSERT(anon == NULL);
    185   1.92     pooka 
    186  1.103     pooka 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    187  1.104     pooka 	if (__predict_false(pg == NULL)) {
    188  1.103     pooka 		return NULL;
    189  1.104     pooka 	}
    190  1.103     pooka 
    191    1.1     pooka 	pg->offset = off;
    192    1.5     pooka 	pg->uobject = uobj;
    193    1.1     pooka 
    194   1.22     pooka 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    195   1.90     pooka 	if (flags & UVM_PGA_ZERO) {
    196   1.90     pooka 		uvm_pagezero(pg);
    197   1.90     pooka 	}
    198    1.1     pooka 
    199   1.31        ad 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    200   1.96     rmind 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    201   1.89     pooka 
    202   1.92     pooka 	/*
    203   1.93     pooka 	 * Don't put anons on the LRU page queue.  We can't flush them
    204   1.93     pooka 	 * (there's no concept of swap in a rump kernel), so no reason
    205   1.93     pooka 	 * to bother with them.
    206   1.92     pooka 	 */
    207   1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    208   1.92     pooka 		atomic_inc_uint(&vmpage_onqueue);
    209   1.92     pooka 		mutex_enter(&uvm_pageqlock);
    210   1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    211   1.92     pooka 		mutex_exit(&uvm_pageqlock);
    212   1.92     pooka 	}
    213   1.92     pooka 
    214   1.59     pooka 	uobj->uo_npages++;
    215   1.21     pooka 
    216    1.1     pooka 	return pg;
    217    1.1     pooka }
    218    1.1     pooka 
    219   1.21     pooka /*
    220   1.21     pooka  * Release a page.
    221   1.21     pooka  *
    222   1.22     pooka  * Called with the vm object locked.
    223   1.21     pooka  */
    224    1.1     pooka void
    225   1.22     pooka uvm_pagefree(struct vm_page *pg)
    226    1.1     pooka {
    227    1.5     pooka 	struct uvm_object *uobj = pg->uobject;
    228    1.1     pooka 
    229   1.92     pooka 	KASSERT(mutex_owned(&uvm_pageqlock));
    230  1.115     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    231   1.92     pooka 
    232   1.22     pooka 	if (pg->flags & PG_WANTED)
    233   1.22     pooka 		wakeup(pg);
    234   1.22     pooka 
    235   1.92     pooka 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    236   1.92     pooka 
    237   1.59     pooka 	uobj->uo_npages--;
    238   1.96     rmind 	rb_tree_remove_node(&uobj->rb_tree, pg);
    239   1.92     pooka 
    240   1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    241   1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    242   1.92     pooka 		atomic_dec_uint(&vmpage_onqueue);
    243   1.92     pooka 	}
    244   1.92     pooka 
    245   1.90     pooka 	pool_cache_put(&pagecache, pg);
    246    1.1     pooka }
    247    1.1     pooka 
    248   1.15     pooka void
    249   1.61     pooka uvm_pagezero(struct vm_page *pg)
    250   1.15     pooka {
    251   1.15     pooka 
    252   1.61     pooka 	pg->flags &= ~PG_CLEAN;
    253   1.61     pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    254   1.15     pooka }
    255   1.15     pooka 
    256    1.1     pooka /*
    257  1.136      yamt  * uvm_page_locked_p: return true if object associated with page is
    258  1.136      yamt  * locked.  this is a weak check for runtime assertions only.
    259  1.136      yamt  */
    260  1.136      yamt 
    261  1.136      yamt bool
    262  1.136      yamt uvm_page_locked_p(struct vm_page *pg)
    263  1.136      yamt {
    264  1.136      yamt 
    265  1.136      yamt 	return mutex_owned(pg->uobject->vmobjlock);
    266  1.136      yamt }
    267  1.136      yamt 
    268  1.136      yamt /*
    269    1.1     pooka  * Misc routines
    270    1.1     pooka  */
    271    1.1     pooka 
    272   1.61     pooka static kmutex_t pagermtx;
    273   1.61     pooka 
    274    1.1     pooka void
    275   1.79     pooka uvm_init(void)
    276    1.1     pooka {
    277   1.84     pooka 	char buf[64];
    278   1.84     pooka 
    279  1.141     pooka 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    280  1.105     pooka 		unsigned long tmp;
    281  1.105     pooka 		char *ep;
    282  1.105     pooka 		int mult;
    283  1.105     pooka 
    284  1.109     pooka 		tmp = strtoul(buf, &ep, 10);
    285  1.105     pooka 		if (strlen(ep) > 1)
    286  1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    287  1.105     pooka 
    288  1.105     pooka 		/* mini-dehumanize-number */
    289  1.105     pooka 		mult = 1;
    290  1.105     pooka 		switch (*ep) {
    291  1.105     pooka 		case 'k':
    292  1.105     pooka 			mult = 1024;
    293  1.105     pooka 			break;
    294  1.105     pooka 		case 'm':
    295  1.105     pooka 			mult = 1024*1024;
    296  1.105     pooka 			break;
    297  1.105     pooka 		case 'g':
    298  1.105     pooka 			mult = 1024*1024*1024;
    299  1.105     pooka 			break;
    300  1.105     pooka 		case 0:
    301  1.105     pooka 			break;
    302  1.105     pooka 		default:
    303  1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    304  1.105     pooka 		}
    305  1.105     pooka 		rump_physmemlimit = tmp * mult;
    306  1.105     pooka 
    307  1.105     pooka 		if (rump_physmemlimit / mult != tmp)
    308  1.105     pooka 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    309   1.84     pooka 		/* it's not like we'd get far with, say, 1 byte, but ... */
