Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.159.4.1
      1  1.159.4.1     skrll /*	$NetBSD: vm.c,v 1.159.4.1 2015/04/06 15:18:30 skrll Exp $	*/
      2        1.1     pooka 
      3        1.1     pooka /*
      4      1.114     pooka  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5        1.1     pooka  *
      6       1.76     pooka  * Development of this software was supported by
      7       1.76     pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8       1.76     pooka  * The Helsinki University of Technology.
      9        1.1     pooka  *
     10        1.1     pooka  * Redistribution and use in source and binary forms, with or without
     11        1.1     pooka  * modification, are permitted provided that the following conditions
     12        1.1     pooka  * are met:
     13        1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     14        1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     15        1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     17        1.1     pooka  *    documentation and/or other materials provided with the distribution.
     18        1.1     pooka  *
     19        1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20        1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21        1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22        1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23        1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24        1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25        1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26        1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27        1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28        1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29        1.1     pooka  * SUCH DAMAGE.
     30        1.1     pooka  */
     31        1.1     pooka 
     32        1.1     pooka /*
     33       1.88     pooka  * Virtual memory emulation routines.
     34        1.1     pooka  */
     35        1.1     pooka 
     36        1.1     pooka /*
     37        1.5     pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38        1.1     pooka  * for each page.  phys_addr would fit the job description better,
     39        1.1     pooka  * except that it will create unnecessary lossage on some platforms
     40        1.1     pooka  * due to not being a pointer type.
     41        1.1     pooka  */
     42        1.1     pooka 
     43       1.48     pooka #include <sys/cdefs.h>
     44  1.159.4.1     skrll __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.159.4.1 2015/04/06 15:18:30 skrll Exp $");
     45       1.48     pooka 
     46        1.1     pooka #include <sys/param.h>
     47       1.40     pooka #include <sys/atomic.h>
     48       1.80     pooka #include <sys/buf.h>
     49       1.80     pooka #include <sys/kernel.h>
     50       1.67     pooka #include <sys/kmem.h>
     51      1.121      para #include <sys/vmem.h>
     52       1.69     pooka #include <sys/mman.h>
     53        1.1     pooka #include <sys/null.h>
     54        1.1     pooka #include <sys/vnode.h>
     55        1.1     pooka 
     56       1.34     pooka #include <machine/pmap.h>
     57       1.34     pooka 
     58       1.34     pooka #include <rump/rumpuser.h>
     59       1.34     pooka 
     60        1.1     pooka #include <uvm/uvm.h>
     61       1.56     pooka #include <uvm/uvm_ddb.h>
     62       1.88     pooka #include <uvm/uvm_pdpolicy.h>
     63        1.1     pooka #include <uvm/uvm_prot.h>
     64       1.58        he #include <uvm/uvm_readahead.h>
     65  1.159.4.1     skrll #include <uvm/uvm_device.h>
     66        1.1     pooka 
     67       1.13     pooka #include "rump_private.h"
     68       1.91     pooka #include "rump_vfs_private.h"
     69        1.1     pooka 
     70      1.152     pooka kmutex_t uvm_pageqlock; /* non-free page lock */
     71      1.152     pooka kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     72       1.88     pooka kmutex_t uvm_swap_data_lock;
     73       1.25        ad 
     74        1.1     pooka struct uvmexp uvmexp;
     75        1.7     pooka struct uvm uvm;
     76        1.1     pooka 
     77      1.112     pooka #ifdef __uvmexp_pagesize
     78      1.123    martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
     79      1.123    martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
     80      1.123    martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
     81      1.112     pooka #endif
     82      1.112     pooka 
     83        1.1     pooka struct vm_map rump_vmmap;
     84        1.1     pooka 
     85      1.121      para static struct vm_map kernel_map_store;
     86      1.121      para struct vm_map *kernel_map = &kernel_map_store;
     87      1.121      para 
     88      1.130     pooka static struct vm_map module_map_store;
     89      1.130     pooka extern struct vm_map *module_map;
     90      1.130     pooka 
     91      1.121      para vmem_t *kmem_arena;
     92      1.121      para vmem_t *kmem_va_arena;
     93       1.35     pooka 
     94       1.80     pooka static unsigned int pdaemon_waiters;
     95       1.80     pooka static kmutex_t pdaemonmtx;
     96       1.80     pooka static kcondvar_t pdaemoncv, oomwait;
     97       1.80     pooka 
     98  1.159.4.1     skrll /* all local non-proc0 processes share this vmspace */
     99  1.159.4.1     skrll struct vmspace *rump_vmspace_local;
    100  1.159.4.1     skrll 
    101       1.91     pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    102      1.147     pooka static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    103       1.84     pooka static unsigned long curphysmem;
    104       1.92     pooka static unsigned long dddlim;		/* 90% of memory limit used */
    105       1.92     pooka #define NEED_PAGEDAEMON() \
    106       1.92     pooka     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    107      1.158     pooka #define PDRESERVE (2*MAXPHYS)
    108       1.92     pooka 
    109       1.92     pooka /*
    110       1.92     pooka  * Try to free two pages worth of pages from objects.
    111       1.92     pooka  * If this succesfully frees a full page cache page, we'll
    112      1.120      yamt  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    113       1.92     pooka  */
    114       1.92     pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    115       1.92     pooka 
    116       1.92     pooka /*
    117       1.92     pooka  * Keep a list of least recently used pages.  Since the only way a
    118       1.92     pooka  * rump kernel can "access" a page is via lookup, we put the page
    119       1.92     pooka  * at the back of queue every time a lookup for it is done.  If the
    120       1.92     pooka  * page is in front of this global queue and we're short of memory,
    121       1.92     pooka  * it's a candidate for pageout.
    122       1.92     pooka  */
    123       1.92     pooka static struct pglist vmpage_lruqueue;
    124       1.92     pooka static unsigned vmpage_onqueue;
    125       1.84     pooka 
    126       1.89     pooka static int
    127       1.96     rmind pg_compare_key(void *ctx, const void *n, const void *key)
    128       1.89     pooka {
    129       1.89     pooka 	voff_t a = ((const struct vm_page *)n)->offset;
    130       1.89     pooka 	voff_t b = *(const voff_t *)key;
    131       1.89     pooka 
    132       1.89     pooka 	if (a < b)
    133       1.96     rmind 		return -1;
    134       1.96     rmind 	else if (a > b)
    135       1.89     pooka 		return 1;
    136       1.89     pooka 	else
    137       1.89     pooka 		return 0;
    138       1.89     pooka }
    139       1.89     pooka 
    140       1.89     pooka static int
    141       1.96     rmind pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    142       1.89     pooka {
    143       1.89     pooka 
    144       1.96     rmind 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    145       1.89     pooka }
    146       1.89     pooka 
    147       1.96     rmind const rb_tree_ops_t uvm_page_tree_ops = {
    148       1.89     pooka 	.rbto_compare_nodes = pg_compare_nodes,
    149       1.89     pooka 	.rbto_compare_key = pg_compare_key,
    150       1.96     rmind 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    151       1.96     rmind 	.rbto_context = NULL
    152       1.89     pooka };
    153       1.89     pooka 
    154        1.1     pooka /*
    155        1.1     pooka  * vm pages
    156        1.1     pooka  */
    157        1.1     pooka 
    158       1.90     pooka static int
    159       1.90     pooka pgctor(void *arg, void *obj, int flags)
    160       1.90     pooka {
    161       1.90     pooka 	struct vm_page *pg = obj;
    162       1.90     pooka 
    163       1.90     pooka 	memset(pg, 0, sizeof(*pg));
    164      1.103     pooka 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    165      1.103     pooka 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    166      1.103     pooka 	return pg->uanon == NULL;
    167       1.90     pooka }
    168       1.90     pooka 
    169       1.90     pooka static void
    170       1.90     pooka pgdtor(void *arg, void *obj)
    171       1.90     pooka {
    172       1.90     pooka 	struct vm_page *pg = obj;
    173       1.90     pooka 
    174       1.90     pooka 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    175       1.90     pooka }
    176       1.90     pooka 
    177       1.90     pooka static struct pool_cache pagecache;
    178       1.90     pooka 
    179       1.92     pooka /*
    180       1.92     pooka  * Called with the object locked.  We don't support anons.
