Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.159.2.1
      1  1.159.2.1       snj /*	$NetBSD: vm.c,v 1.159.2.1 2014/12/31 06:44:00 snj Exp $	*/
      2        1.1     pooka 
      3        1.1     pooka /*
      4      1.114     pooka  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5        1.1     pooka  *
      6       1.76     pooka  * Development of this software was supported by
      7       1.76     pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8       1.76     pooka  * The Helsinki University of Technology.
      9        1.1     pooka  *
     10        1.1     pooka  * Redistribution and use in source and binary forms, with or without
     11        1.1     pooka  * modification, are permitted provided that the following conditions
     12        1.1     pooka  * are met:
     13        1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     14        1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     15        1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     17        1.1     pooka  *    documentation and/or other materials provided with the distribution.
     18        1.1     pooka  *
     19        1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20        1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21        1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22        1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23        1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24        1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25        1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26        1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27        1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28        1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29        1.1     pooka  * SUCH DAMAGE.
     30        1.1     pooka  */
     31        1.1     pooka 
     32        1.1     pooka /*
     33       1.88     pooka  * Virtual memory emulation routines.
     34        1.1     pooka  */
     35        1.1     pooka 
     36        1.1     pooka /*
     37        1.5     pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38        1.1     pooka  * for each page.  phys_addr would fit the job description better,
     39        1.1     pooka  * except that it will create unnecessary lossage on some platforms
     40        1.1     pooka  * due to not being a pointer type.
     41        1.1     pooka  */
     42        1.1     pooka 
     43       1.48     pooka #include <sys/cdefs.h>
     44  1.159.2.1       snj __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.159.2.1 2014/12/31 06:44:00 snj Exp $");
     45       1.48     pooka 
     46        1.1     pooka #include <sys/param.h>
     47       1.40     pooka #include <sys/atomic.h>
     48       1.80     pooka #include <sys/buf.h>
     49       1.80     pooka #include <sys/kernel.h>
     50       1.67     pooka #include <sys/kmem.h>
     51      1.121      para #include <sys/vmem.h>
     52       1.69     pooka #include <sys/mman.h>
     53        1.1     pooka #include <sys/null.h>
     54        1.1     pooka #include <sys/vnode.h>
     55        1.1     pooka 
     56       1.34     pooka #include <machine/pmap.h>
     57       1.34     pooka 
     58       1.34     pooka #include <rump/rumpuser.h>
     59       1.34     pooka 
     60        1.1     pooka #include <uvm/uvm.h>
     61       1.56     pooka #include <uvm/uvm_ddb.h>
     62       1.88     pooka #include <uvm/uvm_pdpolicy.h>
     63        1.1     pooka #include <uvm/uvm_prot.h>
     64       1.58        he #include <uvm/uvm_readahead.h>
     65  1.159.2.1       snj #include <uvm/uvm_device.h>
     66        1.1     pooka 
     67       1.13     pooka #include "rump_private.h"
     68       1.91     pooka #include "rump_vfs_private.h"
     69        1.1     pooka 
     70      1.152     pooka kmutex_t uvm_pageqlock; /* non-free page lock */
     71      1.152     pooka kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     72       1.88     pooka kmutex_t uvm_swap_data_lock;
     73       1.25        ad 
     74        1.1     pooka struct uvmexp uvmexp;
     75        1.7     pooka struct uvm uvm;
     76        1.1     pooka 
     77      1.112     pooka #ifdef __uvmexp_pagesize
     78      1.123    martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
     79      1.123    martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
     80      1.123    martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
     81      1.112     pooka #endif
     82      1.112     pooka 
     83        1.1     pooka struct vm_map rump_vmmap;
     84        1.1     pooka 
     85      1.121      para static struct vm_map kernel_map_store;
     86      1.121      para struct vm_map *kernel_map = &kernel_map_store;
     87      1.121      para 
     88      1.130     pooka static struct vm_map module_map_store;
     89      1.130     pooka extern struct vm_map *module_map;
     90      1.130     pooka 
     91      1.121      para vmem_t *kmem_arena;
     92      1.121      para vmem_t *kmem_va_arena;
     93       1.35     pooka 
     94       1.80     pooka static unsigned int pdaemon_waiters;
     95       1.80     pooka static kmutex_t pdaemonmtx;
     96       1.80     pooka static kcondvar_t pdaemoncv, oomwait;
     97       1.80     pooka 
     98       1.91     pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     99      1.147     pooka static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    100       1.84     pooka static unsigned long curphysmem;
    101       1.92     pooka static unsigned long dddlim;		/* 90% of memory limit used */
    102       1.92     pooka #define NEED_PAGEDAEMON() \
    103       1.92     pooka     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    104      1.158     pooka #define PDRESERVE (2*MAXPHYS)
    105       1.92     pooka 
    106       1.92     pooka /*
    107       1.92     pooka  * Try to free two pages worth of pages from objects.
    108       1.92     pooka  * If this succesfully frees a full page cache page, we'll
    109      1.120      yamt  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    110       1.92     pooka  */
    111       1.92     pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    112       1.92     pooka 
    113       1.92     pooka /*
    114       1.92     pooka  * Keep a list of least recently used pages.  Since the only way a
    115       1.92     pooka  * rump kernel can "access" a page is via lookup, we put the page
    116       1.92     pooka  * at the back of queue every time a lookup for it is done.  If the
    117       1.92     pooka  * page is in front of this global queue and we're short of memory,
    118       1.92     pooka  * it's a candidate for pageout.
    119       1.92     pooka  */
    120       1.92     pooka static struct pglist vmpage_lruqueue;
    121       1.92     pooka static unsigned vmpage_onqueue;
    122       1.84     pooka 
    123       1.89     pooka static int
    124       1.96     rmind pg_compare_key(void *ctx, const void *n, const void *key)
    125       1.89     pooka {
    126       1.89     pooka 	voff_t a = ((const struct vm_page *)n)->offset;
    127       1.89     pooka 	voff_t b = *(const voff_t *)key;
    128       1.89     pooka 
    129       1.89     pooka 	if (a < b)
    130       1.96     rmind 		return -1;
    131       1.96     rmind 	else if (a > b)
    132       1.89     pooka 		return 1;
    133       1.89     pooka 	else
    134       1.89     pooka 		return 0;
    135       1.89     pooka }
    136       1.89     pooka 
    137       1.89     pooka static int
    138       1.96     rmind pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    139       1.89     pooka {
    140       1.89     pooka 
    141       1.96     rmind 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    142       1.89     pooka }
    143       1.89     pooka 
    144       1.96     rmind const rb_tree_ops_t uvm_page_tree_ops = {
    145       1.89     pooka 	.rbto_compare_nodes = pg_compare_nodes,
    146       1.89     pooka 	.rbto_compare_key = pg_compare_key,
    147       1.96     rmind 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    148       1.96     rmind 	.rbto_context = NULL
    149       1.89     pooka };
    150       1.89     pooka 
    151        1.1     pooka /*
    152        1.1     pooka  * vm pages
    153        1.1     pooka  */
    154        1.1     pooka 
    155       1.90     pooka static int
    156       1.90     pooka pgctor(void *arg, void *obj, int flags)
    157       1.90     pooka {
    158       1.90     pooka 	struct vm_page *pg = obj;
    159       1.90     pooka 
    160       1.90     pooka 	memset(pg, 0, sizeof(*pg));
    161      1.103     pooka 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    162      1.103     pooka 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    163      1.103     pooka 	return pg->uanon == NULL;
    164       1.90     pooka }
    165       1.90     pooka 
    166       1.90     pooka static void
    167       1.90     pooka pgdtor(void *arg, void *obj)
    168       1.90     pooka {
    169       1.90     pooka 	struct vm_page *pg = obj;
    170       1.90     pooka 
    171       1.90     pooka 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    172       1.90     pooka }
    173       1.90     pooka 
    174       1.90     pooka static struct pool_cache pagecache;
    175       1.90     pooka 
    176       1.92     pooka /*
    177       1.92     pooka  * Called with the object locked.  We don't support anons.