    310  1.148     pooka 		if (rump_physmemlimit < 1024*1024)
    311  1.148     pooka 			printf("uvm_init: WARNING: <1MB RAM limit, "
    312  1.148     pooka 			    "hope you know what you're doing\n");
    313  1.147     pooka 
    314  1.147     pooka 		/* reserve some memory for the pager */
    315  1.147     pooka 		pdlimit = rump_physmemlimit;
    316  1.147     pooka 		rump_physmemlimit -= 2*MAXPHYS;
    317  1.105     pooka 
    318   1.84     pooka #define HUMANIZE_BYTES 9
    319   1.84     pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    320   1.91     pooka 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    321   1.84     pooka #undef HUMANIZE_BYTES
    322   1.92     pooka 		dddlim = 9 * (rump_physmemlimit / 10);
    323   1.84     pooka 	} else {
    324   1.84     pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    325   1.84     pooka 	}
    326   1.84     pooka 	aprint_verbose("total memory = %s\n", buf);
    327    1.1     pooka 
    328   1.92     pooka 	TAILQ_INIT(&vmpage_lruqueue);
    329   1.92     pooka 
    330   1.84     pooka 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    331   1.21     pooka 
    332  1.112     pooka #ifndef __uvmexp_pagesize
    333  1.112     pooka 	uvmexp.pagesize = PAGE_SIZE;
    334  1.112     pooka 	uvmexp.pagemask = PAGE_MASK;
    335  1.112     pooka 	uvmexp.pageshift = PAGE_SHIFT;
    336  1.112     pooka #else
    337  1.112     pooka #define FAKE_PAGE_SHIFT 12
    338  1.112     pooka 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    339  1.112     pooka 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    340  1.112     pooka 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    341  1.112     pooka #undef FAKE_PAGE_SHIFT
    342  1.112     pooka #endif
    343  1.112     pooka 
    344  1.140     pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    345  1.140     pooka 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
    346  1.140     pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    347   1.35     pooka 
    348  1.152     pooka 	/* just to appease linkage */
    349  1.152     pooka 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    350  1.152     pooka 
    351  1.140     pooka 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    352   1.80     pooka 	cv_init(&pdaemoncv, "pdaemon");
    353   1.80     pooka 	cv_init(&oomwait, "oomwait");
    354   1.80     pooka 
    355  1.130     pooka 	module_map = &module_map_store;
    356  1.130     pooka 
    357   1.50     pooka 	kernel_map->pmap = pmap_kernel();
    358  1.121      para 
    359  1.122     njoly 	pool_subsystem_init();
    360  1.128     pooka 
    361  1.121      para 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    362  1.121      para 	    NULL, NULL, NULL,
    363  1.121      para 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    364  1.121      para 
    365  1.135      para 	vmem_subsystem_init(kmem_arena);
    366  1.121      para 
    367  1.121      para 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    368  1.121      para 	    vmem_alloc, vmem_free, kmem_arena,
    369  1.124      para 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    370   1.90     pooka 
    371   1.90     pooka 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    372   1.90     pooka 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    373    1.1     pooka }
    374    1.1     pooka 
    375   1.83     pooka void
    376  1.145    martin uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    377  1.145    martin     bool topdown)
    378   1.83     pooka {
    379   1.83     pooka 
    380   1.83     pooka 	vm->vm_map.pmap = pmap_kernel();
    381   1.83     pooka 	vm->vm_refcnt = 1;
    382   1.83     pooka }
    383    1.1     pooka 
    384    1.1     pooka void
    385    1.7     pooka uvm_pagewire(struct vm_page *pg)
    386    1.7     pooka {
    387    1.7     pooka 
    388    1.7     pooka 	/* nada */
    389    1.7     pooka }
    390    1.7     pooka 
    391    1.7     pooka void
    392    1.7     pooka uvm_pageunwire(struct vm_page *pg)
    393    1.7     pooka {
    394    1.7     pooka 
    395    1.7     pooka 	/* nada */
    396    1.7     pooka }
    397    1.7     pooka 
    398   1.83     pooka /* where's your schmonz now? */
    399   1.83     pooka #define PUNLIMIT(a)	\
    400   1.83     pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    401   1.83     pooka void
    402   1.83     pooka uvm_init_limits(struct proc *p)
    403   1.83     pooka {
    404   1.83     pooka 
    405  1.155     pooka #ifndef DFLSSIZ
    406  1.155     pooka #define DFLSSIZ (16*1024*1024)
    407  1.155     pooka #endif
    408  1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    409  1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    410   1.83     pooka 	PUNLIMIT(RLIMIT_DATA);
    411   1.83     pooka 	PUNLIMIT(RLIMIT_RSS);
    412   1.83     pooka 	PUNLIMIT(RLIMIT_AS);
    413   1.83     pooka 	/* nice, cascade */
    414   1.83     pooka }
    415   1.83     pooka #undef PUNLIMIT
    416   1.83     pooka 
    417   1.69     pooka /*
    418   1.69     pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    419   1.69     pooka  * We probably should grow some more assertables to make sure we're
    420  1.103     pooka  * not satisfying anything we shouldn't be satisfying.