    181       1.92     pooka  */
    182        1.1     pooka struct vm_page *
    183       1.76     pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    184       1.76     pooka 	int flags, int strat, int free_list)
    185        1.1     pooka {
    186        1.1     pooka 	struct vm_page *pg;
    187        1.1     pooka 
    188      1.115     rmind 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    189       1.92     pooka 	KASSERT(anon == NULL);
    190       1.92     pooka 
    191      1.103     pooka 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    192      1.104     pooka 	if (__predict_false(pg == NULL)) {
    193      1.103     pooka 		return NULL;
    194      1.104     pooka 	}
    195      1.103     pooka 
    196        1.1     pooka 	pg->offset = off;
    197        1.5     pooka 	pg->uobject = uobj;
    198        1.1     pooka 
    199       1.22     pooka 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    200       1.90     pooka 	if (flags & UVM_PGA_ZERO) {
    201       1.90     pooka 		uvm_pagezero(pg);
    202       1.90     pooka 	}
    203        1.1     pooka 
    204       1.31        ad 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    205       1.96     rmind 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    206       1.89     pooka 
    207       1.92     pooka 	/*
    208       1.93     pooka 	 * Don't put anons on the LRU page queue.  We can't flush them
    209       1.93     pooka 	 * (there's no concept of swap in a rump kernel), so no reason
    210       1.93     pooka 	 * to bother with them.
    211       1.92     pooka 	 */
    212       1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    213       1.92     pooka 		atomic_inc_uint(&vmpage_onqueue);
    214       1.92     pooka 		mutex_enter(&uvm_pageqlock);
    215       1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    216       1.92     pooka 		mutex_exit(&uvm_pageqlock);
    217       1.92     pooka 	}
    218       1.92     pooka 
    219       1.59     pooka 	uobj->uo_npages++;
    220       1.21     pooka 
    221        1.1     pooka 	return pg;
    222        1.1     pooka }
    223        1.1     pooka 
    224       1.21     pooka /*
    225       1.21     pooka  * Release a page.
    226       1.21     pooka  *
    227       1.22     pooka  * Called with the vm object locked.
    228       1.21     pooka  */
    229        1.1     pooka void
    230       1.22     pooka uvm_pagefree(struct vm_page *pg)
    231        1.1     pooka {
    232        1.5     pooka 	struct uvm_object *uobj = pg->uobject;
    233        1.1     pooka 
    234       1.92     pooka 	KASSERT(mutex_owned(&uvm_pageqlock));
    235      1.115     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    236       1.92     pooka 
    237       1.22     pooka 	if (pg->flags & PG_WANTED)
    238       1.22     pooka 		wakeup(pg);
    239       1.22     pooka 
    240       1.92     pooka 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    241       1.92     pooka 
    242       1.59     pooka 	uobj->uo_npages--;
    243       1.96     rmind 	rb_tree_remove_node(&uobj->rb_tree, pg);
    244       1.92     pooka 
    245       1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    246       1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    247       1.92     pooka 		atomic_dec_uint(&vmpage_onqueue);
    248       1.92     pooka 	}
    249       1.92     pooka 
    250       1.90     pooka 	pool_cache_put(&pagecache, pg);
    251        1.1     pooka }
    252        1.1     pooka 
    253       1.15     pooka void
    254       1.61     pooka uvm_pagezero(struct vm_page *pg)
    255       1.15     pooka {
    256       1.15     pooka 
    257       1.61     pooka 	pg->flags &= ~PG_CLEAN;
    258       1.61     pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    259       1.15     pooka }
    260       1.15     pooka 
    261        1.1     pooka /*
    262      1.136      yamt  * uvm_page_locked_p: return true if object associated with page is
    263      1.136      yamt  * locked.  this is a weak check for runtime assertions only.
    264      1.136      yamt  */
    265      1.136      yamt 
    266      1.136      yamt bool
    267      1.136      yamt uvm_page_locked_p(struct vm_page *pg)
    268      1.136      yamt {
    269      1.136      yamt 
    270      1.136      yamt 	return mutex_owned(pg->uobject->vmobjlock);
    271      1.136      yamt }
    272      1.136      yamt 
    273      1.136      yamt /*
    274        1.1     pooka  * Misc routines
    275        1.1     pooka  */
    276        1.1     pooka 
    277       1.61     pooka static kmutex_t pagermtx;
    278       1.61     pooka 
    279        1.1     pooka void
    280       1.79     pooka uvm_init(void)
    281        1.1     pooka {
    282       1.84     pooka 	char buf[64];
    283       1.84     pooka 
    284      1.141     pooka 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    285      1.105     pooka 		unsigned long tmp;
    286      1.105     pooka 		char *ep;
    287      1.105     pooka 		int mult;
    288      1.105     pooka 
    289      1.109     pooka 		tmp = strtoul(buf, &ep, 10);
    290      1.105     pooka 		if (strlen(ep) > 1)
    291      1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    292      1.105     pooka 
    293      1.105     pooka 		/* mini-dehumanize-number */
    294      1.105     pooka 		mult = 1;
    295      1.105     pooka 		switch (*ep) {
    296      1.105     pooka 		case 'k':
    297      1.105     pooka 			mult = 1024;
    298      1.105     pooka 			break;
    299      1.105     pooka 		case 'm':
    300      1.105     pooka 			mult = 1024*1024;
    301      1.105     pooka 			break;
    302      1.105     pooka 		case 'g':
    303      1.105     pooka 			mult = 1024*1024*1024;
    304      1.105     pooka 			break;
    305      1.105     pooka 		case 0:
    306      1.105     pooka 			break;
    307      1.105     pooka 		default:
    308      1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    309      1.105     pooka 		}
    310      1.105     pooka 		rump_physmemlimit = tmp * mult;
    311      1.105     pooka 
    312      1.105     pooka 		if (rump_physmemlimit / mult != tmp)
    313      1.105     pooka 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    314      1.147     pooka 
    315      1.147     pooka 		/* reserve some memory for the pager */
    316      1.158     pooka 		if (rump_physmemlimit <= PDRESERVE)
    317      1.158     pooka 			panic("uvm_init: system reserves %d bytes of mem, "
    318      1.158     pooka 			    "only %lu bytes given",
    319      1.158     pooka 			    PDRESERVE, rump_physmemlimit);
    320      1.147     pooka 		pdlimit = rump_physmemlimit;
    321      1.158     pooka 		rump_physmemlimit -= PDRESERVE;
    322      1.105     pooka 
    323      1.157     pooka 		if (pdlimit < 1024*1024)
    324      1.157     pooka 			printf("uvm_init: WARNING: <1MB RAM limit, "
    325      1.157     pooka 			    "hope you know what you're doing\n");
    326      1.157     pooka 
    327       1.84     pooka #define HUMANIZE_BYTES 9
    328       1.84     pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    329       1.91     pooka 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    330       1.84     pooka #undef HUMANIZE_BYTES
    331       1.92     pooka 		dddlim = 9 * (rump_physmemlimit / 10);
    332       1.84     pooka 	} else {
    333       1.84     pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    334       1.84     pooka 	}
    335       1.84     pooka 	aprint_verbose("total memory = %s\n", buf);
    336        1.1     pooka 
    337       1.92     pooka 	TAILQ_INIT(&vmpage_lruqueue);
    338       1.92     pooka 
    339      1.157     pooka 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    340      1.157     pooka 		uvmexp.npages = physmem;
    341      1.157     pooka 	} else {
    342      1.157     pooka 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    343      1.158     pooka 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    344      1.157     pooka 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    345      1.157     pooka 	}
    346      1.157     pooka 	/*
    347      1.157     pooka 	 * uvmexp.free is not used internally or updated.  The reason is
    348      1.157     pooka 	 * that the memory hypercall allocator is allowed to allocate
    349      1.157     pooka 	 * non-page sized chunks.  We use a byte count in curphysmem
    350      1.157     pooka 	 * instead.