    178       1.92     pooka  */
    179        1.1     pooka struct vm_page *
    180       1.76     pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    181       1.76     pooka 	int flags, int strat, int free_list)
    182        1.1     pooka {
    183        1.1     pooka 	struct vm_page *pg;
    184        1.1     pooka 
    185      1.115     rmind 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    186       1.92     pooka 	KASSERT(anon == NULL);
    187       1.92     pooka 
    188      1.103     pooka 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    189      1.104     pooka 	if (__predict_false(pg == NULL)) {
    190      1.103     pooka 		return NULL;
    191      1.104     pooka 	}
    192      1.103     pooka 
    193        1.1     pooka 	pg->offset = off;
    194        1.5     pooka 	pg->uobject = uobj;
    195        1.1     pooka 
    196       1.22     pooka 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    197       1.90     pooka 	if (flags & UVM_PGA_ZERO) {
    198       1.90     pooka 		uvm_pagezero(pg);
    199       1.90     pooka 	}
    200        1.1     pooka 
    201       1.31        ad 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    202       1.96     rmind 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    203       1.89     pooka 
    204       1.92     pooka 	/*
    205       1.93     pooka 	 * Don't put anons on the LRU page queue.  We can't flush them
    206       1.93     pooka 	 * (there's no concept of swap in a rump kernel), so no reason
    207       1.93     pooka 	 * to bother with them.
    208       1.92     pooka 	 */
    209       1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    210       1.92     pooka 		atomic_inc_uint(&vmpage_onqueue);
    211       1.92     pooka 		mutex_enter(&uvm_pageqlock);
    212       1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    213       1.92     pooka 		mutex_exit(&uvm_pageqlock);
    214       1.92     pooka 	}
    215       1.92     pooka 
    216       1.59     pooka 	uobj->uo_npages++;
    217       1.21     pooka 
    218        1.1     pooka 	return pg;
    219        1.1     pooka }
    220        1.1     pooka 
    221       1.21     pooka /*
    222       1.21     pooka  * Release a page.
    223       1.21     pooka  *
    224       1.22     pooka  * Called with the vm object locked.
    225       1.21     pooka  */
    226        1.1     pooka void
    227       1.22     pooka uvm_pagefree(struct vm_page *pg)
    228        1.1     pooka {
    229        1.5     pooka 	struct uvm_object *uobj = pg->uobject;
    230        1.1     pooka 
    231       1.92     pooka 	KASSERT(mutex_owned(&uvm_pageqlock));
    232      1.115     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    233       1.92     pooka 
    234       1.22     pooka 	if (pg->flags & PG_WANTED)
    235       1.22     pooka 		wakeup(pg);
    236       1.22     pooka 
    237       1.92     pooka 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    238       1.92     pooka 
    239       1.59     pooka 	uobj->uo_npages--;
    240       1.96     rmind 	rb_tree_remove_node(&uobj->rb_tree, pg);
    241       1.92     pooka 
    242       1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    243       1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    244       1.92     pooka 		atomic_dec_uint(&vmpage_onqueue);
    245       1.92     pooka 	}
    246       1.92     pooka 
    247       1.90     pooka 	pool_cache_put(&pagecache, pg);
    248        1.1     pooka }
    249        1.1     pooka 
    250       1.15     pooka void
    251       1.61     pooka uvm_pagezero(struct vm_page *pg)
    252       1.15     pooka {
    253       1.15     pooka 
    254       1.61     pooka 	pg->flags &= ~PG_CLEAN;
    255       1.61     pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    256       1.15     pooka }
    257       1.15     pooka 
    258        1.1     pooka /*
    259      1.136      yamt  * uvm_page_locked_p: return true if object associated with page is
    260      1.136      yamt  * locked.  this is a weak check for runtime assertions only.
    261      1.136      yamt  */
    262      1.136      yamt 
    263      1.136      yamt bool
    264      1.136      yamt uvm_page_locked_p(struct vm_page *pg)
    265      1.136      yamt {
    266      1.136      yamt 
    267      1.136      yamt 	return mutex_owned(pg->uobject->vmobjlock);
    268      1.136      yamt }
    269      1.136      yamt 
    270      1.136      yamt /*
    271        1.1     pooka  * Misc routines
    272        1.1     pooka  */
    273        1.1     pooka 
    274       1.61     pooka static kmutex_t pagermtx;
    275       1.61     pooka 
    276        1.1     pooka void
    277       1.79     pooka uvm_init(void)
    278        1.1     pooka {
    279       1.84     pooka 	char buf[64];
    280       1.84     pooka 
    281      1.141     pooka 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    282      1.105     pooka 		unsigned long tmp;
    283      1.105     pooka 		char *ep;
    284      1.105     pooka 		int mult;
    285      1.105     pooka 
    286      1.109     pooka 		tmp = strtoul(buf, &ep, 10);
    287      1.105     pooka 		if (strlen(ep) > 1)
    288      1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    289      1.105     pooka 
    290      1.105     pooka 		/* mini-dehumanize-number */
    291      1.105     pooka 		mult = 1;
    292      1.105     pooka 		switch (*ep) {
    293      1.105     pooka 		case 'k':
    294      1.105     pooka 			mult = 1024;
    295      1.105     pooka 			break;
    296      1.105     pooka 		case 'm':
    297      1.105     pooka 			mult = 1024*1024;
    298      1.105     pooka 			break;
    299      1.105     pooka 		case 'g':
    300      1.105     pooka 			mult = 1024*1024*1024;
    301      1.105     pooka 			break;
    302      1.105     pooka 		case 0:
    303      1.105     pooka 			break;
    304      1.105     pooka 		default:
    305      1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    306      1.105     pooka 		}
    307      1.105     pooka 		rump_physmemlimit = tmp * mult;
    308      1.105     pooka 
    309      1.105     pooka 		if (rump_physmemlimit / mult != tmp)
    310      1.105     pooka 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    311      1.147     pooka 
    312      1.147     pooka 		/* reserve some memory for the pager */
    313      1.158     pooka 		if (rump_physmemlimit <= PDRESERVE)
    314      1.158     pooka 			panic("uvm_init: system reserves %d bytes of mem, "
    315      1.158     pooka 			    "only %lu bytes given",
    316      1.158     pooka 			    PDRESERVE, rump_physmemlimit);
    317      1.147     pooka 		pdlimit = rump_physmemlimit;
    318      1.158     pooka 		rump_physmemlimit -= PDRESERVE;
    319      1.105     pooka 
    320      1.157     pooka 		if (pdlimit < 1024*1024)
    321      1.157     pooka 			printf("uvm_init: WARNING: <1MB RAM limit, "
    322      1.157     pooka 			    "hope you know what you're doing\n");
    323      1.157     pooka 
    324       1.84     pooka #define HUMANIZE_BYTES 9
    325       1.84     pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    326       1.91     pooka 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    327       1.84     pooka #undef HUMANIZE_BYTES
    328       1.92     pooka 		dddlim = 9 * (rump_physmemlimit / 10);
    329       1.84     pooka 	} else {
    330       1.84     pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    331       1.84     pooka 	}
    332       1.84     pooka 	aprint_verbose("total memory = %s\n", buf);
    333        1.1     pooka 
    334       1.92     pooka 	TAILQ_INIT(&vmpage_lruqueue);
    335       1.92     pooka 
    336      1.157     pooka 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    337      1.157     pooka 		uvmexp.npages = physmem;
    338      1.157     pooka 	} else {
    339      1.157     pooka 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    340      1.158     pooka 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    341      1.157     pooka 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    342      1.157     pooka 	}
    343      1.157     pooka 	/*
    344      1.157     pooka 	 * uvmexp.free is not used internally or updated.  The reason is
    345      1.157     pooka 	 * that the memory hypercall allocator is allowed to allocate
    346      1.157     pooka 	 * non-page sized chunks.  We use a byte count in curphysmem
    347      1.157     pooka 	 * instead.
