Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.173.10.1
      1  1.173.10.1    martin /*	$NetBSD: vm.c,v 1.173.10.1 2020/04/08 14:09:01 martin Exp $	*/
      2         1.1     pooka 
      3         1.1     pooka /*
      4       1.114     pooka  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5         1.1     pooka  *
      6        1.76     pooka  * Development of this software was supported by
      7        1.76     pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8        1.76     pooka  * The Helsinki University of Technology.
      9         1.1     pooka  *
     10         1.1     pooka  * Redistribution and use in source and binary forms, with or without
     11         1.1     pooka  * modification, are permitted provided that the following conditions
     12         1.1     pooka  * are met:
     13         1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     14         1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     15         1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16         1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     17         1.1     pooka  *    documentation and/or other materials provided with the distribution.
     18         1.1     pooka  *
     19         1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20         1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21         1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22         1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23         1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24         1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25         1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26         1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27         1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28         1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29         1.1     pooka  * SUCH DAMAGE.
     30         1.1     pooka  */
     31         1.1     pooka 
     32         1.1     pooka /*
     33        1.88     pooka  * Virtual memory emulation routines.
     34         1.1     pooka  */
     35         1.1     pooka 
     36         1.1     pooka /*
     37         1.5     pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38         1.1     pooka  * for each page.  phys_addr would fit the job description better,
     39         1.1     pooka  * except that it will create unnecessary lossage on some platforms
     40         1.1     pooka  * due to not being a pointer type.
     41         1.1     pooka  */
     42         1.1     pooka 
     43        1.48     pooka #include <sys/cdefs.h>
     44  1.173.10.1    martin __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.173.10.1 2020/04/08 14:09:01 martin Exp $");
     45        1.48     pooka 
     46         1.1     pooka #include <sys/param.h>
     47        1.40     pooka #include <sys/atomic.h>
     48        1.80     pooka #include <sys/buf.h>
     49        1.80     pooka #include <sys/kernel.h>
     50        1.67     pooka #include <sys/kmem.h>
     51       1.121      para #include <sys/vmem.h>
     52        1.69     pooka #include <sys/mman.h>
     53         1.1     pooka #include <sys/null.h>
     54         1.1     pooka #include <sys/vnode.h>
     55  1.173.10.1    martin #include <sys/radixtree.h>
     56         1.1     pooka 
     57        1.34     pooka #include <machine/pmap.h>
     58        1.34     pooka 
     59         1.1     pooka #include <uvm/uvm.h>
     60        1.56     pooka #include <uvm/uvm_ddb.h>
     61        1.88     pooka #include <uvm/uvm_pdpolicy.h>
     62         1.1     pooka #include <uvm/uvm_prot.h>
     63        1.58        he #include <uvm/uvm_readahead.h>
     64       1.160       chs #include <uvm/uvm_device.h>
     65         1.1     pooka 
     66       1.169     pooka #include <rump-sys/kern.h>
     67       1.169     pooka #include <rump-sys/vfs.h>
     68       1.169     pooka 
     69       1.169     pooka #include <rump/rumpuser.h>
     70         1.1     pooka 
     71  1.173.10.1    martin kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
     72       1.152     pooka kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     73        1.88     pooka kmutex_t uvm_swap_data_lock;
     74        1.25        ad 
     75         1.1     pooka struct uvmexp uvmexp;
     76         1.7     pooka struct uvm uvm;
     77         1.1     pooka 
     78       1.112     pooka #ifdef __uvmexp_pagesize
     79       1.123    martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
     80       1.123    martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
     81       1.123    martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
     82       1.112     pooka #endif
     83       1.112     pooka 
     84       1.121      para static struct vm_map kernel_map_store;
     85       1.121      para struct vm_map *kernel_map = &kernel_map_store;
     86       1.121      para 
     87       1.130     pooka static struct vm_map module_map_store;
     88       1.130     pooka extern struct vm_map *module_map;
     89       1.130     pooka 
     90       1.164     pooka static struct pmap pmap_kernel;
     91       1.164     pooka struct pmap rump_pmap_local;
     92       1.164     pooka struct pmap *const kernel_pmap_ptr = &pmap_kernel;
     93       1.164     pooka 
     94       1.121      para vmem_t *kmem_arena;
     95       1.121      para vmem_t *kmem_va_arena;
     96        1.35     pooka 
     97        1.80     pooka static unsigned int pdaemon_waiters;
     98        1.80     pooka static kmutex_t pdaemonmtx;
     99        1.80     pooka static kcondvar_t pdaemoncv, oomwait;
    100        1.80     pooka 
    101       1.162     pooka /* all local non-proc0 processes share this vmspace */
    102       1.162     pooka struct vmspace *rump_vmspace_local;
    103       1.162     pooka 
    104        1.91     pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    105       1.147     pooka static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    106        1.84     pooka static unsigned long curphysmem;
    107        1.92     pooka static unsigned long dddlim;		/* 90% of memory limit used */
    108        1.92     pooka #define NEED_PAGEDAEMON() \
    109        1.92     pooka     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    110       1.158     pooka #define PDRESERVE (2*MAXPHYS)
    111        1.92     pooka 
    112        1.92     pooka /*
    113        1.92     pooka  * Try to free two pages worth of pages from objects.