    351      1.157     pooka 	 */
    352      1.157     pooka 	uvmexp.free = uvmexp.npages;
    353       1.21     pooka 
    354      1.112     pooka #ifndef __uvmexp_pagesize
    355      1.112     pooka 	uvmexp.pagesize = PAGE_SIZE;
    356      1.112     pooka 	uvmexp.pagemask = PAGE_MASK;
    357      1.112     pooka 	uvmexp.pageshift = PAGE_SHIFT;
    358      1.112     pooka #else
    359      1.112     pooka #define FAKE_PAGE_SHIFT 12
    360      1.112     pooka 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    361      1.112     pooka 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    362      1.112     pooka 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    363      1.112     pooka #undef FAKE_PAGE_SHIFT
    364      1.112     pooka #endif
    365      1.112     pooka 
    366      1.140     pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    367      1.140     pooka 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
    368      1.140     pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    369       1.35     pooka 
    370      1.152     pooka 	/* just to appease linkage */
    371      1.152     pooka 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    372      1.152     pooka 
    373      1.140     pooka 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    374       1.80     pooka 	cv_init(&pdaemoncv, "pdaemon");
    375       1.80     pooka 	cv_init(&oomwait, "oomwait");
    376       1.80     pooka 
    377      1.130     pooka 	module_map = &module_map_store;
    378      1.130     pooka 
    379       1.50     pooka 	kernel_map->pmap = pmap_kernel();
    380      1.121      para 
    381      1.122     njoly 	pool_subsystem_init();
    382      1.128     pooka 
    383      1.121      para 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    384      1.121      para 	    NULL, NULL, NULL,
    385      1.121      para 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    386      1.121      para 
    387      1.135      para 	vmem_subsystem_init(kmem_arena);
    388      1.121      para 
    389      1.121      para 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    390      1.121      para 	    vmem_alloc, vmem_free, kmem_arena,
    391      1.124      para 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    392       1.90     pooka 
    393       1.90     pooka 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    394       1.90     pooka 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    395  1.159.4.1     skrll 
    396  1.159.4.1     skrll 	/* create vmspace used by local clients */
    397  1.159.4.1     skrll 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    398  1.159.4.1     skrll 	uvmspace_init(rump_vmspace_local, RUMP_PMAP_LOCAL, 0, 0, false);
    399        1.1     pooka }
    400        1.1     pooka 
    401       1.83     pooka void
    402      1.145    martin uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    403      1.145    martin     bool topdown)
    404       1.83     pooka {
    405       1.83     pooka 
    406  1.159.4.1     skrll 	vm->vm_map.pmap = pmap;
    407       1.83     pooka 	vm->vm_refcnt = 1;
    408       1.83     pooka }
    409        1.1     pooka 
    410        1.1     pooka void
    411        1.7     pooka uvm_pagewire(struct vm_page *pg)
    412        1.7     pooka {
    413        1.7     pooka 
    414        1.7     pooka 	/* nada */
    415        1.7     pooka }
    416        1.7     pooka 
    417        1.7     pooka void
    418        1.7     pooka uvm_pageunwire(struct vm_page *pg)
    419        1.7     pooka {
    420        1.7     pooka 
    421        1.7     pooka 	/* nada */
    422        1.7     pooka }
    423        1.7     pooka 
    424       1.83     pooka /* where's your schmonz now? */
    425       1.83     pooka #define PUNLIMIT(a)	\
    426       1.83     pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    427       1.83     pooka void
    428       1.83     pooka uvm_init_limits(struct proc *p)
    429       1.83     pooka {
    430       1.83     pooka 
    431      1.155     pooka #ifndef DFLSSIZ
    432      1.155     pooka #define DFLSSIZ (16*1024*1024)
    433      1.155     pooka #endif
    434      1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    435      1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    436       1.83     pooka 	PUNLIMIT(RLIMIT_DATA);
    437       1.83     pooka 	PUNLIMIT(RLIMIT_RSS);
    438       1.83     pooka 	PUNLIMIT(RLIMIT_AS);
    439       1.83     pooka 	/* nice, cascade */
    440       1.83     pooka }
    441       1.83     pooka #undef PUNLIMIT
    442       1.83     pooka 
    443       1.69     pooka /*
    444       1.69     pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    445       1.69     pooka  */
    446       1.49     pooka int
    447  1.159.4.1     skrll uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    448       1.49     pooka {
    449       1.69     pooka 	int error;
    450       1.49     pooka 
    451       1.69     pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    452  1.159.4.1     skrll 	if (*addrp != NULL)
    453       1.69     pooka 		panic("uvm_mmap() variant unsupported");
    454       1.69     pooka 
    455      1.106     pooka 	if (RUMP_LOCALPROC_P(curproc)) {
    456  1.159.4.1     skrll 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    457       1.98     pooka 	} else {
    458  1.159.4.1     skrll 		error = rump_sysproxy_anonmmap(p->p_vmspace->vm_map.pmap,
    459  1.159.4.1     skrll 		    size, addrp);
    460       1.98     pooka 	}
    461  1.159.4.1     skrll 	return error;
    462  1.159.4.1     skrll }
    463       1.69     pooka 
    464  1.159.4.1     skrll /*
    465  1.159.4.1     skrll  * Stubs for things referenced from vfs_vnode.c but not used.