    348      1.157     pooka 	 */
    349      1.157     pooka 	uvmexp.free = uvmexp.npages;
    350       1.21     pooka 
    351      1.112     pooka #ifndef __uvmexp_pagesize
    352      1.112     pooka 	uvmexp.pagesize = PAGE_SIZE;
    353      1.112     pooka 	uvmexp.pagemask = PAGE_MASK;
    354      1.112     pooka 	uvmexp.pageshift = PAGE_SHIFT;
    355      1.112     pooka #else
    356      1.112     pooka #define FAKE_PAGE_SHIFT 12
    357      1.112     pooka 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    358      1.112     pooka 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    359      1.112     pooka 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    360      1.112     pooka #undef FAKE_PAGE_SHIFT
    361      1.112     pooka #endif
    362      1.112     pooka 
    363      1.140     pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    364      1.140     pooka 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
    365      1.140     pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    366       1.35     pooka 
    367      1.152     pooka 	/* just to appease linkage */
    368      1.152     pooka 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    369      1.152     pooka 
    370      1.140     pooka 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    371       1.80     pooka 	cv_init(&pdaemoncv, "pdaemon");
    372       1.80     pooka 	cv_init(&oomwait, "oomwait");
    373       1.80     pooka 
    374      1.130     pooka 	module_map = &module_map_store;
    375      1.130     pooka 
    376       1.50     pooka 	kernel_map->pmap = pmap_kernel();
    377      1.121      para 
    378      1.122     njoly 	pool_subsystem_init();
    379      1.128     pooka 
    380      1.121      para 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    381      1.121      para 	    NULL, NULL, NULL,
    382      1.121      para 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    383      1.121      para 
    384      1.135      para 	vmem_subsystem_init(kmem_arena);
    385      1.121      para 
    386      1.121      para 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    387      1.121      para 	    vmem_alloc, vmem_free, kmem_arena,
    388      1.124      para 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    389       1.90     pooka 
    390       1.90     pooka 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    391       1.90     pooka 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    392        1.1     pooka }
    393        1.1     pooka 
    394       1.83     pooka void
    395      1.145    martin uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    396      1.145    martin     bool topdown)
    397       1.83     pooka {
    398       1.83     pooka 
    399       1.83     pooka 	vm->vm_map.pmap = pmap_kernel();
    400       1.83     pooka 	vm->vm_refcnt = 1;
    401       1.83     pooka }
    402        1.1     pooka 
    403        1.1     pooka void
    404        1.7     pooka uvm_pagewire(struct vm_page *pg)
    405        1.7     pooka {
    406        1.7     pooka 
    407        1.7     pooka 	/* nada */
    408        1.7     pooka }
    409        1.7     pooka 
    410        1.7     pooka void
    411        1.7     pooka uvm_pageunwire(struct vm_page *pg)
    412        1.7     pooka {
    413        1.7     pooka 
    414        1.7     pooka 	/* nada */
    415        1.7     pooka }
    416        1.7     pooka 
    417       1.83     pooka /* where's your schmonz now? */
    418       1.83     pooka #define PUNLIMIT(a)	\
    419       1.83     pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    420       1.83     pooka void
    421       1.83     pooka uvm_init_limits(struct proc *p)
    422       1.83     pooka {
    423       1.83     pooka 
    424      1.155     pooka #ifndef DFLSSIZ
    425      1.155     pooka #define DFLSSIZ (16*1024*1024)
    426      1.155     pooka #endif
    427      1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    428      1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    429       1.83     pooka 	PUNLIMIT(RLIMIT_DATA);
    430       1.83     pooka 	PUNLIMIT(RLIMIT_RSS);
    431       1.83     pooka 	PUNLIMIT(RLIMIT_AS);
    432       1.83     pooka 	/* nice, cascade */
    433       1.83     pooka }
    434       1.83     pooka #undef PUNLIMIT
    435       1.83     pooka 
    436       1.69     pooka /*
    437       1.69     pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    438       1.69     pooka  */
    439       1.49     pooka int
    440  1.159.2.1       snj uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    441       1.49     pooka {
    442       1.69     pooka 	int error;
    443       1.49     pooka 
    444       1.69     pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    445  1.159.2.1       snj 	if (*addrp != NULL)
    446       1.69     pooka 		panic("uvm_mmap() variant unsupported");
    447       1.69     pooka 
    448      1.106     pooka 	if (RUMP_LOCALPROC_P(curproc)) {
    449  1.159.2.1       snj 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    450       1.98     pooka 	} else {
    451  1.159.2.1       snj 		error = rumpuser_sp_anonmmap(p->p_vmspace->vm_map.pmap,
    452  1.159.2.1       snj 		    size, addrp);
    453       1.98     pooka 	}
    454  1.159.2.1       snj 	return error;
    455  1.159.2.1       snj }
    456       1.69     pooka 
    457  1.159.2.1       snj /*
    458  1.159.2.1       snj  * Stubs for things referenced from vfs_vnode.c but not used.