    114        1.92     pooka  * If this succesfully frees a full page cache page, we'll
    115       1.120      yamt  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    116        1.92     pooka  */
    117        1.92     pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    118        1.92     pooka 
    119        1.92     pooka /*
    120        1.92     pooka  * Keep a list of least recently used pages.  Since the only way a
    121        1.92     pooka  * rump kernel can "access" a page is via lookup, we put the page
    122        1.92     pooka  * at the back of queue every time a lookup for it is done.  If the
    123        1.92     pooka  * page is in front of this global queue and we're short of memory,
    124        1.92     pooka  * it's a candidate for pageout.
    125        1.92     pooka  */
    126        1.92     pooka static struct pglist vmpage_lruqueue;
    127        1.92     pooka static unsigned vmpage_onqueue;
    128        1.84     pooka 
    129         1.1     pooka /*
    130         1.1     pooka  * vm pages
    131         1.1     pooka  */
    132         1.1     pooka 
    133        1.90     pooka static int
    134        1.90     pooka pgctor(void *arg, void *obj, int flags)
    135        1.90     pooka {
    136        1.90     pooka 	struct vm_page *pg = obj;
    137        1.90     pooka 
    138        1.90     pooka 	memset(pg, 0, sizeof(*pg));
    139       1.103     pooka 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    140       1.103     pooka 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    141       1.103     pooka 	return pg->uanon == NULL;
    142        1.90     pooka }
    143        1.90     pooka 
    144        1.90     pooka static void
    145        1.90     pooka pgdtor(void *arg, void *obj)
    146        1.90     pooka {
    147        1.90     pooka 	struct vm_page *pg = obj;
    148        1.90     pooka 
    149        1.90     pooka 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    150        1.90     pooka }
    151        1.90     pooka 
    152        1.90     pooka static struct pool_cache pagecache;
    153        1.90     pooka 
    154        1.92     pooka /*
    155        1.92     pooka  * Called with the object locked.  We don't support anons.
    156        1.92     pooka  */
    157         1.1     pooka struct vm_page *
    158        1.76     pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    159        1.76     pooka 	int flags, int strat, int free_list)
    160         1.1     pooka {
    161         1.1     pooka 	struct vm_page *pg;
    162         1.1     pooka 
    163  1.173.10.1    martin 	KASSERT(uobj && rw_write_held(uobj->vmobjlock));
    164        1.92     pooka 	KASSERT(anon == NULL);
    165        1.92     pooka 
    166       1.103     pooka 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    167       1.104     pooka 	if (__predict_false(pg == NULL)) {
    168       1.103     pooka 		return NULL;
    169       1.104     pooka 	}
    170  1.173.10.1    martin 	mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
    171       1.103     pooka 
    172         1.1     pooka 	pg->offset = off;
    173         1.5     pooka 	pg->uobject = uobj;
    174         1.1     pooka 
    175  1.173.10.1    martin 	if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
    176  1.173.10.1    martin 		struct vnode *vp = (struct vnode *)uobj;
    177  1.173.10.1    martin 		mutex_enter(vp->v_interlock);
    178  1.173.10.1    martin 		vp->v_iflag |= VI_PAGES;
    179  1.173.10.1    martin 		mutex_exit(vp->v_interlock);
    180  1.173.10.1    martin 	}
    181  1.173.10.1    martin 
    182  1.173.10.1    martin 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
    183  1.173.10.1    martin 	    pg) != 0) {
    184  1.173.10.1    martin 		pool_cache_put(&pagecache, pg);
    185  1.173.10.1    martin 		return NULL;
    186  1.173.10.1    martin 	}
    187  1.173.10.1    martin 	uobj->uo_npages++;
    188  1.173.10.1    martin 
    189        1.22     pooka 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    190        1.90     pooka 	if (flags & UVM_PGA_ZERO) {
    191        1.90     pooka 		uvm_pagezero(pg);
    192        1.90     pooka 	}
    193         1.1     pooka 
    194        1.92     pooka 	/*
    195        1.93     pooka 	 * Don't put anons on the LRU page queue.  We can't flush them
    196        1.93     pooka 	 * (there's no concept of swap in a rump kernel), so no reason
    197        1.93     pooka 	 * to bother with them.