    466  1.159.4.1     skrll  */
    467  1.159.4.1     skrll const dev_t zerodev;
    468  1.159.4.1     skrll 
    469  1.159.4.1     skrll struct uvm_object *
    470  1.159.4.1     skrll udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    471  1.159.4.1     skrll {
    472  1.159.4.1     skrll 	return NULL;
    473       1.49     pooka }
    474       1.49     pooka 
    475       1.61     pooka struct pagerinfo {
    476       1.61     pooka 	vaddr_t pgr_kva;
    477       1.61     pooka 	int pgr_npages;
    478       1.61     pooka 	struct vm_page **pgr_pgs;
    479       1.61     pooka 	bool pgr_read;
    480       1.61     pooka 
    481       1.61     pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    482       1.61     pooka };
    483       1.61     pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    484       1.61     pooka 
    485       1.61     pooka /*
    486       1.61     pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    487      1.159     pooka  * and copy page contents there.  The reason for copying instead of
    488      1.159     pooka  * mapping is simple: we do not assume we are running on virtual
    489      1.159     pooka  * memory.  Even if we could emulate virtual memory in some envs
    490      1.159     pooka  * such as userspace, copying is much faster than trying to awkardly
    491      1.159     pooka  * cope with remapping (see "Design and Implementation" pp.95-98).
    492      1.159     pooka  * The downside of the approach is that the pager requires MAXPHYS
    493      1.159     pooka  * free memory to perform paging, but short of virtual memory or
    494      1.159     pooka  * making the pager do I/O in page-sized chunks we cannot do much
    495      1.159     pooka  * about that.
    496       1.61     pooka  */
    497        1.7     pooka vaddr_t
    498       1.61     pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    499        1.7     pooka {
    500       1.61     pooka 	struct pagerinfo *pgri;
    501       1.61     pooka 	vaddr_t curkva;
    502       1.61     pooka 	int i;
    503       1.61     pooka 
    504       1.61     pooka 	/* allocate structures */
    505       1.61     pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    506       1.61     pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    507       1.61     pooka 	pgri->pgr_npages = npages;
    508       1.61     pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    509       1.61     pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    510       1.61     pooka 
    511       1.61     pooka 	/* copy contents to "mapped" memory */
    512       1.61     pooka 	for (i = 0, curkva = pgri->pgr_kva;
    513       1.61     pooka 	    i < npages;
    514       1.61     pooka 	    i++, curkva += PAGE_SIZE) {
    515       1.61     pooka 		/*
    516       1.61     pooka 		 * We need to copy the previous contents of the pages to
    517       1.61     pooka 		 * the window even if we are reading from the
    518       1.61     pooka 		 * device, since the device might not fill the contents of
    519       1.61     pooka 		 * the full mapped range and we will end up corrupting
    520       1.61     pooka 		 * data when we unmap the window.
    521       1.61     pooka 		 */
    522       1.61     pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    523       1.61     pooka 		pgri->pgr_pgs[i] = pgs[i];
    524       1.61     pooka 	}
    525       1.61     pooka 
    526       1.61     pooka 	mutex_enter(&pagermtx);
    527       1.61     pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    528       1.61     pooka 	mutex_exit(&pagermtx);
    529        1.7     pooka 
    530       1.61     pooka 	return pgri->pgr_kva;
    531        1.7     pooka }
    532        1.7     pooka 
    533       1.61     pooka /*
    534       1.61     pooka  * map out the pager window.  return contents from VA to page storage
    535       1.61     pooka  * and free structures.
    536       1.61     pooka  *
    537       1.61     pooka  * Note: does not currently support partial frees
    538       1.61     pooka  */
    539       1.61     pooka void
    540       1.61     pooka uvm_pagermapout(vaddr_t kva, int npages)
    541        1.7     pooka {
    542       1.61     pooka 	struct pagerinfo *pgri;
    543       1.61     pooka 	vaddr_t curkva;
    544       1.61     pooka 	int i;
    545        1.7     pooka 
    546       1.61     pooka 	mutex_enter(&pagermtx);
    547       1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    548       1.61     pooka 		if (pgri->pgr_kva == kva)
    549       1.61     pooka 			break;
    550       1.61     pooka 	}
    551       1.61     pooka 	KASSERT(pgri);
    552       1.61     pooka 	if (pgri->pgr_npages != npages)
    553       1.61     pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    554       1.61     pooka 	LIST_REMOVE(pgri, pgr_entries);
    555       1.61     pooka 	mutex_exit(&pagermtx);
    556       1.61     pooka 
    557       1.61     pooka 	if (pgri->pgr_read) {
    558       1.61     pooka 		for (i = 0, curkva = pgri->pgr_kva;
    559       1.61     pooka 		    i < pgri->pgr_npages;
    560       1.61     pooka 		    i++, curkva += PAGE_SIZE) {
    561       1.61     pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    562       1.21     pooka 		}
    563       1.21     pooka 	}
    564       1.10     pooka 
    565       1.61     pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    566       1.61     pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    567       1.61     pooka 	kmem_free(pgri, sizeof(*pgri));
    568        1.7     pooka }
    569        1.7     pooka 
    570       1.61     pooka /*
    571       1.61     pooka  * convert va in pager window to page structure.
    572       1.61     pooka  * XXX: how expensive is this (global lock, list traversal)?
    573       1.61     pooka  */
    574       1.14     pooka struct vm_page *
    575       1.14     pooka uvm_pageratop(vaddr_t va)
    576       1.14     pooka {
    577       1.61     pooka 	struct pagerinfo *pgri;
    578       1.61     pooka 	struct vm_page *pg = NULL;
    579       1.61     pooka 	int i;
    580       1.14     pooka 
    581       1.61     pooka 	mutex_enter(&pagermtx);
    582       1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    583       1.61     pooka 		if (pgri->pgr_kva <= va
    584       1.61     pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    585       1.21     pooka 			break;
    586       1.61     pooka 	}
    587       1.61     pooka 	if (pgri) {
    588       1.61     pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    589       1.61     pooka 		pg = pgri->pgr_pgs[i];
    590       1.61     pooka 	}
    591       1.61     pooka 	mutex_exit(&pagermtx);
    592       1.21     pooka 
    593       1.61     pooka 	return pg;
    594       1.61     pooka }
    595       1.15     pooka 
    596       1.97     pooka /*
    597       1.97     pooka  * Called with the vm object locked.
    598       1.97     pooka  *
    599       1.97     pooka  * Put vnode object pages at the end of the access queue to indicate
    600       1.97     pooka  * they have been recently accessed and should not be immediate
    601       1.97     pooka  * candidates for pageout.  Do not do this for lookups done by
    602       1.97     pooka  * the pagedaemon to mimic pmap_kentered mappings which don't track
    603       1.97     pooka  * access information.