    459  1.159.2.1       snj  */
    460  1.159.2.1       snj const dev_t zerodev;
    461  1.159.2.1       snj 
    462  1.159.2.1       snj struct uvm_object *
    463  1.159.2.1       snj udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    464  1.159.2.1       snj {
    465  1.159.2.1       snj 	return NULL;
    466       1.49     pooka }
    467       1.49     pooka 
    468       1.61     pooka struct pagerinfo {
    469       1.61     pooka 	vaddr_t pgr_kva;
    470       1.61     pooka 	int pgr_npages;
    471       1.61     pooka 	struct vm_page **pgr_pgs;
    472       1.61     pooka 	bool pgr_read;
    473       1.61     pooka 
    474       1.61     pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    475       1.61     pooka };
    476       1.61     pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    477       1.61     pooka 
    478       1.61     pooka /*
    479       1.61     pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    480      1.159     pooka  * and copy page contents there.  The reason for copying instead of
    481      1.159     pooka  * mapping is simple: we do not assume we are running on virtual
    482      1.159     pooka  * memory.  Even if we could emulate virtual memory in some envs
    483      1.159     pooka  * such as userspace, copying is much faster than trying to awkardly
    484      1.159     pooka  * cope with remapping (see "Design and Implementation" pp.95-98).
    485      1.159     pooka  * The downside of the approach is that the pager requires MAXPHYS
    486      1.159     pooka  * free memory to perform paging, but short of virtual memory or
    487      1.159     pooka  * making the pager do I/O in page-sized chunks we cannot do much
    488      1.159     pooka  * about that.
    489       1.61     pooka  */
    490        1.7     pooka vaddr_t
    491       1.61     pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    492        1.7     pooka {
    493       1.61     pooka 	struct pagerinfo *pgri;
    494       1.61     pooka 	vaddr_t curkva;
    495       1.61     pooka 	int i;
    496       1.61     pooka 
    497       1.61     pooka 	/* allocate structures */
    498       1.61     pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    499       1.61     pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    500       1.61     pooka 	pgri->pgr_npages = npages;
    501       1.61     pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    502       1.61     pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    503       1.61     pooka 
    504       1.61     pooka 	/* copy contents to "mapped" memory */
    505       1.61     pooka 	for (i = 0, curkva = pgri->pgr_kva;
    506       1.61     pooka 	    i < npages;
    507       1.61     pooka 	    i++, curkva += PAGE_SIZE) {
    508       1.61     pooka 		/*
    509       1.61     pooka 		 * We need to copy the previous contents of the pages to
    510       1.61     pooka 		 * the window even if we are reading from the
    511       1.61     pooka 		 * device, since the device might not fill the contents of
    512       1.61     pooka 		 * the full mapped range and we will end up corrupting
    513       1.61     pooka 		 * data when we unmap the window.
    514       1.61     pooka 		 */
    515       1.61     pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    516       1.61     pooka 		pgri->pgr_pgs[i] = pgs[i];
    517       1.61     pooka 	}
    518       1.61     pooka 
    519       1.61     pooka 	mutex_enter(&pagermtx);
    520       1.61     pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    521       1.61     pooka 	mutex_exit(&pagermtx);
    522        1.7     pooka 
    523       1.61     pooka 	return pgri->pgr_kva;
    524        1.7     pooka }
    525        1.7     pooka 
    526       1.61     pooka /*
    527       1.61     pooka  * map out the pager window.  return contents from VA to page storage
    528       1.61     pooka  * and free structures.
    529       1.61     pooka  *
    530       1.61     pooka  * Note: does not currently support partial frees
    531       1.61     pooka  */
    532       1.61     pooka void
    533       1.61     pooka uvm_pagermapout(vaddr_t kva, int npages)
    534        1.7     pooka {
    535       1.61     pooka 	struct pagerinfo *pgri;
    536       1.61     pooka 	vaddr_t curkva;
    537       1.61     pooka 	int i;
    538        1.7     pooka 
    539       1.61     pooka 	mutex_enter(&pagermtx);
    540       1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    541       1.61     pooka 		if (pgri->pgr_kva == kva)
    542       1.61     pooka 			break;
    543       1.61     pooka 	}
    544       1.61     pooka 	KASSERT(pgri);
    545       1.61     pooka 	if (pgri->pgr_npages != npages)
    546       1.61     pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    547       1.61     pooka 	LIST_REMOVE(pgri, pgr_entries);
    548       1.61     pooka 	mutex_exit(&pagermtx);
    549       1.61     pooka 
    550       1.61     pooka 	if (pgri->pgr_read) {
    551       1.61     pooka 		for (i = 0, curkva = pgri->pgr_kva;
    552       1.61     pooka 		    i < pgri->pgr_npages;
    553       1.61     pooka 		    i++, curkva += PAGE_SIZE) {
    554       1.61     pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    555       1.21     pooka 		}
    556       1.21     pooka 	}
    557       1.10     pooka 
    558       1.61     pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    559       1.61     pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    560       1.61     pooka 	kmem_free(pgri, sizeof(*pgri));
    561        1.7     pooka }
    562        1.7     pooka 
    563       1.61     pooka /*
    564       1.61     pooka  * convert va in pager window to page structure.
    565       1.61     pooka  * XXX: how expensive is this (global lock, list traversal)?
    566       1.61     pooka  */
    567       1.14     pooka struct vm_page *
    568       1.14     pooka uvm_pageratop(vaddr_t va)
    569       1.14     pooka {
    570       1.61     pooka 	struct pagerinfo *pgri;
    571       1.61     pooka 	struct vm_page *pg = NULL;
    572       1.61     pooka 	int i;
    573       1.14     pooka 
    574       1.61     pooka 	mutex_enter(&pagermtx);
    575       1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    576       1.61     pooka 		if (pgri->pgr_kva <= va
    577       1.61     pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    578       1.21     pooka 			break;
    579       1.61     pooka 	}
    580       1.61     pooka 	if (pgri) {
    581       1.61     pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    582       1.61     pooka 		pg = pgri->pgr_pgs[i];
    583       1.61     pooka 	}
    584       1.61     pooka 	mutex_exit(&pagermtx);
    585       1.21     pooka 
    586       1.61     pooka 	return pg;
    587       1.61     pooka }
    588       1.15     pooka 
    589       1.97     pooka /*
    590       1.97     pooka  * Called with the vm object locked.
    591       1.97     pooka  *
    592       1.97     pooka  * Put vnode object pages at the end of the access queue to indicate
    593       1.97     pooka  * they have been recently accessed and should not be immediate
    594       1.97     pooka  * candidates for pageout.  Do not do this for lookups done by
    595       1.97     pooka  * the pagedaemon to mimic pmap_kentered mappings which don't track
    596       1.97     pooka  * access information.