    198        1.92     pooka 	 */
    199        1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    200        1.92     pooka 		atomic_inc_uint(&vmpage_onqueue);
    201  1.173.10.1    martin 		mutex_enter(&vmpage_lruqueue_lock);
    202        1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    203  1.173.10.1    martin 		mutex_exit(&vmpage_lruqueue_lock);
    204        1.92     pooka 	}
    205        1.92     pooka 
    206         1.1     pooka 	return pg;
    207         1.1     pooka }
    208         1.1     pooka 
    209        1.21     pooka /*
    210        1.21     pooka  * Release a page.
    211        1.21     pooka  *
    212        1.22     pooka  * Called with the vm object locked.
    213        1.21     pooka  */
    214         1.1     pooka void
    215        1.22     pooka uvm_pagefree(struct vm_page *pg)
    216         1.1     pooka {
    217         1.5     pooka 	struct uvm_object *uobj = pg->uobject;
    218  1.173.10.1    martin 	struct vm_page *pg2 __unused;
    219         1.1     pooka 
    220  1.173.10.1    martin 	KASSERT(rw_write_held(uobj->vmobjlock));
    221        1.92     pooka 
    222  1.173.10.1    martin 	mutex_enter(&pg->interlock);
    223  1.173.10.1    martin 	if (pg->pqflags & PQ_WANTED) {
    224  1.173.10.1    martin 		pg->pqflags &= ~PQ_WANTED;
    225        1.22     pooka 		wakeup(pg);
    226  1.173.10.1    martin 	}
    227  1.173.10.1    martin 	mutex_exit(&pg->interlock);
    228        1.92     pooka 
    229        1.59     pooka 	uobj->uo_npages--;
    230  1.173.10.1    martin 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    231  1.173.10.1    martin 	KASSERT(pg == pg2);
    232        1.92     pooka 
    233        1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    234  1.173.10.1    martin 		mutex_enter(&vmpage_lruqueue_lock);
    235        1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    236  1.173.10.1    martin 		mutex_exit(&vmpage_lruqueue_lock);
    237        1.92     pooka 		atomic_dec_uint(&vmpage_onqueue);
    238        1.92     pooka 	}
    239        1.92     pooka 
    240  1.173.10.1    martin 	if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
    241  1.173.10.1    martin 		struct vnode *vp = (struct vnode *)uobj;
    242  1.173.10.1    martin 		mutex_enter(vp->v_interlock);
    243  1.173.10.1    martin 		vp->v_iflag &= ~VI_PAGES;
    244  1.173.10.1    martin 		mutex_exit(vp->v_interlock);
    245  1.173.10.1    martin 	}
    246  1.173.10.1    martin 
    247  1.173.10.1    martin 	mutex_destroy(&pg->interlock);
    248        1.90     pooka 	pool_cache_put(&pagecache, pg);
    249         1.1     pooka }
    250         1.1     pooka 
    251        1.15     pooka void
    252        1.61     pooka uvm_pagezero(struct vm_page *pg)
    253        1.15     pooka {
    254        1.15     pooka 
    255  1.173.10.1    martin 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    256        1.61     pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    257        1.15     pooka }
    258        1.15     pooka 
    259         1.1     pooka /*
    260  1.173.10.1    martin  * uvm_page_owner_locked_p: return true if object associated with page is
    261       1.136      yamt  * locked.  this is a weak check for runtime assertions only.
    262       1.136      yamt  */
    263       1.136      yamt 
    264       1.136      yamt bool
    265  1.173.10.1    martin uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
    266       1.136      yamt {
    267       1.136      yamt 
    268  1.173.10.1    martin 	if (exclusive)
    269  1.173.10.1    martin 		return rw_write_held(pg->uobject->vmobjlock);
    270  1.173.10.1    martin 	else
    271  1.173.10.1    martin 		return rw_lock_held(pg->uobject->vmobjlock);
    272       1.136      yamt }
    273       1.136      yamt 
    274       1.136      yamt /*
    275         1.1     pooka  * Misc routines
    276         1.1     pooka  */
    277         1.1     pooka 
    278        1.61     pooka static kmutex_t pagermtx;
    279        1.61     pooka 
    280         1.1     pooka void
    281        1.79     pooka uvm_init(void)
    282         1.1     pooka {
    283        1.84     pooka 	char buf[64];
    284        1.84     pooka 
    285       1.141     pooka 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    286       1.105     pooka 		unsigned long tmp;
    287       1.105     pooka 		char *ep;
    288       1.105     pooka 		int mult;
    289       1.105     pooka 
    290       1.109     pooka 		tmp = strtoul(buf, &ep, 10);
    291       1.105     pooka 		if (strlen(ep) > 1)
    292       1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    293       1.105     pooka 
    294       1.105     pooka 		/* mini-dehumanize-number */
    295       1.105     pooka 		mult = 1;
    296       1.105     pooka 		switch (*ep) {
    297       1.105     pooka 		case 'k':
    298       1.105     pooka 			mult = 1024;
    299       1.105     pooka 			break;
    300       1.105     pooka 		case 'm':
    301       1.105     pooka 			mult = 1024*1024;
    302       1.105     pooka 			break;
    303       1.105     pooka 		case 'g':
    304       1.105     pooka 			mult = 1024*1024*1024;
    305       1.105     pooka 			break;
    306       1.105     pooka 		case 0:
    307       1.105     pooka 			break;
    308       1.105     pooka 		default:
    309       1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    310       1.105     pooka 		}
    311       1.105     pooka 		rump_physmemlimit = tmp * mult;
    312       1.105     pooka 
    313       1.105     pooka 		if (rump_physmemlimit / mult != tmp)
    314       1.105     pooka 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    315       1.147     pooka 
    316       1.147     pooka 		/* reserve some memory for the pager */
    317       1.158     pooka 		if (rump_physmemlimit <= PDRESERVE)
    318       1.158     pooka 			panic("uvm_init: system reserves %d bytes of mem, "
    319       1.158     pooka 			    "only %lu bytes given",
    320       1.158     pooka 			    PDRESERVE, rump_physmemlimit);
    321       1.147     pooka 		pdlimit = rump_physmemlimit;
    322       1.158     pooka 		rump_physmemlimit -= PDRESERVE;
    323       1.105     pooka 
    324       1.157     pooka 		if (pdlimit < 1024*1024)
    325       1.157     pooka 			printf("uvm_init: WARNING: <1MB RAM limit, "
    326       1.157     pooka 			    "hope you know what you're doing\n");
    327       1.157     pooka 
    328        1.84     pooka #define HUMANIZE_BYTES 9
    329        1.84     pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    330        1.91     pooka 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    331        1.84     pooka #undef HUMANIZE_BYTES
    332        1.92     pooka 		dddlim = 9 * (rump_physmemlimit / 10);
    333        1.84     pooka 	} else {
    334        1.84     pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    335        1.84     pooka 	}
    336        1.84     pooka 	aprint_verbose("total memory = %s\n", buf);
    337         1.1     pooka 
    338        1.92     pooka 	TAILQ_INIT(&vmpage_lruqueue);
    339        1.92     pooka 
    340       1.157     pooka 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    341       1.157     pooka 		uvmexp.npages = physmem;
    342       1.157     pooka 	} else {
    343       1.157     pooka 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    344       1.158     pooka 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    345       1.157     pooka 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    346       1.157     pooka 	}
    347       1.157     pooka 	/*
    348       1.157     pooka 	 * uvmexp.free is not used internally or updated.  The reason is
    349       1.157     pooka 	 * that the memory hypercall allocator is allowed to allocate
    350       1.157     pooka 	 * non-page sized chunks.  We use a byte count in curphysmem
    351       1.157     pooka 	 * instead.
    352       1.157     pooka 	 */
    353       1.157     pooka 	uvmexp.free = uvmexp.npages;
    354        1.21     pooka 
    355       1.112     pooka #ifndef __uvmexp_pagesize
    356       1.112     pooka 	uvmexp.pagesize = PAGE_SIZE;
    357       1.112     pooka 	uvmexp.pagemask = PAGE_MASK;
    358       1.112     pooka 	uvmexp.pageshift = PAGE_SHIFT;
    359       1.112     pooka #else
    360       1.112     pooka #define FAKE_PAGE_SHIFT 12
    361       1.112     pooka 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    362       1.112     pooka 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    363       1.112     pooka 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    364       1.112     pooka #undef FAKE_PAGE_SHIFT
    365       1.112     pooka #endif
    366       1.112     pooka 
    367       1.140     pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    368  1.173.10.1    martin 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
    369       1.140     pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    370        1.35     pooka 
    371       1.152     pooka 	/* just to appease linkage */
    372       1.152     pooka 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    373       1.152     pooka 
    374       1.140     pooka 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    375        1.80     pooka 	cv_init(&pdaemoncv, "pdaemon");
    376        1.80     pooka 	cv_init(&oomwait, "oomwait");
    377        1.80     pooka 
    378       1.130     pooka 	module_map = &module_map_store;
    379       1.130     pooka 
    380        1.50     pooka 	kernel_map->pmap = pmap_kernel();
    381       1.121      para 
    382       1.122     njoly 	pool_subsystem_init();
    383       1.128     pooka 
    384       1.121      para 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    385       1.121      para 	    NULL, NULL, NULL,
    386       1.121      para 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    387       1.121      para 
    388       1.135      para 	vmem_subsystem_init(kmem_arena);
    389       1.121      para 
    390       1.121      para 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    391       1.121      para 	    vmem_alloc, vmem_free, kmem_arena,
    392       1.124      para 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    393        1.90     pooka 
    394        1.90     pooka 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    395        1.90     pooka 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    396       1.162     pooka 
    397  1.173.10.1    martin 	radix_tree_init();
    398  1.173.10.1    martin 
    399       1.162     pooka 	/* create vmspace used by local clients */