    604       1.97     pooka  */
    605       1.61     pooka struct vm_page *
    606       1.61     pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    607       1.61     pooka {
    608       1.92     pooka 	struct vm_page *pg;
    609       1.97     pooka 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    610       1.61     pooka 
    611       1.96     rmind 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    612       1.97     pooka 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    613       1.92     pooka 		mutex_enter(&uvm_pageqlock);
    614       1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    615       1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    616       1.92     pooka 		mutex_exit(&uvm_pageqlock);
    617       1.92     pooka 	}
    618       1.92     pooka 
    619       1.92     pooka 	return pg;
    620       1.14     pooka }
    621       1.14     pooka 
    622        1.7     pooka void
    623       1.22     pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    624       1.22     pooka {
    625       1.22     pooka 	struct vm_page *pg;
    626       1.22     pooka 	int i;
    627       1.22     pooka 
    628       1.94     pooka 	KASSERT(npgs > 0);
    629      1.115     rmind 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    630       1.94     pooka 
    631       1.22     pooka 	for (i = 0; i < npgs; i++) {
    632       1.22     pooka 		pg = pgs[i];
    633       1.22     pooka 		if (pg == NULL)
    634       1.22     pooka 			continue;
    635       1.22     pooka 
    636       1.22     pooka 		KASSERT(pg->flags & PG_BUSY);
    637       1.22     pooka 		if (pg->flags & PG_WANTED)
    638       1.22     pooka 			wakeup(pg);
    639       1.36     pooka 		if (pg->flags & PG_RELEASED)
    640       1.36     pooka 			uvm_pagefree(pg);
    641       1.36     pooka 		else
    642       1.36     pooka 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    643       1.22     pooka 	}
    644       1.22     pooka }
    645       1.22     pooka 
    646       1.22     pooka void
    647        1.7     pooka uvm_estimatepageable(int *active, int *inactive)
    648        1.7     pooka {
    649        1.7     pooka 
    650       1.19     pooka 	/* XXX: guessing game */
    651       1.19     pooka 	*active = 1024;
    652       1.19     pooka 	*inactive = 1024;
    653        1.7     pooka }
    654        1.7     pooka 
    655       1.41     pooka bool
    656       1.41     pooka vm_map_starved_p(struct vm_map *map)
    657       1.41     pooka {
    658       1.41     pooka 
    659       1.80     pooka 	if (map->flags & VM_MAP_WANTVA)
    660       1.80     pooka 		return true;
    661       1.80     pooka 
    662       1.41     pooka 	return false;
    663       1.41     pooka }
    664       1.41     pooka 
    665       1.41     pooka int
    666       1.41     pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    667       1.41     pooka {
    668       1.41     pooka 
    669       1.41     pooka 	panic("%s: unimplemented", __func__);
    670       1.41     pooka }
    671       1.41     pooka 
    672       1.41     pooka void
    673       1.41     pooka uvm_unloan(void *v, int npages, int flags)
    674       1.41     pooka {
    675       1.41     pooka 
    676       1.41     pooka 	panic("%s: unimplemented", __func__);
    677       1.41     pooka }
    678       1.41     pooka 
    679       1.43     pooka int
    680       1.43     pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    681       1.43     pooka 	struct vm_page **opp)
    682       1.43     pooka {
    683       1.43     pooka 
    684       1.72     pooka 	return EBUSY;
    685       1.43     pooka }
    686       1.43     pooka 
    687      1.116       mrg struct vm_page *
    688      1.116       mrg uvm_loanbreak(struct vm_page *pg)
    689      1.116       mrg {
    690      1.116       mrg 
    691      1.116       mrg 	panic("%s: unimplemented", __func__);
    692      1.116       mrg }
    693      1.116       mrg 
    694      1.116       mrg void
    695      1.116       mrg ubc_purge(struct uvm_object *uobj)
    696      1.116       mrg {
    697      1.116       mrg 
    698      1.116       mrg }
    699      1.116       mrg 
    700       1.68     pooka vaddr_t
    701       1.68     pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    702       1.68     pooka {
    703       1.68     pooka 
    704       1.68     pooka 	return 0;
    705       1.68     pooka }
    706       1.68     pooka 
    707       1.71     pooka int
    708       1.71     pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    709       1.71     pooka 	vm_prot_t prot, bool set_max)
    710       1.71     pooka {
    711       1.71     pooka 
    712       1.71     pooka 	return EOPNOTSUPP;
    713       1.71     pooka }
    714       1.71     pooka 
    715        1.9     pooka /*
    716       1.12     pooka  * UVM km
    717       1.12     pooka  */
    718       1.12     pooka 
    719       1.12     pooka vaddr_t
    720       1.12     pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    721       1.12     pooka {
    722       1.82     pooka 	void *rv, *desired = NULL;
    723       1.50     pooka 	int alignbit, error;
    724       1.50     pooka 
    725       1.82     pooka #ifdef __x86_64__
    726       1.82     pooka 	/*
    727       1.82     pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    728       1.82     pooka 	 * This is because NetBSD kernel modules are compiled
    729       1.82     pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    730       1.82     pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    731       1.82     pooka 	 * anywhere except the lowest or highest 2GB, it will not
    732       1.82     pooka 	 * work.  Since userspace does not have access to the highest
    733       1.82     pooka 	 * 2GB, use the lowest 2GB.
    734       1.82     pooka 	 *
    735       1.82     pooka 	 * Note: this assumes the rump kernel resides in
    736       1.82     pooka 	 * the lowest 2GB as well.
    737       1.82     pooka 	 *
    738       1.82     pooka 	 * Note2: yes, it's a quick hack, but since this the only
    739       1.82     pooka 	 * place where we care about the map we're allocating from,
    740       1.82     pooka 	 * just use a simple "if" instead of coming up with a fancy
    741       1.82     pooka 	 * generic solution.
    742       1.82     pooka 	 */
    743       1.82     pooka 	if (map == module_map) {
    744       1.82     pooka 		desired = (void *)(0x80000000 - size);
    745       1.82     pooka 	}
    746       1.82     pooka #endif
    747       1.82     pooka 
    748      1.130     pooka 	if (__predict_false(map == module_map)) {
    749      1.130     pooka 		alignbit = 0;
    750      1.130     pooka 		if (align) {
    751      1.130     pooka 			alignbit = ffs(align)-1;
    752      1.130     pooka 		}
    753      1.142     pooka 		error = rumpuser_anonmmap(desired, size, alignbit,
    754      1.142     pooka 		    flags & UVM_KMF_EXEC, &rv);
    755      1.130     pooka 	} else {
    756      1.142     pooka 		error = rumpuser_malloc(size, align, &rv);
    757       1.50     pooka 	}
    758       1.50     pooka 
    759      1.142     pooka 	if (error) {
    760       1.50     pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    761       1.50     pooka 			return 0;
    762       1.50     pooka 		else
    763       1.50     pooka 			panic("uvm_km_alloc failed");
    764       1.50     pooka 	}
    765       1.12     pooka 
    766       1.50     pooka 	if (flags & UVM_KMF_ZERO)
    767       1.12     pooka 		memset(rv, 0, size);
    768       1.12     pooka 
    769       1.12     pooka 	return (vaddr_t)rv;
    770       1.12     pooka }
    771       1.12     pooka 
    772       1.12     pooka void
    773       1.12     pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    774       1.12     pooka {
    775       1.12     pooka 
    776      1.130     pooka 	if (__predict_false(map == module_map))
    777      1.130     pooka 		rumpuser_unmap((void *)vaddr, size);
    778      1.130     pooka 	else
    779      1.138     pooka 		rumpuser_free((void *)vaddr, size);
    780       1.12     pooka }
    781       1.12     pooka 
    782       1.12     pooka struct vm_map *
    783       1.12     pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    784      1.121      para 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    785       1.12     pooka {
    786       1.12     pooka 
    787       1.12     pooka 	return (struct vm_map *)417416;
    788       1.12     pooka }
    789       1.40     pooka 
    790      1.121      para int
    791      1.121      para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    792      1.121      para     vmem_addr_t *addr)
    793       1.40     pooka {
    794      1.121      para 	vaddr_t va;
    795      1.121      para 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    796      1.121      para 	    (flags & VM_SLEEP), "kmalloc");
    797       1.40     pooka 
    798      1.121      para 	if (va) {
    799      1.121      para 		*addr = va;
    800      1.121      para 		return 0;
    801      1.121      para 	} else {
    802      1.121      para 		return ENOMEM;
    803      1.121      para 	}
    804       1.40     pooka }
    805       1.40     pooka 
    806       1.40     pooka void
    807      1.121      para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    808       1.40     pooka {
    809       1.40     pooka 
    810      1.121      para 	rump_hyperfree((void *)addr, size);
    811       1.74     pooka }
    812       1.74     pooka 
    813       1.57     pooka /*
    814      1.102     pooka  * VM space locking routines.  We don't really have to do anything,
    815      1.102     pooka  * since the pages are always "wired" (both local and remote processes).