    597       1.97     pooka  */
    598       1.61     pooka struct vm_page *
    599       1.61     pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    600       1.61     pooka {
    601       1.92     pooka 	struct vm_page *pg;
    602       1.97     pooka 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    603       1.61     pooka 
    604       1.96     rmind 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    605       1.97     pooka 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    606       1.92     pooka 		mutex_enter(&uvm_pageqlock);
    607       1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    608       1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    609       1.92     pooka 		mutex_exit(&uvm_pageqlock);
    610       1.92     pooka 	}
    611       1.92     pooka 
    612       1.92     pooka 	return pg;
    613       1.14     pooka }
    614       1.14     pooka 
    615        1.7     pooka void
    616       1.22     pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    617       1.22     pooka {
    618       1.22     pooka 	struct vm_page *pg;
    619       1.22     pooka 	int i;
    620       1.22     pooka 
    621       1.94     pooka 	KASSERT(npgs > 0);
    622      1.115     rmind 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    623       1.94     pooka 
    624       1.22     pooka 	for (i = 0; i < npgs; i++) {
    625       1.22     pooka 		pg = pgs[i];
    626       1.22     pooka 		if (pg == NULL)
    627       1.22     pooka 			continue;
    628       1.22     pooka 
    629       1.22     pooka 		KASSERT(pg->flags & PG_BUSY);
    630       1.22     pooka 		if (pg->flags & PG_WANTED)
    631       1.22     pooka 			wakeup(pg);
    632       1.36     pooka 		if (pg->flags & PG_RELEASED)
    633       1.36     pooka 			uvm_pagefree(pg);
    634       1.36     pooka 		else
    635       1.36     pooka 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    636       1.22     pooka 	}
    637       1.22     pooka }
    638       1.22     pooka 
    639       1.22     pooka void
    640        1.7     pooka uvm_estimatepageable(int *active, int *inactive)
    641        1.7     pooka {
    642        1.7     pooka 
    643       1.19     pooka 	/* XXX: guessing game */
    644       1.19     pooka 	*active = 1024;
    645       1.19     pooka 	*inactive = 1024;
    646        1.7     pooka }
    647        1.7     pooka 
    648       1.41     pooka bool
    649       1.41     pooka vm_map_starved_p(struct vm_map *map)
    650       1.41     pooka {
    651       1.41     pooka 
    652       1.80     pooka 	if (map->flags & VM_MAP_WANTVA)
    653       1.80     pooka 		return true;
    654       1.80     pooka 
    655       1.41     pooka 	return false;
    656       1.41     pooka }
    657       1.41     pooka 
    658       1.41     pooka int
    659       1.41     pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    660       1.41     pooka {
    661       1.41     pooka 
    662       1.41     pooka 	panic("%s: unimplemented", __func__);
    663       1.41     pooka }
    664       1.41     pooka 
    665       1.41     pooka void
    666       1.41     pooka uvm_unloan(void *v, int npages, int flags)
    667       1.41     pooka {
    668       1.41     pooka 
    669       1.41     pooka 	panic("%s: unimplemented", __func__);
    670       1.41     pooka }
    671       1.41     pooka 
    672       1.43     pooka int
    673       1.43     pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    674       1.43     pooka 	struct vm_page **opp)
    675       1.43     pooka {
    676       1.43     pooka 
    677       1.72     pooka 	return EBUSY;
    678       1.43     pooka }
    679       1.43     pooka 
    680      1.116       mrg struct vm_page *
    681      1.116       mrg uvm_loanbreak(struct vm_page *pg)
    682      1.116       mrg {
    683      1.116       mrg 
    684      1.116       mrg 	panic("%s: unimplemented", __func__);
    685      1.116       mrg }
    686      1.116       mrg 
    687      1.116       mrg void
    688      1.116       mrg ubc_purge(struct uvm_object *uobj)
    689      1.116       mrg {
    690      1.116       mrg 
    691      1.116       mrg }
    692      1.116       mrg 
    693       1.68     pooka vaddr_t
    694       1.68     pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    695       1.68     pooka {
    696       1.68     pooka 
    697       1.68     pooka 	return 0;
    698       1.68     pooka }
    699       1.68     pooka 
    700       1.71     pooka int
    701       1.71     pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    702       1.71     pooka 	vm_prot_t prot, bool set_max)
    703       1.71     pooka {
    704       1.71     pooka 
    705       1.71     pooka 	return EOPNOTSUPP;
    706       1.71     pooka }
    707       1.71     pooka 
    708        1.9     pooka /*
    709       1.12     pooka  * UVM km
    710       1.12     pooka  */
    711       1.12     pooka 
    712       1.12     pooka vaddr_t
    713       1.12     pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    714       1.12     pooka {
    715       1.82     pooka 	void *rv, *desired = NULL;
    716       1.50     pooka 	int alignbit, error;
    717       1.50     pooka 
    718       1.82     pooka #ifdef __x86_64__
    719       1.82     pooka 	/*
    720       1.82     pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    721       1.82     pooka 	 * This is because NetBSD kernel modules are compiled
    722       1.82     pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    723       1.82     pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    724       1.82     pooka 	 * anywhere except the lowest or highest 2GB, it will not
    725       1.82     pooka 	 * work.  Since userspace does not have access to the highest
    726       1.82     pooka 	 * 2GB, use the lowest 2GB.
    727       1.82     pooka 	 *
    728       1.82     pooka 	 * Note: this assumes the rump kernel resides in
    729       1.82     pooka 	 * the lowest 2GB as well.
    730       1.82     pooka 	 *
    731       1.82     pooka 	 * Note2: yes, it's a quick hack, but since this the only
    732       1.82     pooka 	 * place where we care about the map we're allocating from,
    733       1.82     pooka 	 * just use a simple "if" instead of coming up with a fancy
    734       1.82     pooka 	 * generic solution.
    735       1.82     pooka 	 */
    736       1.82     pooka 	if (map == module_map) {
    737       1.82     pooka 		desired = (void *)(0x80000000 - size);
    738       1.82     pooka 	}
    739       1.82     pooka #endif
    740       1.82     pooka 
    741      1.130     pooka 	if (__predict_false(map == module_map)) {
    742      1.130     pooka 		alignbit = 0;
    743      1.130     pooka 		if (align) {
    744      1.130     pooka 			alignbit = ffs(align)-1;
    745      1.130     pooka 		}
    746      1.142     pooka 		error = rumpuser_anonmmap(desired, size, alignbit,
    747      1.142     pooka 		    flags & UVM_KMF_EXEC, &rv);
    748      1.130     pooka 	} else {
    749      1.142     pooka 		error = rumpuser_malloc(size, align, &rv);
    750       1.50     pooka 	}
    751       1.50     pooka 
    752      1.142     pooka 	if (error) {
    753       1.50     pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    754       1.50     pooka 			return 0;
    755       1.50     pooka 		else
    756       1.50     pooka 			panic("uvm_km_alloc failed");
    757       1.50     pooka 	}
    758       1.12     pooka 
    759       1.50     pooka 	if (flags & UVM_KMF_ZERO)
    760       1.12     pooka 		memset(rv, 0, size);
    761       1.12     pooka 
    762       1.12     pooka 	return (vaddr_t)rv;
    763       1.12     pooka }
    764       1.12     pooka 
    765       1.12     pooka void
    766       1.12     pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    767       1.12     pooka {
    768       1.12     pooka 
    769      1.130     pooka 	if (__predict_false(map == module_map))
    770      1.130     pooka 		rumpuser_unmap((void *)vaddr, size);
    771      1.130     pooka 	else
    772      1.138     pooka 		rumpuser_free((void *)vaddr, size);
    773       1.12     pooka }
    774       1.12     pooka 
    775       1.12     pooka struct vm_map *
    776       1.12     pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    777      1.121      para 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    778       1.12     pooka {
    779       1.12     pooka 
    780       1.12     pooka 	return (struct vm_map *)417416;
    781       1.12     pooka }
    782       1.40     pooka 
    783      1.121      para int
    784      1.121      para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    785      1.121      para     vmem_addr_t *addr)
    786       1.40     pooka {
    787      1.121      para 	vaddr_t va;
    788      1.121      para 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    789      1.121      para 	    (flags & VM_SLEEP), "kmalloc");
    790       1.40     pooka 
    791      1.121      para 	if (va) {
    792      1.121      para 		*addr = va;
    793      1.121      para 		return 0;
    794      1.121      para 	} else {
    795      1.121      para 		return ENOMEM;
    796      1.121      para 	}
    797       1.40     pooka }
    798       1.40     pooka 
    799       1.40     pooka void
    800      1.121      para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    801       1.40     pooka {
    802       1.40     pooka 
    803      1.121      para 	rump_hyperfree((void *)addr, size);
    804       1.74     pooka }
    805       1.74     pooka 
    806       1.57     pooka /*
    807      1.102     pooka  * VM space locking routines.  We don't really have to do anything,
    808      1.102     pooka  * since the pages are always "wired" (both local and remote processes).