    400       1.162     pooka 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    401       1.164     pooka 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    402         1.1     pooka }
    403         1.1     pooka 
    404        1.83     pooka void
    405       1.145    martin uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    406       1.145    martin     bool topdown)
    407        1.83     pooka {
    408        1.83     pooka 
    409       1.162     pooka 	vm->vm_map.pmap = pmap;
    410        1.83     pooka 	vm->vm_refcnt = 1;
    411        1.83     pooka }
    412         1.1     pooka 
    413       1.173       nat int
    414       1.173       nat uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
    415       1.173       nat     bool new_pageable, int lockflags)
    416       1.173       nat {
    417       1.173       nat 	return 0;
    418       1.173       nat }
    419       1.173       nat 
    420         1.1     pooka void
    421         1.7     pooka uvm_pagewire(struct vm_page *pg)
    422         1.7     pooka {
    423         1.7     pooka 
    424         1.7     pooka 	/* nada */
    425         1.7     pooka }
    426         1.7     pooka 
    427         1.7     pooka void
    428         1.7     pooka uvm_pageunwire(struct vm_page *pg)
    429         1.7     pooka {
    430         1.7     pooka 
    431         1.7     pooka 	/* nada */
    432         1.7     pooka }
    433         1.7     pooka 
    434  1.173.10.1    martin int
    435  1.173.10.1    martin uvm_availmem(void)
    436  1.173.10.1    martin {
    437  1.173.10.1    martin 
    438  1.173.10.1    martin 	return uvmexp.free;
    439  1.173.10.1    martin }
    440  1.173.10.1    martin 
    441  1.173.10.1    martin void
    442  1.173.10.1    martin uvm_pagelock(struct vm_page *pg)
    443  1.173.10.1    martin {
    444  1.173.10.1    martin 
    445  1.173.10.1    martin 	mutex_enter(&pg->interlock);
    446  1.173.10.1    martin }
    447  1.173.10.1    martin 
    448  1.173.10.1    martin void
    449  1.173.10.1    martin uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
    450  1.173.10.1    martin {
    451  1.173.10.1    martin 
    452  1.173.10.1    martin 	if (pg1 < pg2) {
    453  1.173.10.1    martin 		mutex_enter(&pg1->interlock);
    454  1.173.10.1    martin 		mutex_enter(&pg2->interlock);
    455  1.173.10.1    martin 	} else {
    456  1.173.10.1    martin 		mutex_enter(&pg2->interlock);
    457  1.173.10.1    martin 		mutex_enter(&pg1->interlock);
    458  1.173.10.1    martin 	}
    459  1.173.10.1    martin }
    460  1.173.10.1    martin 
    461  1.173.10.1    martin void
    462  1.173.10.1    martin uvm_pageunlock(struct vm_page *pg)
    463  1.173.10.1    martin {
    464  1.173.10.1    martin 
    465  1.173.10.1    martin 	mutex_exit(&pg->interlock);
    466  1.173.10.1    martin }
    467  1.173.10.1    martin 
    468  1.173.10.1    martin void
    469  1.173.10.1    martin uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
    470  1.173.10.1    martin {
    471  1.173.10.1    martin 
    472  1.173.10.1    martin 	mutex_exit(&pg1->interlock);
    473  1.173.10.1    martin 	mutex_exit(&pg2->interlock);
    474  1.173.10.1    martin }
    475  1.173.10.1    martin 
    476        1.83     pooka /* where's your schmonz now? */
    477        1.83     pooka #define PUNLIMIT(a)	\
    478        1.83     pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    479        1.83     pooka void
    480        1.83     pooka uvm_init_limits(struct proc *p)
    481        1.83     pooka {
    482        1.83     pooka 
    483       1.155     pooka #ifndef DFLSSIZ
    484       1.155     pooka #define DFLSSIZ (16*1024*1024)
    485       1.155     pooka #endif
    486       1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    487       1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    488        1.83     pooka 	PUNLIMIT(RLIMIT_DATA);
    489        1.83     pooka 	PUNLIMIT(RLIMIT_RSS);
    490        1.83     pooka 	PUNLIMIT(RLIMIT_AS);
    491        1.83     pooka 	/* nice, cascade */
    492        1.83     pooka }
    493        1.83     pooka #undef PUNLIMIT
    494        1.83     pooka 
    495        1.69     pooka /*
    496        1.69     pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    497        1.69     pooka  */
    498        1.49     pooka int
    499       1.160       chs uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    500        1.49     pooka {
    501        1.69     pooka 	int error;
    502        1.49     pooka 
    503        1.69     pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    504       1.160       chs 	if (*addrp != NULL)
    505        1.69     pooka 		panic("uvm_mmap() variant unsupported");
    506        1.69     pooka 
    507       1.106     pooka 	if (RUMP_LOCALPROC_P(curproc)) {
    508       1.160       chs 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    509        1.98     pooka 	} else {
    510       1.166     pooka 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
    511       1.160       chs 		    size, addrp);
    512        1.98     pooka 	}
    513       1.160       chs 	return error;
    514       1.160       chs }
    515        1.69     pooka 
    516       1.160       chs /*
    517       1.160       chs  * Stubs for things referenced from vfs_vnode.c but not used.