    421   1.69     pooka  */
    422   1.49     pooka int
    423   1.49     pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    424   1.49     pooka 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    425   1.49     pooka {
    426   1.69     pooka 	void *uaddr;
    427   1.69     pooka 	int error;
    428   1.49     pooka 
    429   1.69     pooka 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    430   1.69     pooka 		panic("uvm_mmap() variant unsupported");
    431   1.69     pooka 	if (flags != (MAP_PRIVATE | MAP_ANON))
    432   1.69     pooka 		panic("uvm_mmap() variant unsupported");
    433   1.98     pooka 
    434   1.69     pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    435   1.69     pooka 	if (*addr != 0)
    436   1.69     pooka 		panic("uvm_mmap() variant unsupported");
    437   1.69     pooka 
    438  1.106     pooka 	if (RUMP_LOCALPROC_P(curproc)) {
    439  1.143     pooka 		error = rumpuser_anonmmap(NULL, size, 0, 0, &uaddr);
    440   1.98     pooka 	} else {
    441  1.102     pooka 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
    442  1.102     pooka 		    size, &uaddr);
    443   1.98     pooka 	}
    444  1.142     pooka 	if (error)
    445   1.69     pooka 		return error;
    446   1.69     pooka 
    447   1.69     pooka 	*addr = (vaddr_t)uaddr;
    448   1.69     pooka 	return 0;
    449   1.49     pooka }
    450   1.49     pooka 
    451   1.61     pooka struct pagerinfo {
    452   1.61     pooka 	vaddr_t pgr_kva;
    453   1.61     pooka 	int pgr_npages;
    454   1.61     pooka 	struct vm_page **pgr_pgs;
    455   1.61     pooka 	bool pgr_read;
    456   1.61     pooka 
    457   1.61     pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    458   1.61     pooka };
    459   1.61     pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    460   1.61     pooka 
    461   1.61     pooka /*
    462   1.61     pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    463   1.61     pooka  * and copy page contents there.  Not optimal or even strictly
    464   1.61     pooka  * correct (the caller might modify the page contents after mapping
    465   1.61     pooka  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    466   1.61     pooka  */
    467    1.7     pooka vaddr_t
    468   1.61     pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    469    1.7     pooka {
    470   1.61     pooka 	struct pagerinfo *pgri;
    471   1.61     pooka 	vaddr_t curkva;
    472   1.61     pooka 	int i;
    473   1.61     pooka 
    474   1.61     pooka 	/* allocate structures */
    475   1.61     pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    476   1.61     pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    477   1.61     pooka 	pgri->pgr_npages = npages;
    478   1.61     pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    479   1.61     pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    480   1.61     pooka 
    481   1.61     pooka 	/* copy contents to "mapped" memory */
    482   1.61     pooka 	for (i = 0, curkva = pgri->pgr_kva;
    483   1.61     pooka 	    i < npages;
    484   1.61     pooka 	    i++, curkva += PAGE_SIZE) {
    485   1.61     pooka 		/*
    486   1.61     pooka 		 * We need to copy the previous contents of the pages to
    487   1.61     pooka 		 * the window even if we are reading from the
    488   1.61     pooka 		 * device, since the device might not fill the contents of
    489   1.61     pooka 		 * the full mapped range and we will end up corrupting
    490   1.61     pooka 		 * data when we unmap the window.
    491   1.61     pooka 		 */
    492   1.61     pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    493   1.61     pooka 		pgri->pgr_pgs[i] = pgs[i];
    494   1.61     pooka 	}
    495   1.61     pooka 
    496   1.61     pooka 	mutex_enter(&pagermtx);
    497   1.61     pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    498   1.61     pooka 	mutex_exit(&pagermtx);
    499    1.7     pooka 
    500   1.61     pooka 	return pgri->pgr_kva;
    501    1.7     pooka }
    502    1.7     pooka 
    503   1.61     pooka /*
    504   1.61     pooka  * map out the pager window.  return contents from VA to page storage
    505   1.61     pooka  * and free structures.
    506   1.61     pooka  *
    507   1.61     pooka  * Note: does not currently support partial frees
    508   1.61     pooka  */
    509   1.61     pooka void
    510   1.61     pooka uvm_pagermapout(vaddr_t kva, int npages)
    511    1.7     pooka {
    512   1.61     pooka 	struct pagerinfo *pgri;
    513   1.61     pooka 	vaddr_t curkva;
    514   1.61     pooka 	int i;
    515    1.7     pooka 
    516   1.61     pooka 	mutex_enter(&pagermtx);
    517   1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    518   1.61     pooka 		if (pgri->pgr_kva == kva)
    519   1.61     pooka 			break;
    520   1.61     pooka 	}
    521   1.61     pooka 	KASSERT(pgri);
    522   1.61     pooka 	if (pgri->pgr_npages != npages)
    523   1.61     pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    524   1.61     pooka 	LIST_REMOVE(pgri, pgr_entries);
    525   1.61     pooka 	mutex_exit(&pagermtx);
    526   1.61     pooka 
    527   1.61     pooka 	if (pgri->pgr_read) {
    528   1.61     pooka 		for (i = 0, curkva = pgri->pgr_kva;
    529   1.61     pooka 		    i < pgri->pgr_npages;
    530   1.61     pooka 		    i++, curkva += PAGE_SIZE) {
    531   1.61     pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    532   1.21     pooka 		}
    533   1.21     pooka 	}
    534   1.10     pooka 
    535   1.61     pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    536   1.61     pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    537   1.61     pooka 	kmem_free(pgri, sizeof(*pgri));
    538    1.7     pooka }
    539    1.7     pooka 
    540   1.61     pooka /*
    541   1.61     pooka  * convert va in pager window to page structure.
    542   1.61     pooka  * XXX: how expensive is this (global lock, list traversal)?
    543   1.61     pooka  */
    544   1.14     pooka struct vm_page *
    545   1.14     pooka uvm_pageratop(vaddr_t va)
    546   1.14     pooka {
    547   1.61     pooka 	struct pagerinfo *pgri;
    548   1.61     pooka 	struct vm_page *pg = NULL;
    549   1.61     pooka 	int i;
    550   1.14     pooka 
    551   1.61     pooka 	mutex_enter(&pagermtx);
    552   1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    553   1.61     pooka 		if (pgri->pgr_kva <= va
    554   1.61     pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    555   1.21     pooka 			break;
    556   1.61     pooka 	}
    557   1.61     pooka 	if (pgri) {
    558   1.61     pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    559   1.61     pooka 		pg = pgri->pgr_pgs[i];
    560   1.61     pooka 	}
    561   1.61     pooka 	mutex_exit(&pagermtx);
    562   1.21     pooka 
    563   1.61     pooka 	return pg;
    564   1.61     pooka }
    565   1.15     pooka 
    566   1.97     pooka /*
    567   1.97     pooka  * Called with the vm object locked.
    568   1.97     pooka  *
    569   1.97     pooka  * Put vnode object pages at the end of the access queue to indicate
    570   1.97     pooka  * they have been recently accessed and should not be immediate
    571   1.97     pooka  * candidates for pageout.  Do not do this for lookups done by
    572   1.97     pooka  * the pagedaemon to mimic pmap_kentered mappings which don't track
    573   1.97     pooka  * access information.