    816       1.57     pooka  */
    817       1.57     pooka int
    818       1.57     pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    819       1.57     pooka {
    820       1.57     pooka 
    821       1.57     pooka 	return 0;
    822       1.57     pooka }
    823       1.57     pooka 
    824       1.57     pooka void
    825       1.57     pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    826       1.57     pooka {
    827       1.57     pooka 
    828       1.57     pooka }
    829       1.57     pooka 
    830      1.102     pooka /*
    831      1.102     pooka  * For the local case the buffer mappers don't need to do anything.
    832      1.102     pooka  * For the remote case we need to reserve space and copy data in or
    833      1.102     pooka  * out, depending on B_READ/B_WRITE.
    834      1.102     pooka  */
    835      1.111     pooka int
    836       1.57     pooka vmapbuf(struct buf *bp, vsize_t len)
    837       1.57     pooka {
    838      1.111     pooka 	int error = 0;
    839       1.57     pooka 
    840       1.57     pooka 	bp->b_saveaddr = bp->b_data;
    841      1.102     pooka 
    842      1.102     pooka 	/* remote case */
    843      1.106     pooka 	if (!RUMP_LOCALPROC_P(curproc)) {
    844      1.102     pooka 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    845      1.102     pooka 		if (BUF_ISWRITE(bp)) {
    846      1.111     pooka 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    847      1.111     pooka 			if (error) {
    848      1.111     pooka 				rump_hyperfree(bp->b_data, len);
    849      1.111     pooka 				bp->b_data = bp->b_saveaddr;
    850      1.111     pooka 				bp->b_saveaddr = 0;
    851      1.111     pooka 			}
    852      1.102     pooka 		}
    853      1.102     pooka 	}
    854      1.111     pooka 
    855      1.111     pooka 	return error;
    856       1.57     pooka }
    857       1.57     pooka 
    858       1.57     pooka void
    859       1.57     pooka vunmapbuf(struct buf *bp, vsize_t len)
    860       1.57     pooka {
    861       1.57     pooka 
    862      1.102     pooka 	/* remote case */
    863      1.106     pooka 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    864      1.102     pooka 		if (BUF_ISREAD(bp)) {
    865      1.110     pooka 			bp->b_error = copyout_proc(bp->b_proc,
    866      1.102     pooka 			    bp->b_data, bp->b_saveaddr, len);
    867      1.102     pooka 		}
    868      1.102     pooka 		rump_hyperfree(bp->b_data, len);
    869      1.102     pooka 	}
    870      1.102     pooka 
    871       1.57     pooka 	bp->b_data = bp->b_saveaddr;
    872       1.57     pooka 	bp->b_saveaddr = 0;
    873       1.57     pooka }
    874       1.61     pooka 
    875       1.61     pooka void
    876       1.83     pooka uvmspace_addref(struct vmspace *vm)
    877       1.83     pooka {
    878       1.83     pooka 
    879       1.83     pooka 	/*
    880      1.103     pooka 	 * No dynamically allocated vmspaces exist.
    881       1.83     pooka 	 */
    882       1.83     pooka }
    883       1.83     pooka 
    884       1.83     pooka void
    885       1.66     pooka uvmspace_free(struct vmspace *vm)
    886       1.66     pooka {
    887       1.66     pooka 
    888       1.66     pooka 	/* nothing for now */
    889       1.66     pooka }
    890       1.66     pooka 
    891       1.61     pooka /*
    892       1.61     pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    893       1.61     pooka  */
    894       1.61     pooka 
    895       1.61     pooka void
    896       1.61     pooka uvm_pageactivate(struct vm_page *pg)
    897       1.61     pooka {
    898       1.61     pooka 
    899       1.61     pooka 	/* nada */
    900       1.61     pooka }
    901       1.61     pooka 
    902       1.61     pooka void
    903       1.61     pooka uvm_pagedeactivate(struct vm_page *pg)
    904       1.61     pooka {
    905       1.61     pooka 
    906       1.61     pooka 	/* nada */
    907       1.61     pooka }
    908       1.61     pooka 
    909       1.61     pooka void
    910       1.61     pooka uvm_pagedequeue(struct vm_page *pg)
    911       1.61     pooka {
    912       1.61     pooka 
    913       1.61     pooka 	/* nada*/
    914       1.61     pooka }
    915       1.61     pooka 
    916       1.61     pooka void
    917       1.61     pooka uvm_pageenqueue(struct vm_page *pg)
    918       1.61     pooka {
    919       1.61     pooka 
    920       1.61     pooka 	/* nada */
    921       1.61     pooka }
    922       1.80     pooka 
    923       1.88     pooka void
    924       1.88     pooka uvmpdpol_anfree(struct vm_anon *an)
    925       1.88     pooka {
    926       1.88     pooka 
    927       1.88     pooka 	/* nada */
    928       1.88     pooka }
    929       1.88     pooka 
    930       1.80     pooka /*
    931       1.99  uebayasi  * Physical address accessors.
    932       1.99  uebayasi  */
    933       1.99  uebayasi 
    934       1.99  uebayasi struct vm_page *
    935       1.99  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    936       1.99  uebayasi {
    937       1.99  uebayasi 
    938       1.99  uebayasi 	return NULL;
    939       1.99  uebayasi }
    940       1.99  uebayasi 
    941       1.99  uebayasi paddr_t
    942       1.99  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
    943       1.99  uebayasi {
    944       1.99  uebayasi 
    945       1.99  uebayasi 	return 0;
    946       1.99  uebayasi }
    947       1.99  uebayasi 
    948      1.153     pooka vaddr_t
    949      1.153     pooka uvm_uarea_alloc(void)
    950      1.153     pooka {
    951      1.153     pooka 
    952      1.153     pooka 	/* non-zero */
    953      1.153     pooka 	return (vaddr_t)11;
    954      1.153     pooka }
    955      1.153     pooka 
    956      1.153     pooka void
    957      1.153     pooka uvm_uarea_free(vaddr_t uarea)
    958      1.153     pooka {
    959      1.153     pooka 
    960      1.153     pooka 	/* nata, so creamy */
    961      1.153     pooka }
    962      1.153     pooka 
    963       1.99  uebayasi /*
    964       1.80     pooka  * Routines related to the Page Baroness.