    518       1.160       chs  */
    519       1.160       chs const dev_t zerodev;
    520       1.160       chs 
    521       1.160       chs struct uvm_object *
    522       1.160       chs udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    523       1.160       chs {
    524       1.160       chs 	return NULL;
    525        1.49     pooka }
    526        1.49     pooka 
    527        1.61     pooka struct pagerinfo {
    528        1.61     pooka 	vaddr_t pgr_kva;
    529        1.61     pooka 	int pgr_npages;
    530        1.61     pooka 	struct vm_page **pgr_pgs;
    531        1.61     pooka 	bool pgr_read;
    532        1.61     pooka 
    533        1.61     pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    534        1.61     pooka };
    535        1.61     pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    536        1.61     pooka 
    537        1.61     pooka /*
    538        1.61     pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    539       1.159     pooka  * and copy page contents there.  The reason for copying instead of
    540       1.159     pooka  * mapping is simple: we do not assume we are running on virtual
    541       1.159     pooka  * memory.  Even if we could emulate virtual memory in some envs
    542       1.159     pooka  * such as userspace, copying is much faster than trying to awkardly
    543       1.159     pooka  * cope with remapping (see "Design and Implementation" pp.95-98).
    544       1.159     pooka  * The downside of the approach is that the pager requires MAXPHYS
    545       1.159     pooka  * free memory to perform paging, but short of virtual memory or
    546       1.159     pooka  * making the pager do I/O in page-sized chunks we cannot do much
    547       1.159     pooka  * about that.
    548        1.61     pooka  */
    549         1.7     pooka vaddr_t
    550        1.61     pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    551         1.7     pooka {
    552        1.61     pooka 	struct pagerinfo *pgri;
    553        1.61     pooka 	vaddr_t curkva;
    554        1.61     pooka 	int i;
    555        1.61     pooka 
    556        1.61     pooka 	/* allocate structures */
    557        1.61     pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    558        1.61     pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    559        1.61     pooka 	pgri->pgr_npages = npages;
    560        1.61     pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    561        1.61     pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    562        1.61     pooka 
    563        1.61     pooka 	/* copy contents to "mapped" memory */
    564        1.61     pooka 	for (i = 0, curkva = pgri->pgr_kva;
    565        1.61     pooka 	    i < npages;
    566        1.61     pooka 	    i++, curkva += PAGE_SIZE) {
    567        1.61     pooka 		/*
    568        1.61     pooka 		 * We need to copy the previous contents of the pages to
    569        1.61     pooka 		 * the window even if we are reading from the
    570        1.61     pooka 		 * device, since the device might not fill the contents of
    571        1.61     pooka 		 * the full mapped range and we will end up corrupting
    572        1.61     pooka 		 * data when we unmap the window.
    573        1.61     pooka 		 */
    574        1.61     pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    575        1.61     pooka 		pgri->pgr_pgs[i] = pgs[i];
    576        1.61     pooka 	}
    577        1.61     pooka 
    578        1.61     pooka 	mutex_enter(&pagermtx);
    579        1.61     pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    580        1.61     pooka 	mutex_exit(&pagermtx);
    581         1.7     pooka 
    582        1.61     pooka 	return pgri->pgr_kva;
    583         1.7     pooka }
    584         1.7     pooka 
    585        1.61     pooka /*
    586        1.61     pooka  * map out the pager window.  return contents from VA to page storage
    587        1.61     pooka  * and free structures.
    588        1.61     pooka  *
    589        1.61     pooka  * Note: does not currently support partial frees
    590        1.61     pooka  */
    591        1.61     pooka void
    592        1.61     pooka uvm_pagermapout(vaddr_t kva, int npages)
    593         1.7     pooka {
    594        1.61     pooka 	struct pagerinfo *pgri;
    595        1.61     pooka 	vaddr_t curkva;
    596        1.61     pooka 	int i;
    597         1.7     pooka 
    598        1.61     pooka 	mutex_enter(&pagermtx);
    599        1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    600        1.61     pooka 		if (pgri->pgr_kva == kva)
    601        1.61     pooka 			break;
    602        1.61     pooka 	}
    603        1.61     pooka 	KASSERT(pgri);
    604        1.61     pooka 	if (pgri->pgr_npages != npages)
    605        1.61     pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    606        1.61     pooka 	LIST_REMOVE(pgri, pgr_entries);
    607        1.61     pooka 	mutex_exit(&pagermtx);
    608        1.61     pooka 
    609        1.61     pooka 	if (pgri->pgr_read) {
    610        1.61     pooka 		for (i = 0, curkva = pgri->pgr_kva;
    611        1.61     pooka 		    i < pgri->pgr_npages;
    612        1.61     pooka 		    i++, curkva += PAGE_SIZE) {
    613        1.61     pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    614        1.21     pooka 		}
    615        1.21     pooka 	}
    616        1.10     pooka 
    617        1.61     pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    618        1.61     pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    619        1.61     pooka 	kmem_free(pgri, sizeof(*pgri));
    620         1.7     pooka }
    621         1.7     pooka 
    622        1.61     pooka /*
    623        1.61     pooka  * convert va in pager window to page structure.