    809       1.57     pooka  */
    810       1.57     pooka int
    811       1.57     pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    812       1.57     pooka {
    813       1.57     pooka 
    814       1.57     pooka 	return 0;
    815       1.57     pooka }
    816       1.57     pooka 
    817       1.57     pooka void
    818       1.57     pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    819       1.57     pooka {
    820       1.57     pooka 
    821       1.57     pooka }
    822       1.57     pooka 
    823      1.102     pooka /*
    824      1.102     pooka  * For the local case the buffer mappers don't need to do anything.
    825      1.102     pooka  * For the remote case we need to reserve space and copy data in or
    826      1.102     pooka  * out, depending on B_READ/B_WRITE.
    827      1.102     pooka  */
    828      1.111     pooka int
    829       1.57     pooka vmapbuf(struct buf *bp, vsize_t len)
    830       1.57     pooka {
    831      1.111     pooka 	int error = 0;
    832       1.57     pooka 
    833       1.57     pooka 	bp->b_saveaddr = bp->b_data;
    834      1.102     pooka 
    835      1.102     pooka 	/* remote case */
    836      1.106     pooka 	if (!RUMP_LOCALPROC_P(curproc)) {
    837      1.102     pooka 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    838      1.102     pooka 		if (BUF_ISWRITE(bp)) {
    839      1.111     pooka 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    840      1.111     pooka 			if (error) {
    841      1.111     pooka 				rump_hyperfree(bp->b_data, len);
    842      1.111     pooka 				bp->b_data = bp->b_saveaddr;
    843      1.111     pooka 				bp->b_saveaddr = 0;
    844      1.111     pooka 			}
    845      1.102     pooka 		}
    846      1.102     pooka 	}
    847      1.111     pooka 
    848      1.111     pooka 	return error;
    849       1.57     pooka }
    850       1.57     pooka 
    851       1.57     pooka void
    852       1.57     pooka vunmapbuf(struct buf *bp, vsize_t len)
    853       1.57     pooka {
    854       1.57     pooka 
    855      1.102     pooka 	/* remote case */
    856      1.106     pooka 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    857      1.102     pooka 		if (BUF_ISREAD(bp)) {
    858      1.110     pooka 			bp->b_error = copyout_proc(bp->b_proc,
    859      1.102     pooka 			    bp->b_data, bp->b_saveaddr, len);
    860      1.102     pooka 		}
    861      1.102     pooka 		rump_hyperfree(bp->b_data, len);
    862      1.102     pooka 	}
    863      1.102     pooka 
    864       1.57     pooka 	bp->b_data = bp->b_saveaddr;
    865       1.57     pooka 	bp->b_saveaddr = 0;
    866       1.57     pooka }
    867       1.61     pooka 
    868       1.61     pooka void
    869       1.83     pooka uvmspace_addref(struct vmspace *vm)
    870       1.83     pooka {
    871       1.83     pooka 
    872       1.83     pooka 	/*
    873      1.103     pooka 	 * No dynamically allocated vmspaces exist.
    874       1.83     pooka 	 */
    875       1.83     pooka }
    876       1.83     pooka 
    877       1.83     pooka void
    878       1.66     pooka uvmspace_free(struct vmspace *vm)
    879       1.66     pooka {
    880       1.66     pooka 
    881       1.66     pooka 	/* nothing for now */
    882       1.66     pooka }
    883       1.66     pooka 
    884       1.61     pooka /*
    885       1.61     pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    886       1.61     pooka  */
    887       1.61     pooka 
    888       1.61     pooka void
    889       1.61     pooka uvm_pageactivate(struct vm_page *pg)
    890       1.61     pooka {
    891       1.61     pooka 
    892       1.61     pooka 	/* nada */
    893       1.61     pooka }
    894       1.61     pooka 
    895       1.61     pooka void
    896       1.61     pooka uvm_pagedeactivate(struct vm_page *pg)
    897       1.61     pooka {
    898       1.61     pooka 
    899       1.61     pooka 	/* nada */
    900       1.61     pooka }
    901       1.61     pooka 
    902       1.61     pooka void
    903       1.61     pooka uvm_pagedequeue(struct vm_page *pg)
    904       1.61     pooka {
    905       1.61     pooka 
    906       1.61     pooka 	/* nada*/
    907       1.61     pooka }
    908       1.61     pooka 
    909       1.61     pooka void
    910       1.61     pooka uvm_pageenqueue(struct vm_page *pg)
    911       1.61     pooka {
    912       1.61     pooka 
    913       1.61     pooka 	/* nada */
    914       1.61     pooka }
    915       1.80     pooka 
    916       1.88     pooka void
    917       1.88     pooka uvmpdpol_anfree(struct vm_anon *an)
    918       1.88     pooka {
    919       1.88     pooka 
    920       1.88     pooka 	/* nada */
    921       1.88     pooka }
    922       1.88     pooka 
    923       1.80     pooka /*
    924       1.99  uebayasi  * Physical address accessors.
    925       1.99  uebayasi  */
    926       1.99  uebayasi 
    927       1.99  uebayasi struct vm_page *
    928       1.99  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    929       1.99  uebayasi {
    930       1.99  uebayasi 
    931       1.99  uebayasi 	return NULL;
    932       1.99  uebayasi }
    933       1.99  uebayasi 
    934       1.99  uebayasi paddr_t
    935       1.99  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
    936       1.99  uebayasi {
    937       1.99  uebayasi 
    938       1.99  uebayasi 	return 0;
    939       1.99  uebayasi }
    940       1.99  uebayasi 
    941      1.153     pooka vaddr_t
    942      1.153     pooka uvm_uarea_alloc(void)
    943      1.153     pooka {
    944      1.153     pooka 
    945      1.153     pooka 	/* non-zero */
    946      1.153     pooka 	return (vaddr_t)11;
    947      1.153     pooka }
    948      1.153     pooka 
    949      1.153     pooka void
    950      1.153     pooka uvm_uarea_free(vaddr_t uarea)
    951      1.153     pooka {
    952      1.153     pooka 
    953      1.153     pooka 	/* nata, so creamy */
    954      1.153     pooka }
    955      1.153     pooka 
    956       1.99  uebayasi /*
    957       1.80     pooka  * Routines related to the Page Baroness.