    965       1.80     pooka  */
    966       1.80     pooka 
    967       1.80     pooka void
    968       1.80     pooka uvm_wait(const char *msg)
    969       1.80     pooka {
    970       1.80     pooka 
    971       1.80     pooka 	if (__predict_false(rump_threads == 0))
    972       1.80     pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    973       1.80     pooka 
    974      1.147     pooka 	if (curlwp == uvm.pagedaemon_lwp) {
    975      1.147     pooka 		/* is it possible for us to later get memory? */
    976      1.147     pooka 		if (!uvmexp.paging)
    977      1.147     pooka 			panic("pagedaemon out of memory");
    978      1.147     pooka 	}
    979      1.147     pooka 
    980       1.80     pooka 	mutex_enter(&pdaemonmtx);
    981       1.80     pooka 	pdaemon_waiters++;
    982       1.80     pooka 	cv_signal(&pdaemoncv);
    983       1.80     pooka 	cv_wait(&oomwait, &pdaemonmtx);
    984       1.80     pooka 	mutex_exit(&pdaemonmtx);
    985       1.80     pooka }
    986       1.80     pooka 
    987       1.80     pooka void
    988       1.80     pooka uvm_pageout_start(int npages)
    989       1.80     pooka {
    990       1.80     pooka 
    991      1.113     pooka 	mutex_enter(&pdaemonmtx);
    992      1.113     pooka 	uvmexp.paging += npages;
    993      1.113     pooka 	mutex_exit(&pdaemonmtx);
    994       1.80     pooka }
    995       1.80     pooka 
    996       1.80     pooka void
    997       1.80     pooka uvm_pageout_done(int npages)
    998       1.80     pooka {
    999       1.80     pooka 
   1000      1.113     pooka 	if (!npages)
   1001      1.113     pooka 		return;
   1002      1.113     pooka 
   1003      1.113     pooka 	mutex_enter(&pdaemonmtx);
   1004      1.113     pooka 	KASSERT(uvmexp.paging >= npages);
   1005      1.113     pooka 	uvmexp.paging -= npages;
   1006      1.113     pooka 
   1007      1.113     pooka 	if (pdaemon_waiters) {
   1008      1.113     pooka 		pdaemon_waiters = 0;
   1009      1.113     pooka 		cv_broadcast(&oomwait);
   1010      1.113     pooka 	}
   1011      1.113     pooka 	mutex_exit(&pdaemonmtx);
   1012       1.80     pooka }
   1013       1.80     pooka 
   1014       1.95     pooka static bool
   1015      1.104     pooka processpage(struct vm_page *pg, bool *lockrunning)
   1016       1.95     pooka {
   1017       1.95     pooka 	struct uvm_object *uobj;
   1018       1.95     pooka 
   1019       1.95     pooka 	uobj = pg->uobject;
   1020      1.115     rmind 	if (mutex_tryenter(uobj->vmobjlock)) {
   1021       1.95     pooka 		if ((pg->flags & PG_BUSY) == 0) {
   1022       1.95     pooka 			mutex_exit(&uvm_pageqlock);
   1023       1.95     pooka 			uobj->pgops->pgo_put(uobj, pg->offset,
   1024       1.95     pooka 			    pg->offset + PAGE_SIZE,
   1025       1.95     pooka 			    PGO_CLEANIT|PGO_FREE);
   1026      1.115     rmind 			KASSERT(!mutex_owned(uobj->vmobjlock));
   1027       1.95     pooka 			return true;
   1028       1.95     pooka 		} else {
   1029      1.115     rmind 			mutex_exit(uobj->vmobjlock);
   1030       1.95     pooka 		}
   1031      1.104     pooka 	} else if (*lockrunning == false && ncpu > 1) {
   1032      1.104     pooka 		CPU_INFO_ITERATOR cii;
   1033      1.104     pooka 		struct cpu_info *ci;
   1034      1.104     pooka 		struct lwp *l;
   1035      1.104     pooka 
   1036      1.115     rmind 		l = mutex_owner(uobj->vmobjlock);
   1037      1.104     pooka 		for (CPU_INFO_FOREACH(cii, ci)) {
   1038      1.104     pooka 			if (ci->ci_curlwp == l) {
   1039      1.104     pooka 				*lockrunning = true;
   1040      1.104     pooka 				break;
   1041      1.104     pooka 			}
   1042      1.104     pooka 		}
   1043       1.95     pooka 	}
   1044       1.95     pooka 
   1045       1.95     pooka 	return false;
   1046       1.95     pooka }
   1047       1.95     pooka 
   1048       1.80     pooka /*
   1049       1.92     pooka  * The Diabolical pageDaemon Director (DDD).
   1050      1.113     pooka  *
   1051      1.113     pooka  * This routine can always use better heuristics.
   1052       1.80     pooka  */
   1053       1.80     pooka void
   1054       1.80     pooka uvm_pageout(void *arg)
   1055       1.80     pooka {
   1056       1.92     pooka 	struct vm_page *pg;
   1057       1.80     pooka 	struct pool *pp, *pp_first;
   1058       1.92     pooka 	int cleaned, skip, skipped;
   1059      1.113     pooka 	bool succ;
   1060      1.104     pooka 	bool lockrunning;
   1061       1.80     pooka 
   1062       1.80     pooka 	mutex_enter(&pdaemonmtx);
   1063       1.80     pooka 	for (;;) {
   1064      1.113     pooka 		if (!NEED_PAGEDAEMON()) {
   1065       1.92     pooka 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1066       1.92     pooka 		}
   1067       1.92     pooka 
   1068      1.113     pooka 		if (pdaemon_waiters) {
   1069      1.113     pooka 			pdaemon_waiters = 0;
   1070      1.113     pooka 			cv_broadcast(&oomwait);
   1071      1.104     pooka 		}
   1072       1.92     pooka 
   1073      1.113     pooka 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1074      1.113     pooka 		uvmexp.pdwoke++;
   1075      1.113     pooka 
   1076       1.92     pooka 		/* tell the world that we are hungry */
   1077       1.80     pooka 		kernel_map->flags |= VM_MAP_WANTVA;
   1078       1.80     pooka 		mutex_exit(&pdaemonmtx);
   1079       1.80     pooka 
   1080       1.92     pooka 		/*
   1081       1.92     pooka 		 * step one: reclaim the page cache.  this should give
   1082       1.92     pooka 		 * us the biggest earnings since whole pages are released
   1083       1.92     pooka 		 * into backing memory.
   1084       1.92     pooka 		 */
   1085       1.92     pooka 		pool_cache_reclaim(&pagecache);
   1086       1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1087       1.92     pooka 			mutex_enter(&pdaemonmtx);
   1088       1.92     pooka 			continue;
   1089       1.92     pooka 		}
   1090       1.92     pooka 
   1091       1.92     pooka 		/*
   1092       1.92     pooka 		 * Ok, so that didn't help.  Next, try to hunt memory
   1093       1.92     pooka 		 * by pushing out vnode pages.  The pages might contain
   1094       1.92     pooka 		 * useful cached data, but we need the memory.