    574   1.97     pooka  */
    575   1.61     pooka struct vm_page *
    576   1.61     pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    577   1.61     pooka {
    578   1.92     pooka 	struct vm_page *pg;
    579   1.97     pooka 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    580   1.61     pooka 
    581   1.96     rmind 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    582   1.97     pooka 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    583   1.92     pooka 		mutex_enter(&uvm_pageqlock);
    584   1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    585   1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    586   1.92     pooka 		mutex_exit(&uvm_pageqlock);
    587   1.92     pooka 	}
    588   1.92     pooka 
    589   1.92     pooka 	return pg;
    590   1.14     pooka }
    591   1.14     pooka 
    592    1.7     pooka void
    593   1.22     pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    594   1.22     pooka {
    595   1.22     pooka 	struct vm_page *pg;
    596   1.22     pooka 	int i;
    597   1.22     pooka 
    598   1.94     pooka 	KASSERT(npgs > 0);
    599  1.115     rmind 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    600   1.94     pooka 
    601   1.22     pooka 	for (i = 0; i < npgs; i++) {
    602   1.22     pooka 		pg = pgs[i];
    603   1.22     pooka 		if (pg == NULL)
    604   1.22     pooka 			continue;
    605   1.22     pooka 
    606   1.22     pooka 		KASSERT(pg->flags & PG_BUSY);
    607   1.22     pooka 		if (pg->flags & PG_WANTED)
    608   1.22     pooka 			wakeup(pg);
    609   1.36     pooka 		if (pg->flags & PG_RELEASED)
    610   1.36     pooka 			uvm_pagefree(pg);
    611   1.36     pooka 		else
    612   1.36     pooka 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    613   1.22     pooka 	}
    614   1.22     pooka }
    615   1.22     pooka 
    616   1.22     pooka void
    617    1.7     pooka uvm_estimatepageable(int *active, int *inactive)
    618    1.7     pooka {
    619    1.7     pooka 
    620   1.19     pooka 	/* XXX: guessing game */
    621   1.19     pooka 	*active = 1024;
    622   1.19     pooka 	*inactive = 1024;
    623    1.7     pooka }
    624    1.7     pooka 
    625   1.41     pooka bool
    626   1.41     pooka vm_map_starved_p(struct vm_map *map)
    627   1.41     pooka {
    628   1.41     pooka 
    629   1.80     pooka 	if (map->flags & VM_MAP_WANTVA)
    630   1.80     pooka 		return true;
    631   1.80     pooka 
    632   1.41     pooka 	return false;
    633   1.41     pooka }
    634   1.41     pooka 
    635   1.41     pooka int
    636   1.41     pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    637   1.41     pooka {
    638   1.41     pooka 
    639   1.41     pooka 	panic("%s: unimplemented", __func__);
    640   1.41     pooka }
    641   1.41     pooka 
    642   1.41     pooka void
    643   1.41     pooka uvm_unloan(void *v, int npages, int flags)
    644   1.41     pooka {
    645   1.41     pooka 
    646   1.41     pooka 	panic("%s: unimplemented", __func__);
    647   1.41     pooka }
    648   1.41     pooka 
    649   1.43     pooka int
    650   1.43     pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    651   1.43     pooka 	struct vm_page **opp)
    652   1.43     pooka {
    653   1.43     pooka 
    654   1.72     pooka 	return EBUSY;
    655   1.43     pooka }
    656   1.43     pooka 
    657  1.116       mrg struct vm_page *
    658  1.116       mrg uvm_loanbreak(struct vm_page *pg)
    659  1.116       mrg {
    660  1.116       mrg 
    661  1.116       mrg 	panic("%s: unimplemented", __func__);
    662  1.116       mrg }
    663  1.116       mrg 
    664  1.116       mrg void
    665  1.116       mrg ubc_purge(struct uvm_object *uobj)
    666  1.116       mrg {
    667  1.116       mrg 
    668  1.116       mrg }
    669  1.116       mrg 
    670   1.68     pooka vaddr_t
    671   1.68     pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    672   1.68     pooka {
    673   1.68     pooka 
    674   1.68     pooka 	return 0;
    675   1.68     pooka }
    676   1.68     pooka 
    677   1.71     pooka int
    678   1.71     pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    679   1.71     pooka 	vm_prot_t prot, bool set_max)
    680   1.71     pooka {
    681   1.71     pooka 
    682   1.71     pooka 	return EOPNOTSUPP;
    683   1.71     pooka }
    684   1.71     pooka 
    685    1.9     pooka /*
    686   1.12     pooka  * UVM km
    687   1.12     pooka  */
    688   1.12     pooka 
    689   1.12     pooka vaddr_t
    690   1.12     pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    691   1.12     pooka {
    692   1.82     pooka 	void *rv, *desired = NULL;
    693   1.50     pooka 	int alignbit, error;
    694   1.50     pooka 
    695   1.82     pooka #ifdef __x86_64__
    696   1.82     pooka 	/*
    697   1.82     pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    698   1.82     pooka 	 * This is because NetBSD kernel modules are compiled
    699   1.82     pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    700   1.82     pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    701   1.82     pooka 	 * anywhere except the lowest or highest 2GB, it will not
    702   1.82     pooka 	 * work.  Since userspace does not have access to the highest
    703   1.82     pooka 	 * 2GB, use the lowest 2GB.
    704   1.82     pooka 	 *
    705   1.82     pooka 	 * Note: this assumes the rump kernel resides in
    706   1.82     pooka 	 * the lowest 2GB as well.
    707   1.82     pooka 	 *
    708   1.82     pooka 	 * Note2: yes, it's a quick hack, but since this the only
    709   1.82     pooka 	 * place where we care about the map we're allocating from,
    710   1.82     pooka 	 * just use a simple "if" instead of coming up with a fancy
    711   1.82     pooka 	 * generic solution.