    958       1.80     pooka  */
    959       1.80     pooka 
    960       1.80     pooka void
    961       1.80     pooka uvm_wait(const char *msg)
    962       1.80     pooka {
    963       1.80     pooka 
    964       1.80     pooka 	if (__predict_false(rump_threads == 0))
    965       1.80     pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    966       1.80     pooka 
    967      1.147     pooka 	if (curlwp == uvm.pagedaemon_lwp) {
    968      1.147     pooka 		/* is it possible for us to later get memory? */
    969      1.147     pooka 		if (!uvmexp.paging)
    970      1.147     pooka 			panic("pagedaemon out of memory");
    971      1.147     pooka 	}
    972      1.147     pooka 
    973       1.80     pooka 	mutex_enter(&pdaemonmtx);
    974       1.80     pooka 	pdaemon_waiters++;
    975       1.80     pooka 	cv_signal(&pdaemoncv);
    976       1.80     pooka 	cv_wait(&oomwait, &pdaemonmtx);
    977       1.80     pooka 	mutex_exit(&pdaemonmtx);
    978       1.80     pooka }
    979       1.80     pooka 
    980       1.80     pooka void
    981       1.80     pooka uvm_pageout_start(int npages)
    982       1.80     pooka {
    983       1.80     pooka 
    984      1.113     pooka 	mutex_enter(&pdaemonmtx);
    985      1.113     pooka 	uvmexp.paging += npages;
    986      1.113     pooka 	mutex_exit(&pdaemonmtx);
    987       1.80     pooka }
    988       1.80     pooka 
    989       1.80     pooka void
    990       1.80     pooka uvm_pageout_done(int npages)
    991       1.80     pooka {
    992       1.80     pooka 
    993      1.113     pooka 	if (!npages)
    994      1.113     pooka 		return;
    995      1.113     pooka 
    996      1.113     pooka 	mutex_enter(&pdaemonmtx);
    997      1.113     pooka 	KASSERT(uvmexp.paging >= npages);
    998      1.113     pooka 	uvmexp.paging -= npages;
    999      1.113     pooka 
   1000      1.113     pooka 	if (pdaemon_waiters) {
   1001      1.113     pooka 		pdaemon_waiters = 0;
   1002      1.113     pooka 		cv_broadcast(&oomwait);
   1003      1.113     pooka 	}
   1004      1.113     pooka 	mutex_exit(&pdaemonmtx);
   1005       1.80     pooka }
   1006       1.80     pooka 
   1007       1.95     pooka static bool
   1008      1.104     pooka processpage(struct vm_page *pg, bool *lockrunning)
   1009       1.95     pooka {
   1010       1.95     pooka 	struct uvm_object *uobj;
   1011       1.95     pooka 
   1012       1.95     pooka 	uobj = pg->uobject;
   1013      1.115     rmind 	if (mutex_tryenter(uobj->vmobjlock)) {
   1014       1.95     pooka 		if ((pg->flags & PG_BUSY) == 0) {
   1015       1.95     pooka 			mutex_exit(&uvm_pageqlock);
   1016       1.95     pooka 			uobj->pgops->pgo_put(uobj, pg->offset,
   1017       1.95     pooka 			    pg->offset + PAGE_SIZE,
   1018       1.95     pooka 			    PGO_CLEANIT|PGO_FREE);
   1019      1.115     rmind 			KASSERT(!mutex_owned(uobj->vmobjlock));
   1020       1.95     pooka 			return true;
   1021       1.95     pooka 		} else {
   1022      1.115     rmind 			mutex_exit(uobj->vmobjlock);
   1023       1.95     pooka 		}
   1024      1.104     pooka 	} else if (*lockrunning == false && ncpu > 1) {
   1025      1.104     pooka 		CPU_INFO_ITERATOR cii;
   1026      1.104     pooka 		struct cpu_info *ci;
   1027      1.104     pooka 		struct lwp *l;
   1028      1.104     pooka 
   1029      1.115     rmind 		l = mutex_owner(uobj->vmobjlock);
   1030      1.104     pooka 		for (CPU_INFO_FOREACH(cii, ci)) {
   1031      1.104     pooka 			if (ci->ci_curlwp == l) {
   1032      1.104     pooka 				*lockrunning = true;
   1033      1.104     pooka 				break;
   1034      1.104     pooka 			}
   1035      1.104     pooka 		}
   1036       1.95     pooka 	}
   1037       1.95     pooka 
   1038       1.95     pooka 	return false;
   1039       1.95     pooka }
   1040       1.95     pooka 
   1041       1.80     pooka /*
   1042       1.92     pooka  * The Diabolical pageDaemon Director (DDD).
   1043      1.113     pooka  *
   1044      1.113     pooka  * This routine can always use better heuristics.
   1045       1.80     pooka  */
   1046       1.80     pooka void
   1047       1.80     pooka uvm_pageout(void *arg)
   1048       1.80     pooka {
   1049       1.92     pooka 	struct vm_page *pg;
   1050       1.80     pooka 	struct pool *pp, *pp_first;
   1051       1.92     pooka 	int cleaned, skip, skipped;
   1052      1.113     pooka 	bool succ;
   1053      1.104     pooka 	bool lockrunning;
   1054       1.80     pooka 
   1055       1.80     pooka 	mutex_enter(&pdaemonmtx);
   1056       1.80     pooka 	for (;;) {
   1057      1.113     pooka 		if (!NEED_PAGEDAEMON()) {
   1058       1.92     pooka 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1059       1.92     pooka 		}
   1060       1.92     pooka 
   1061      1.113     pooka 		if (pdaemon_waiters) {
   1062      1.113     pooka 			pdaemon_waiters = 0;
   1063      1.113     pooka 			cv_broadcast(&oomwait);
   1064      1.104     pooka 		}
   1065       1.92     pooka 
   1066      1.113     pooka 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1067      1.113     pooka 		uvmexp.pdwoke++;
   1068      1.113     pooka 
   1069       1.92     pooka 		/* tell the world that we are hungry */
   1070       1.80     pooka 		kernel_map->flags |= VM_MAP_WANTVA;
   1071       1.80     pooka 		mutex_exit(&pdaemonmtx);
   1072       1.80     pooka 
   1073       1.92     pooka 		/*
   1074       1.92     pooka 		 * step one: reclaim the page cache.  this should give
   1075       1.92     pooka 		 * us the biggest earnings since whole pages are released
   1076       1.92     pooka 		 * into backing memory.
   1077       1.92     pooka 		 */
   1078       1.92     pooka 		pool_cache_reclaim(&pagecache);
   1079       1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1080       1.92     pooka 			mutex_enter(&pdaemonmtx);
   1081       1.92     pooka 			continue;
   1082       1.92     pooka 		}
   1083       1.92     pooka 
   1084       1.92     pooka 		/*
   1085       1.92     pooka 		 * Ok, so that didn't help.  Next, try to hunt memory
   1086       1.92     pooka 		 * by pushing out vnode pages.  The pages might contain
   1087       1.92     pooka 		 * useful cached data, but we need the memory.