   1095       1.92     pooka 		 */
   1096       1.92     pooka 		cleaned = 0;
   1097       1.92     pooka 		skip = 0;
   1098      1.104     pooka 		lockrunning = false;
   1099       1.92     pooka  again:
   1100       1.92     pooka 		mutex_enter(&uvm_pageqlock);
   1101       1.92     pooka 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1102       1.92     pooka 			skipped = 0;
   1103       1.92     pooka 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1104       1.92     pooka 
   1105       1.92     pooka 				/*
   1106       1.92     pooka 				 * skip over pages we _might_ have tried
   1107       1.92     pooka 				 * to handle earlier.  they might not be
   1108       1.92     pooka 				 * exactly the same ones, but I'm not too
   1109       1.92     pooka 				 * concerned.
   1110       1.92     pooka 				 */
   1111       1.92     pooka 				while (skipped++ < skip)
   1112       1.92     pooka 					continue;
   1113       1.92     pooka 
   1114      1.104     pooka 				if (processpage(pg, &lockrunning)) {
   1115       1.95     pooka 					cleaned++;
   1116       1.95     pooka 					goto again;
   1117       1.92     pooka 				}
   1118       1.92     pooka 
   1119       1.92     pooka 				skip++;
   1120       1.92     pooka 			}
   1121       1.92     pooka 			break;
   1122       1.92     pooka 		}
   1123       1.92     pooka 		mutex_exit(&uvm_pageqlock);
   1124       1.92     pooka 
   1125       1.92     pooka 		/*
   1126      1.104     pooka 		 * Ok, someone is running with an object lock held.
   1127      1.104     pooka 		 * We want to yield the host CPU to make sure the
   1128      1.104     pooka 		 * thread is not parked on the host.  Since sched_yield()
   1129      1.104     pooka 		 * doesn't appear to do anything on NetBSD, nanosleep
   1130      1.104     pooka 		 * for the smallest possible time and hope we're back in
   1131      1.104     pooka 		 * the game soon.
   1132      1.104     pooka 		 */
   1133      1.104     pooka 		if (cleaned == 0 && lockrunning) {
   1134      1.144     pooka 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1135      1.104     pooka 
   1136      1.104     pooka 			lockrunning = false;
   1137      1.104     pooka 			skip = 0;
   1138      1.104     pooka 
   1139      1.104     pooka 			/* and here we go again */
   1140      1.104     pooka 			goto again;
   1141      1.104     pooka 		}
   1142      1.104     pooka 
   1143      1.104     pooka 		/*
   1144       1.92     pooka 		 * And of course we need to reclaim the page cache
   1145       1.92     pooka 		 * again to actually release memory.
   1146       1.92     pooka 		 */
   1147       1.92     pooka 		pool_cache_reclaim(&pagecache);
   1148       1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1149       1.92     pooka 			mutex_enter(&pdaemonmtx);
   1150       1.92     pooka 			continue;
   1151       1.92     pooka 		}
   1152       1.92     pooka 
   1153       1.92     pooka 		/*
   1154       1.92     pooka 		 * And then drain the pools.  Wipe them out ... all of them.
   1155       1.92     pooka 		 */
   1156      1.127       jym 		for (pp_first = NULL;;) {
   1157      1.156     pooka 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1158       1.92     pooka 
   1159      1.127       jym 			succ = pool_drain(&pp);
   1160      1.127       jym 			if (succ || pp == pp_first)
   1161       1.80     pooka 				break;
   1162      1.127       jym 
   1163      1.127       jym 			if (pp_first == NULL)
   1164      1.127       jym 				pp_first = pp;
   1165       1.80     pooka 		}
   1166       1.92     pooka 
   1167       1.92     pooka 		/*
   1168       1.92     pooka 		 * Need to use PYEC on our bag of tricks.
   1169       1.92     pooka 		 * Unfortunately, the wife just borrowed it.
   1170       1.92     pooka 		 */
   1171       1.80     pooka 
   1172      1.113     pooka 		mutex_enter(&pdaemonmtx);
   1173      1.113     pooka 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1174      1.113     pooka 		    uvmexp.paging == 0) {
   1175       1.80     pooka 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1176       1.80     pooka 			    "memory ... sleeping (deadlock?)\n");
   1177      1.113     pooka 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
   1178       1.80     pooka 		}
   1179       1.80     pooka 	}
   1180       1.80     pooka 
   1181       1.80     pooka 	panic("you can swap out any time you like, but you can never leave");
   1182       1.80     pooka }
   1183       1.80     pooka 
   1184       1.80     pooka void
   1185       1.80     pooka uvm_kick_pdaemon()
   1186       1.80     pooka {
   1187       1.80     pooka 
   1188       1.92     pooka 	/*
   1189       1.92     pooka 	 * Wake up the diabolical pagedaemon director if we are over
   1190       1.92     pooka 	 * 90% of the memory limit.  This is a complete and utter
   1191       1.92     pooka 	 * stetson-harrison decision which you are allowed to finetune.
   1192       1.92     pooka 	 * Don't bother locking.  If we have some unflushed caches,
   1193       1.92     pooka 	 * other waker-uppers will deal with the issue.
   1194       1.92     pooka 	 */
   1195       1.92     pooka 	if (NEED_PAGEDAEMON()) {
   1196       1.92     pooka 		cv_signal(&pdaemoncv);
   1197       1.92     pooka 	}
   1198       1.80     pooka }
   1199       1.80     pooka 
   1200       1.80     pooka void *
   1201       1.80     pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1202       1.80     pooka {
   1203      1.150     pooka 	const unsigned long thelimit =
   1204      1.150     pooka 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1205       1.84     pooka 	unsigned long newmem;
   1206       1.80     pooka 	void *rv;
   1207      1.142     pooka 	int error;
   1208       1.80     pooka 
   1209       1.92     pooka 	uvm_kick_pdaemon(); /* ouch */
   1210       1.92     pooka 
   1211       1.84     pooka 	/* first we must be within the limit */
   1212       1.84     pooka  limitagain:
   1213      1.150     pooka 	if (thelimit != RUMPMEM_UNLIMITED) {
   1214       1.84     pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1215      1.150     pooka 		if (newmem > thelimit) {
   1216       1.84     pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1217      1.103     pooka 			if (!waitok) {
   1218       1.84     pooka 				return NULL;
   1219      1.103     pooka 			}
   1220       1.84     pooka 			uvm_wait(wmsg);
   1221       1.84     pooka 			goto limitagain;
   1222       1.84     pooka 		}
   1223       1.84     pooka 	}
   1224       1.84     pooka 
   1225       1.84     pooka 	/* second, we must get something from the backend */
   1226       1.80     pooka  again:
   1227      1.142     pooka 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1228      1.142     pooka 	if (__predict_false(error && waitok)) {
   1229       1.80     pooka 		uvm_wait(wmsg);
   1230       1.80     pooka 		goto again;
   1231       1.80     pooka 	}
   1232       1.80     pooka 
   1233       1.80     pooka 	return rv;
   1234       1.80     pooka }
   1235       1.84     pooka 
   1236       1.84     pooka void
   1237       1.84     pooka rump_hyperfree(void *what, size_t size)
   1238       1.84     pooka {
   1239       1.84     pooka 
   1240       1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1241       1.84     pooka 		atomic_add_long(&curphysmem, -size);
   1242       1.84     pooka 	}
   1243      1.138     pooka 	rumpuser_free(what, size);
   1244       1.84     pooka }
   1245