    712   1.82     pooka 	 */
    713   1.82     pooka 	if (map == module_map) {
    714   1.82     pooka 		desired = (void *)(0x80000000 - size);
    715   1.82     pooka 	}
    716   1.82     pooka #endif
    717   1.82     pooka 
    718  1.130     pooka 	if (__predict_false(map == module_map)) {
    719  1.130     pooka 		alignbit = 0;
    720  1.130     pooka 		if (align) {
    721  1.130     pooka 			alignbit = ffs(align)-1;
    722  1.130     pooka 		}
    723  1.142     pooka 		error = rumpuser_anonmmap(desired, size, alignbit,
    724  1.142     pooka 		    flags & UVM_KMF_EXEC, &rv);
    725  1.130     pooka 	} else {
    726  1.142     pooka 		error = rumpuser_malloc(size, align, &rv);
    727   1.50     pooka 	}
    728   1.50     pooka 
    729  1.142     pooka 	if (error) {
    730   1.50     pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    731   1.50     pooka 			return 0;
    732   1.50     pooka 		else
    733   1.50     pooka 			panic("uvm_km_alloc failed");
    734   1.50     pooka 	}
    735   1.12     pooka 
    736   1.50     pooka 	if (flags & UVM_KMF_ZERO)
    737   1.12     pooka 		memset(rv, 0, size);
    738   1.12     pooka 
    739   1.12     pooka 	return (vaddr_t)rv;
    740   1.12     pooka }
    741   1.12     pooka 
    742   1.12     pooka void
    743   1.12     pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    744   1.12     pooka {
    745   1.12     pooka 
    746  1.130     pooka 	if (__predict_false(map == module_map))
    747  1.130     pooka 		rumpuser_unmap((void *)vaddr, size);
    748  1.130     pooka 	else
    749  1.138     pooka 		rumpuser_free((void *)vaddr, size);
    750   1.12     pooka }
    751   1.12     pooka 
    752   1.12     pooka struct vm_map *
    753   1.12     pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    754  1.121      para 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    755   1.12     pooka {
    756   1.12     pooka 
    757   1.12     pooka 	return (struct vm_map *)417416;
    758   1.12     pooka }
    759   1.40     pooka 
    760  1.121      para int
    761  1.121      para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    762  1.121      para     vmem_addr_t *addr)
    763   1.40     pooka {
    764  1.121      para 	vaddr_t va;
    765  1.121      para 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    766  1.121      para 	    (flags & VM_SLEEP), "kmalloc");
    767   1.40     pooka 
    768  1.121      para 	if (va) {
    769  1.121      para 		*addr = va;
    770  1.121      para 		return 0;
    771  1.121      para 	} else {
    772  1.121      para 		return ENOMEM;
    773  1.121      para 	}
    774   1.40     pooka }
    775   1.40     pooka 
    776   1.40     pooka void
    777  1.121      para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    778   1.40     pooka {
    779   1.40     pooka 
    780  1.121      para 	rump_hyperfree((void *)addr, size);
    781   1.74     pooka }
    782   1.74     pooka 
    783   1.57     pooka /*
    784  1.102     pooka  * VM space locking routines.  We don't really have to do anything,
    785  1.102     pooka  * since the pages are always "wired" (both local and remote processes).
    786   1.57     pooka  */
    787   1.57     pooka int
    788   1.57     pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    789   1.57     pooka {
    790   1.57     pooka 
    791   1.57     pooka 	return 0;
    792   1.57     pooka }
    793   1.57     pooka 
    794   1.57     pooka void
    795   1.57     pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    796   1.57     pooka {
    797   1.57     pooka 
    798   1.57     pooka }
    799   1.57     pooka 
    800  1.102     pooka /*
    801  1.102     pooka  * For the local case the buffer mappers don't need to do anything.
    802  1.102     pooka  * For the remote case we need to reserve space and copy data in or
    803  1.102     pooka  * out, depending on B_READ/B_WRITE.
    804  1.102     pooka  */
    805  1.111     pooka int
    806   1.57     pooka vmapbuf(struct buf *bp, vsize_t len)
    807   1.57     pooka {
    808  1.111     pooka 	int error = 0;
    809   1.57     pooka 
    810   1.57     pooka 	bp->b_saveaddr = bp->b_data;
    811  1.102     pooka 
    812  1.102     pooka 	/* remote case */
    813  1.106     pooka 	if (!RUMP_LOCALPROC_P(curproc)) {
    814  1.102     pooka 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    815  1.102     pooka 		if (BUF_ISWRITE(bp)) {
    816  1.111     pooka 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    817  1.111     pooka 			if (error) {
    818  1.111     pooka 				rump_hyperfree(bp->b_data, len);
    819  1.111     pooka 				bp->b_data = bp->b_saveaddr;
    820  1.111     pooka 				bp->b_saveaddr = 0;
    821  1.111     pooka 			}
    822  1.102     pooka 		}
    823  1.102     pooka 	}
    824  1.111     pooka 
    825  1.111     pooka 	return error;
    826   1.57     pooka }
    827   1.57     pooka 
    828   1.57     pooka void
    829   1.57     pooka vunmapbuf(struct buf *bp, vsize_t len)
    830   1.57     pooka {
    831   1.57     pooka 
    832  1.102     pooka 	/* remote case */
    833  1.106     pooka 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    834  1.102     pooka 		if (BUF_ISREAD(bp)) {
    835  1.110     pooka 			bp->b_error = copyout_proc(bp->b_proc,
    836  1.102     pooka 			    bp->b_data, bp->b_saveaddr, len);
    837  1.102     pooka 		}
    838  1.102     pooka 		rump_hyperfree(bp->b_data, len);
    839  1.102     pooka 	}
    840  1.102     pooka 
    841   1.57     pooka 	bp->b_data = bp->b_saveaddr;
    842   1.57     pooka 	bp->b_saveaddr = 0;
    843   1.57     pooka }
    844   1.61     pooka 
    845   1.61     pooka void
    846   1.83     pooka uvmspace_addref(struct vmspace *vm)
    847   1.83     pooka {
    848   1.83     pooka 
    849   1.83     pooka 	/*
    850  1.103     pooka 	 * No dynamically allocated vmspaces exist.