    624        1.61     pooka  * XXX: how expensive is this (global lock, list traversal)?
    625        1.61     pooka  */
    626        1.14     pooka struct vm_page *
    627        1.14     pooka uvm_pageratop(vaddr_t va)
    628        1.14     pooka {
    629        1.61     pooka 	struct pagerinfo *pgri;
    630        1.61     pooka 	struct vm_page *pg = NULL;
    631        1.61     pooka 	int i;
    632        1.14     pooka 
    633        1.61     pooka 	mutex_enter(&pagermtx);
    634        1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    635        1.61     pooka 		if (pgri->pgr_kva <= va
    636        1.61     pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    637        1.21     pooka 			break;
    638        1.61     pooka 	}
    639        1.61     pooka 	if (pgri) {
    640        1.61     pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    641        1.61     pooka 		pg = pgri->pgr_pgs[i];
    642        1.61     pooka 	}
    643        1.61     pooka 	mutex_exit(&pagermtx);
    644        1.21     pooka 
    645        1.61     pooka 	return pg;
    646        1.61     pooka }
    647        1.15     pooka 
    648        1.97     pooka /*
    649        1.97     pooka  * Called with the vm object locked.
    650        1.97     pooka  *
    651        1.97     pooka  * Put vnode object pages at the end of the access queue to indicate
    652        1.97     pooka  * they have been recently accessed and should not be immediate
    653        1.97     pooka  * candidates for pageout.  Do not do this for lookups done by
    654        1.97     pooka  * the pagedaemon to mimic pmap_kentered mappings which don't track
    655        1.97     pooka  * access information.
    656        1.97     pooka  */
    657        1.61     pooka struct vm_page *
    658        1.61     pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    659        1.61     pooka {
    660        1.92     pooka 	struct vm_page *pg;
    661        1.97     pooka 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    662        1.61     pooka 
    663  1.173.10.1    martin 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    664        1.97     pooka 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    665  1.173.10.1    martin 		mutex_enter(&vmpage_lruqueue_lock);
    666        1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    667        1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    668  1.173.10.1    martin 		mutex_exit(&vmpage_lruqueue_lock);
    669        1.92     pooka 	}
    670        1.92     pooka 
    671        1.92     pooka 	return pg;
    672        1.14     pooka }
    673        1.14     pooka 
    674         1.7     pooka void
    675        1.22     pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    676        1.22     pooka {
    677        1.22     pooka 	struct vm_page *pg;
    678        1.22     pooka 	int i;
    679        1.22     pooka 
    680        1.94     pooka 	KASSERT(npgs > 0);
    681  1.173.10.1    martin 	KASSERT(rw_write_held(pgs[0]->uobject->vmobjlock));
    682        1.94     pooka 
    683        1.22     pooka 	for (i = 0; i < npgs; i++) {
    684        1.22     pooka 		pg = pgs[i];
    685        1.22     pooka 		if (pg == NULL)
    686        1.22     pooka 			continue;
    687        1.22     pooka 
    688        1.22     pooka 		KASSERT(pg->flags & PG_BUSY);
    689  1.173.10.1    martin 		if (pg->flags & PG_RELEASED) {
    690        1.36     pooka 			uvm_pagefree(pg);
    691  1.173.10.1    martin 		} else {
    692  1.173.10.1    martin 			pg->flags &= ~PG_BUSY;
    693  1.173.10.1    martin 			uvm_pagelock(pg);
    694  1.173.10.1    martin 			uvm_pagewakeup(pg);
    695  1.173.10.1    martin 			uvm_pageunlock(pg);
    696  1.173.10.1    martin 		}
    697        1.22     pooka 	}
    698        1.22     pooka }
    699        1.22     pooka 
    700        1.22     pooka void
    701  1.173.10.1    martin uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
    702         1.7     pooka {
    703         1.7     pooka 
    704  1.173.10.1    martin 	KASSERT(rw_lock_held(lock));
    705  1.173.10.1    martin 	KASSERT((pg->flags & PG_BUSY) != 0);
    706  1.173.10.1    martin 
    707  1.173.10.1    martin 	mutex_enter(&pg->interlock);
    708  1.173.10.1    martin 	pg->pqflags |= PQ_WANTED;
    709  1.173.10.1    martin 	rw_exit(lock);
    710  1.173.10.1    martin 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
    711         1.7     pooka }
    712         1.7     pooka 
    713  1.173.10.1    martin void
    714  1.173.10.1    martin uvm_pagewakeup(struct vm_page *pg)
    715        1.41     pooka {
    716        1.41     pooka 