   1088       1.92     pooka 		 */
   1089       1.92     pooka 		cleaned = 0;
   1090       1.92     pooka 		skip = 0;
   1091      1.104     pooka 		lockrunning = false;
   1092       1.92     pooka  again:
   1093       1.92     pooka 		mutex_enter(&uvm_pageqlock);
   1094       1.92     pooka 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1095       1.92     pooka 			skipped = 0;
   1096       1.92     pooka 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1097       1.92     pooka 
   1098       1.92     pooka 				/*
   1099       1.92     pooka 				 * skip over pages we _might_ have tried
   1100       1.92     pooka 				 * to handle earlier.  they might not be
   1101       1.92     pooka 				 * exactly the same ones, but I'm not too
   1102       1.92     pooka 				 * concerned.
   1103       1.92     pooka 				 */
   1104       1.92     pooka 				while (skipped++ < skip)
   1105       1.92     pooka 					continue;
   1106       1.92     pooka 
   1107      1.104     pooka 				if (processpage(pg, &lockrunning)) {
   1108       1.95     pooka 					cleaned++;
   1109       1.95     pooka 					goto again;
   1110       1.92     pooka 				}
   1111       1.92     pooka 
   1112       1.92     pooka 				skip++;
   1113       1.92     pooka 			}
   1114       1.92     pooka 			break;
   1115       1.92     pooka 		}
   1116       1.92     pooka 		mutex_exit(&uvm_pageqlock);
   1117       1.92     pooka 
   1118       1.92     pooka 		/*
   1119      1.104     pooka 		 * Ok, someone is running with an object lock held.
   1120      1.104     pooka 		 * We want to yield the host CPU to make sure the
   1121      1.104     pooka 		 * thread is not parked on the host.  Since sched_yield()
   1122      1.104     pooka 		 * doesn't appear to do anything on NetBSD, nanosleep
   1123      1.104     pooka 		 * for the smallest possible time and hope we're back in
   1124      1.104     pooka 		 * the game soon.
   1125      1.104     pooka 		 */
   1126      1.104     pooka 		if (cleaned == 0 && lockrunning) {
   1127      1.144     pooka 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1128      1.104     pooka 
   1129      1.104     pooka 			lockrunning = false;
   1130      1.104     pooka 			skip = 0;
   1131      1.104     pooka 
   1132      1.104     pooka 			/* and here we go again */
   1133      1.104     pooka 			goto again;
   1134      1.104     pooka 		}
   1135      1.104     pooka 
   1136      1.104     pooka 		/*
   1137       1.92     pooka 		 * And of course we need to reclaim the page cache
   1138       1.92     pooka 		 * again to actually release memory.
   1139       1.92     pooka 		 */
   1140       1.92     pooka 		pool_cache_reclaim(&pagecache);
   1141       1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1142       1.92     pooka 			mutex_enter(&pdaemonmtx);
   1143       1.92     pooka 			continue;
   1144       1.92     pooka 		}
   1145       1.92     pooka 
   1146       1.92     pooka 		/*
   1147       1.92     pooka 		 * And then drain the pools.  Wipe them out ... all of them.
   1148       1.92     pooka 		 */
   1149      1.127       jym 		for (pp_first = NULL;;) {
   1150      1.156     pooka 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1151       1.92     pooka 
   1152      1.127       jym 			succ = pool_drain(&pp);
   1153      1.127       jym 			if (succ || pp == pp_first)
   1154       1.80     pooka 				break;
   1155      1.127       jym 
   1156      1.127       jym 			if (pp_first == NULL)
   1157      1.127       jym 				pp_first = pp;
   1158       1.80     pooka 		}
   1159       1.92     pooka 
   1160       1.92     pooka 		/*
   1161       1.92     pooka 		 * Need to use PYEC on our bag of tricks.
   1162       1.92     pooka 		 * Unfortunately, the wife just borrowed it.
   1163       1.92     pooka 		 */
   1164       1.80     pooka 
   1165      1.113     pooka 		mutex_enter(&pdaemonmtx);
   1166      1.113     pooka 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1167      1.113     pooka 		    uvmexp.paging == 0) {
   1168       1.80     pooka 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1169       1.80     pooka 			    "memory ... sleeping (deadlock?)\n");
   1170      1.113     pooka 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
   1171       1.80     pooka 		}
   1172       1.80     pooka 	}
   1173       1.80     pooka 
   1174       1.80     pooka 	panic("you can swap out any time you like, but you can never leave");
   1175       1.80     pooka }
   1176       1.80     pooka 
   1177       1.80     pooka void
   1178       1.80     pooka uvm_kick_pdaemon()
   1179       1.80     pooka {
   1180       1.80     pooka 
   1181       1.92     pooka 	/*
   1182       1.92     pooka 	 * Wake up the diabolical pagedaemon director if we are over
   1183       1.92     pooka 	 * 90% of the memory limit.  This is a complete and utter
   1184       1.92     pooka 	 * stetson-harrison decision which you are allowed to finetune.
   1185       1.92     pooka 	 * Don't bother locking.  If we have some unflushed caches,
   1186       1.92     pooka 	 * other waker-uppers will deal with the issue.
   1187       1.92     pooka 	 */
   1188       1.92     pooka 	if (NEED_PAGEDAEMON()) {
   1189       1.92     pooka 		cv_signal(&pdaemoncv);
   1190       1.92     pooka 	}
   1191       1.80     pooka }
   1192       1.80     pooka 
   1193       1.80     pooka void *
   1194       1.80     pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1195       1.80     pooka {
   1196      1.150     pooka 	const unsigned long thelimit =
   1197      1.150     pooka 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1198       1.84     pooka 	unsigned long newmem;
   1199       1.80     pooka 	void *rv;
   1200      1.142     pooka 	int error;
   1201       1.80     pooka 
   1202       1.92     pooka 	uvm_kick_pdaemon(); /* ouch */
   1203       1.92     pooka 
   1204       1.84     pooka 	/* first we must be within the limit */
   1205       1.84     pooka  limitagain:
   1206      1.150     pooka 	if (thelimit != RUMPMEM_UNLIMITED) {
   1207       1.84     pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1208      1.150     pooka 		if (newmem > thelimit) {
   1209       1.84     pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1210      1.103     pooka 			if (!waitok) {
   1211       1.84     pooka 				return NULL;
   1212      1.103     pooka 			}
   1213       1.84     pooka 			uvm_wait(wmsg);
   1214       1.84     pooka 			goto limitagain;
   1215       1.84     pooka 		}
   1216       1.84     pooka 	}
   1217       1.84     pooka 
   1218       1.84     pooka 	/* second, we must get something from the backend */
   1219       1.80     pooka  again:
   1220      1.142     pooka 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1221      1.142     pooka 	if (__predict_false(error && waitok)) {
   1222       1.80     pooka 		uvm_wait(wmsg);
   1223       1.80     pooka 		goto again;
   1224       1.80     pooka 	}
   1225       1.80     pooka 
   1226       1.80     pooka 	return rv;
   1227       1.80     pooka }
   1228       1.84     pooka 
   1229       1.84     pooka void
   1230       1.84     pooka rump_hyperfree(void *what, size_t size)
   1231       1.84     pooka {
   1232       1.84     pooka 
   1233       1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1234       1.84     pooka 		atomic_add_long(&curphysmem, -size);
   1235       1.84     pooka 	}
   1236      1.138     pooka 	rumpuser_free(what, size);
   1237       1.84     pooka }
   1238