    851   1.83     pooka 	 */
    852   1.83     pooka }
    853   1.83     pooka 
    854   1.83     pooka void
    855   1.66     pooka uvmspace_free(struct vmspace *vm)
    856   1.66     pooka {
    857   1.66     pooka 
    858   1.66     pooka 	/* nothing for now */
    859   1.66     pooka }
    860   1.66     pooka 
    861   1.61     pooka /*
    862   1.61     pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    863   1.61     pooka  */
    864   1.61     pooka 
    865   1.61     pooka void
    866   1.61     pooka uvm_pageactivate(struct vm_page *pg)
    867   1.61     pooka {
    868   1.61     pooka 
    869   1.61     pooka 	/* nada */
    870   1.61     pooka }
    871   1.61     pooka 
    872   1.61     pooka void
    873   1.61     pooka uvm_pagedeactivate(struct vm_page *pg)
    874   1.61     pooka {
    875   1.61     pooka 
    876   1.61     pooka 	/* nada */
    877   1.61     pooka }
    878   1.61     pooka 
    879   1.61     pooka void
    880   1.61     pooka uvm_pagedequeue(struct vm_page *pg)
    881   1.61     pooka {
    882   1.61     pooka 
    883   1.61     pooka 	/* nada*/
    884   1.61     pooka }
    885   1.61     pooka 
    886   1.61     pooka void
    887   1.61     pooka uvm_pageenqueue(struct vm_page *pg)
    888   1.61     pooka {
    889   1.61     pooka 
    890   1.61     pooka 	/* nada */
    891   1.61     pooka }
    892   1.80     pooka 
    893   1.88     pooka void
    894   1.88     pooka uvmpdpol_anfree(struct vm_anon *an)
    895   1.88     pooka {
    896   1.88     pooka 
    897   1.88     pooka 	/* nada */
    898   1.88     pooka }
    899   1.88     pooka 
    900   1.80     pooka /*
    901   1.99  uebayasi  * Physical address accessors.
    902   1.99  uebayasi  */
    903   1.99  uebayasi 
    904   1.99  uebayasi struct vm_page *
    905   1.99  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    906   1.99  uebayasi {
    907   1.99  uebayasi 
    908   1.99  uebayasi 	return NULL;
    909   1.99  uebayasi }
    910   1.99  uebayasi 
    911   1.99  uebayasi paddr_t
    912   1.99  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
    913   1.99  uebayasi {
    914   1.99  uebayasi 
    915   1.99  uebayasi 	return 0;
    916   1.99  uebayasi }
    917   1.99  uebayasi 
    918  1.153     pooka vaddr_t
    919  1.153     pooka uvm_uarea_alloc(void)
    920  1.153     pooka {
    921  1.153     pooka 
    922  1.153     pooka 	/* non-zero */
    923  1.153     pooka 	return (vaddr_t)11;
    924  1.153     pooka }
    925  1.153     pooka 
    926  1.153     pooka void
    927  1.153     pooka uvm_uarea_free(vaddr_t uarea)
    928  1.153     pooka {
    929  1.153     pooka 
    930  1.153     pooka 	/* nata, so creamy */
    931  1.153     pooka }
    932  1.153     pooka 
    933   1.99  uebayasi /*
    934   1.80     pooka  * Routines related to the Page Baroness.
    935   1.80     pooka  */
    936   1.80     pooka 
    937   1.80     pooka void
    938   1.80     pooka uvm_wait(const char *msg)
    939   1.80     pooka {
    940   1.80     pooka 
    941   1.80     pooka 	if (__predict_false(rump_threads == 0))
    942   1.80     pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    943   1.80     pooka 
    944  1.147     pooka 	if (curlwp == uvm.pagedaemon_lwp) {
    945  1.147     pooka 		/* is it possible for us to later get memory? */
    946  1.147     pooka 		if (!uvmexp.paging)
    947  1.147     pooka 			panic("pagedaemon out of memory");
    948  1.147     pooka 	}
    949  1.147     pooka 
    950   1.80     pooka 	mutex_enter(&pdaemonmtx);
    951   1.80     pooka 	pdaemon_waiters++;
    952   1.80     pooka 	cv_signal(&pdaemoncv);
    953   1.80     pooka 	cv_wait(&oomwait, &pdaemonmtx);
    954   1.80     pooka 	mutex_exit(&pdaemonmtx);
    955   1.80     pooka }
    956   1.80     pooka 
    957   1.80     pooka void
    958   1.80     pooka uvm_pageout_start(int npages)
    959   1.80     pooka {
    960   1.80     pooka 
    961  1.113     pooka 	mutex_enter(&pdaemonmtx);
    962  1.113     pooka 	uvmexp.paging += npages;
    963  1.113     pooka 	mutex_exit(&pdaemonmtx);
    964   1.80     pooka }
    965   1.80     pooka 
    966   1.80     pooka void
    967   1.80     pooka uvm_pageout_done(int npages)
    968   1.80     pooka {
    969   1.80     pooka 
    970  1.113     pooka 	if (!npages)
    971  1.113     pooka 		return;
    972  1.113     pooka 
    973  1.113     pooka 	mutex_enter(&pdaemonmtx);
    974  1.113     pooka 	KASSERT(uvmexp.paging >= npages);
    975  1.113     pooka 	uvmexp.paging -= npages;
    976  1.113     pooka 
    977  1.113     pooka 	if (pdaemon_waiters) {
    978  1.113     pooka 		pdaemon_waiters = 0;
    979  1.113     pooka 		cv_broadcast(&oomwait);
    980  1.113     pooka 	}
    981  1.113     pooka 	mutex_exit(&pdaemonmtx);
    982   1.80     pooka }
    983   1.80     pooka 
    984   1.95     pooka static bool
    985  1.104     pooka processpage(struct vm_page *pg, bool *lockrunning)
    986   1.95     pooka {
    987   1.95     pooka 	struct uvm_object *uobj;
    988   1.95     pooka 
    989   1.95     pooka 	uobj = pg->uobject;
    990  1.115     rmind 	if (mutex_tryenter(uobj->vmobjlock)) {
    991   1.95     pooka 		if ((pg->flags & PG_BUSY) == 0) {
    992   1.95     pooka 			mutex_exit(&uvm_pageqlock);
    993   1.95     pooka 			uobj->pgops->pgo_put(uobj, pg->offset,
    994   1.95     pooka 			    pg->offset + PAGE_SIZE,
    995   1.95     pooka 			    PGO_CLEANIT|PGO_FREE);
    996  1.115     rmind 			KASSERT(!mutex_owned(uobj->vmobjlock));
    997   1.95     pooka 			return true;
    998   1.95     pooka 		} else {
    999  1.115     rmind 			mutex_exit(uobj->vmobjlock);
   1000   1.95     pooka 		}
   1001  1.104     pooka 	} else if (*lockrunning == false && ncpu > 1) {
   1002  1.104     pooka 		CPU_INFO_ITERATOR cii;
   1003  1.104     pooka 		struct cpu_info *ci;
   1004  1.104     pooka 		struct lwp *l;
   1005  1.104     pooka 
   1006  1.115     rmind 		l = mutex_owner(uobj->vmobjlock);
   1007  1.104     pooka 		for (CPU_INFO_FOREACH(cii, ci)) {
   1008  1.104     pooka 			if (ci->ci_curlwp == l) {
   1009  1.104     pooka 				*lockrunning = true;
   1010  1.104     pooka 				break;
   1011  1.104     pooka 			}
   1012  1.104     pooka 		}
   1013   1.95     pooka 	}
   1014   1.95     pooka 
   1015   1.95     pooka 	return false;
   1016   1.95     pooka }
   1017   1.95     pooka 
   1018   1.80     pooka /*
   1019   1.92     pooka  * The Diabolical pageDaemon Director (DDD).
   1020  1.113     pooka  *
   1021  1.113     pooka  * This routine can always use better heuristics.
   1022   1.80     pooka  */
   1023   1.80     pooka void
   1024   1.80     pooka uvm_pageout(void *arg)
   1025   1.80     pooka {
   1026   1.92     pooka 	struct vm_page *pg;
   1027   1.80     pooka 	struct pool *pp, *pp_first;
   1028   1.92     pooka 	int cleaned, skip, skipped;
   1029  1.113     pooka 	bool succ;
   1030  1.104     pooka 	bool lockrunning;
   1031   1.80     pooka 
   1032   1.80     pooka 	mutex_enter(&pdaemonmtx);
   1033   1.80     pooka 	for (;;) {
   1034  1.113     pooka 		if (!NEED_PAGEDAEMON()) {
   1035   1.92     pooka 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1036   1.92     pooka 		}
   1037   1.92     pooka 
   1038  1.113     pooka 		if (pdaemon_waiters) {
   1039  1.113     pooka 			pdaemon_waiters = 0;
   1040  1.113     pooka 			cv_broadcast(&oomwait);
   1041  1.104     pooka 		}
   1042   1.92     pooka 
   1043  1.113     pooka 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1044  1.113     pooka 		uvmexp.pdwoke++;
   1045  1.113     pooka 
   1046   1.92     pooka 		/* tell the world that we are hungry */
   1047   1.80     pooka 		kernel_map->flags |= VM_MAP_WANTVA;
   1048   1.80     pooka 		mutex_exit(&pdaemonmtx);
   1049   1.80     pooka 
   1050   1.92     pooka 		/*
   1051   1.92     pooka 		 * step one: reclaim the page cache.  this should give
   1052   1.92     pooka 		 * us the biggest earnings since whole pages are released
   1053   1.92     pooka 		 * into backing memory.
   1054   1.92     pooka 		 */
   1055   1.92     pooka 		pool_cache_reclaim(&pagecache);
   1056   1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1057   1.92     pooka 			mutex_enter(&pdaemonmtx);
   1058   1.92     pooka 			continue;
   1059   1.92     pooka 		}
   1060   1.92     pooka 
   1061   1.92     pooka 		/*
   1062   1.92     pooka 		 * Ok, so that didn't help.  Next, try to hunt memory
   1063   1.92     pooka 		 * by pushing out vnode pages.  The pages might contain
   1064   1.92     pooka 		 * useful cached data, but we need the memory.
   1065   1.92     pooka 		 */
   1066   1.92     pooka 		cleaned = 0;
   1067   1.92     pooka 		skip = 0;
   1068  1.104     pooka 		lockrunning = false;
   1069   1.92     pooka  again:
   1070   1.92     pooka 		mutex_enter(&uvm_pageqlock);
   1071   1.92     pooka 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1072   1.92     pooka 			skipped = 0;
   1073   1.92     pooka 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1074   1.92     pooka 
   1075   1.92     pooka 				/*
   1076   1.92     pooka 				 * skip over pages we _might_ have tried
   1077   1.92     pooka 				 * to handle earlier.  they might not be
   1078   1.92     pooka 				 * exactly the same ones, but I'm not too
   1079   1.92     pooka 				 * concerned.
   1080   1.92     pooka 				 */
   1081   1.92     pooka 				while (skipped++ < skip)
   1082   1.92     pooka 					continue;
   1083   1.92     pooka 
   1084  1.104     pooka 				if (processpage(pg, &lockrunning)) {
   1085   1.95     pooka 					cleaned++;
   1086   1.95     pooka 					goto again;
   1087   1.92     pooka 				}
   1088   1.92     pooka 
   1089   1.92     pooka 				skip++;
   1090   1.92     pooka 			}
   1091   1.92     pooka 			break;
   1092   1.92     pooka 		}
   1093   1.92     pooka 		mutex_exit(&uvm_pageqlock);
   1094   1.92     pooka 
   1095   1.92     pooka 		/*
   1096  1.104     pooka 		 * Ok, someone is running with an object lock held.
   1097  1.104     pooka 		 * We want to yield the host CPU to make sure the
   1098  1.104     pooka 		 * thread is not parked on the host.  Since sched_yield()
   1099  1.104     pooka 		 * doesn't appear to do anything on NetBSD, nanosleep
   1100  1.104     pooka 		 * for the smallest possible time and hope we're back in
   1101  1.104     pooka 		 * the game soon.
   1102  1.104     pooka 		 */
   1103  1.104     pooka 		if (cleaned == 0 && lockrunning) {
   1104  1.144     pooka 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1105  1.104     pooka 
   1106  1.104     pooka 			lockrunning = false;
   1107  1.104     pooka 			skip = 0;
   1108  1.104     pooka 
   1109  1.104     pooka 			/* and here we go again */
   1110  1.104     pooka 			goto again;
   1111  1.104     pooka 		}
   1112  1.104     pooka 
   1113  1.104     pooka 		/*
   1114   1.92     pooka 		 * And of course we need to reclaim the page cache
   1115   1.92     pooka 		 * again to actually release memory.
   1116   1.92     pooka 		 */
   1117   1.92     pooka 		pool_cache_reclaim(&pagecache);
   1118   1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1119   1.92     pooka 			mutex_enter(&pdaemonmtx);
   1120   1.92     pooka 			continue;
   1121   1.92     pooka 		}
   1122   1.92     pooka 
   1123   1.92     pooka 		/*
   1124   1.92     pooka 		 * And then drain the pools.  Wipe them out ... all of them.
   1125   1.92     pooka 		 */
   1126  1.127       jym 		for (pp_first = NULL;;) {
   1127  1.132     pooka 			if (rump_vfs_drainbufs)
   1128  1.132     pooka 				rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1129   1.92     pooka 
   1130  1.127       jym 			succ = pool_drain(&pp);
   1131  1.127       jym 			if (succ || pp == pp_first)
   1132   1.80     pooka 				break;
   1133  1.127       jym 
   1134  1.127       jym 			if (pp_first == NULL)
   1135  1.127       jym 				pp_first = pp;
   1136   1.80     pooka 		}
   1137   1.92     pooka 
   1138   1.92     pooka 		/*
   1139   1.92     pooka 		 * Need to use PYEC on our bag of tricks.
   1140   1.92     pooka 		 * Unfortunately, the wife just borrowed it.
   1141   1.92     pooka 		 */
   1142   1.80     pooka 
   1143  1.113     pooka 		mutex_enter(&pdaemonmtx);
   1144  1.113     pooka 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1145  1.113     pooka 		    uvmexp.paging == 0) {
   1146   1.80     pooka 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1147   1.80     pooka 			    "memory ... sleeping (deadlock?)\n");
   1148  1.113     pooka 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
   1149   1.80     pooka 		}
   1150   1.80     pooka 	}
   1151   1.80     pooka 
   1152   1.80     pooka 	panic("you can swap out any time you like, but you can never leave");
   1153   1.80     pooka }
   1154   1.80     pooka 
   1155   1.80     pooka void
   1156   1.80     pooka uvm_kick_pdaemon()
   1157   1.80     pooka {
   1158   1.80     pooka 
   1159   1.92     pooka 	/*
   1160   1.92     pooka 	 * Wake up the diabolical pagedaemon director if we are over
   1161   1.92     pooka 	 * 90% of the memory limit.  This is a complete and utter
   1162   1.92     pooka 	 * stetson-harrison decision which you are allowed to finetune.
   1163   1.92     pooka 	 * Don't bother locking.  If we have some unflushed caches,
   1164   1.92     pooka 	 * other waker-uppers will deal with the issue.
   1165   1.92     pooka 	 */
   1166   1.92     pooka 	if (NEED_PAGEDAEMON()) {
   1167   1.92     pooka 		cv_signal(&pdaemoncv);
   1168   1.92     pooka 	}
   1169   1.80     pooka }
   1170   1.80     pooka 
   1171   1.80     pooka void *
   1172   1.80     pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1173   1.80     pooka {
   1174  1.150     pooka 	const unsigned long thelimit =
   1175  1.150     pooka 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1176   1.84     pooka 	unsigned long newmem;
   1177   1.80     pooka 	void *rv;
   1178  1.142     pooka 	int error;
   1179   1.80     pooka 
   1180   1.92     pooka 	uvm_kick_pdaemon(); /* ouch */
   1181   1.92     pooka 
   1182   1.84     pooka 	/* first we must be within the limit */
   1183   1.84     pooka  limitagain:
   1184  1.150     pooka 	if (thelimit != RUMPMEM_UNLIMITED) {
   1185   1.84     pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1186  1.150     pooka 		if (newmem > thelimit) {
   1187   1.84     pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1188  1.103     pooka 			if (!waitok) {
   1189   1.84     pooka 				return NULL;
   1190  1.103     pooka 			}
   1191   1.84     pooka 			uvm_wait(wmsg);
   1192   1.84     pooka 			goto limitagain;
   1193   1.84     pooka 		}
   1194   1.84     pooka 	}
   1195   1.84     pooka 
   1196   1.84     pooka 	/* second, we must get something from the backend */
   1197   1.80     pooka  again:
   1198  1.142     pooka 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1199  1.142     pooka 	if (__predict_false(error && waitok)) {
   1200   1.80     pooka 		uvm_wait(wmsg);
   1201   1.80     pooka 		goto again;
   1202   1.80     pooka 	}
   1203   1.80     pooka 
   1204   1.80     pooka 	return rv;
   1205   1.80     pooka }
   1206   1.84     pooka 
   1207   1.84     pooka void
   1208   1.84     pooka rump_hyperfree(void *what, size_t size)
   1209   1.84     pooka {
   1210   1.84     pooka 
   1211   1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1212   1.84     pooka 		atomic_add_long(&curphysmem, -size);
   1213   1.84     pooka 	}
   1214  1.138     pooka 	rumpuser_free(what, size);
   1215   1.84     pooka }
   1216