    717  1.173.10.1    martin 	KASSERT(mutex_owned(&pg->interlock));
    718        1.80     pooka 
    719  1.173.10.1    martin 	if ((pg->pqflags & PQ_WANTED) != 0) {
    720  1.173.10.1    martin 		pg->pqflags &= ~PQ_WANTED;
    721  1.173.10.1    martin 		wakeup(pg);
    722  1.173.10.1    martin 	}
    723  1.173.10.1    martin }
    724  1.173.10.1    martin 
    725  1.173.10.1    martin void
    726  1.173.10.1    martin uvm_estimatepageable(int *active, int *inactive)
    727  1.173.10.1    martin {
    728  1.173.10.1    martin 
    729  1.173.10.1    martin 	/* XXX: guessing game */
    730  1.173.10.1    martin 	*active = 1024;
    731  1.173.10.1    martin 	*inactive = 1024;
    732        1.41     pooka }
    733        1.41     pooka 
    734        1.41     pooka int
    735        1.41     pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    736        1.41     pooka {
    737        1.41     pooka 
    738        1.41     pooka 	panic("%s: unimplemented", __func__);
    739        1.41     pooka }
    740        1.41     pooka 
    741        1.41     pooka void
    742        1.41     pooka uvm_unloan(void *v, int npages, int flags)
    743        1.41     pooka {
    744        1.41     pooka 
    745        1.41     pooka 	panic("%s: unimplemented", __func__);
    746        1.41     pooka }
    747        1.41     pooka 
    748        1.43     pooka int
    749        1.43     pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    750        1.43     pooka 	struct vm_page **opp)
    751        1.43     pooka {
    752        1.43     pooka 
    753        1.72     pooka 	return EBUSY;
    754        1.43     pooka }
    755        1.43     pooka 
    756       1.116       mrg struct vm_page *
    757       1.116       mrg uvm_loanbreak(struct vm_page *pg)
    758       1.116       mrg {
    759       1.116       mrg 
    760       1.116       mrg 	panic("%s: unimplemented", __func__);
    761       1.116       mrg }
    762       1.116       mrg 
    763       1.116       mrg void
    764       1.116       mrg ubc_purge(struct uvm_object *uobj)
    765       1.116       mrg {
    766       1.116       mrg 
    767       1.116       mrg }
    768       1.116       mrg 
    769        1.68     pooka vaddr_t
    770       1.168    martin uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
    771        1.68     pooka {
    772        1.68     pooka 
    773        1.68     pooka 	return 0;
    774        1.68     pooka }
    775        1.68     pooka 
    776        1.71     pooka int
    777        1.71     pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    778        1.71     pooka 	vm_prot_t prot, bool set_max)
    779        1.71     pooka {
    780        1.71     pooka 
    781        1.71     pooka 	return EOPNOTSUPP;
    782        1.71     pooka }
    783        1.71     pooka 
    784       1.171    martin int
    785       1.171    martin uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
    786       1.171    martin     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
    787       1.171    martin     uvm_flag_t flags)
    788       1.171    martin {
    789       1.171    martin 
    790       1.172    martin 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
    791       1.172    martin 	return *startp != 0 ? 0 : ENOMEM;
    792       1.172    martin }
    793       1.172    martin 
    794       1.172    martin void
    795       1.172    martin uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
    796       1.172    martin {
    797       1.172    martin 
    798       1.172    martin 	rump_hyperfree((void*)start, end-start);
    799       1.171    martin }
    800       1.171    martin 
    801       1.171    martin 
    802         1.9     pooka /*
    803        1.12     pooka  * UVM km
    804        1.12     pooka  */
    805        1.12     pooka 
    806        1.12     pooka vaddr_t
    807        1.12     pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    808        1.12     pooka {
    809        1.82     pooka 	void *rv, *desired = NULL;
    810        1.50     pooka 	int alignbit, error;
    811        1.50     pooka 
    812        1.82     pooka #ifdef __x86_64__
    813        1.82     pooka 	/*
    814        1.82     pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    815        1.82     pooka 	 * This is because NetBSD kernel modules are compiled
    816        1.82     pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    817        1.82     pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    818        1.82     pooka 	 * anywhere except the lowest or highest 2GB, it will not
    819        1.82     pooka 	 * work.  Since userspace does not have access to the highest
    820        1.82     pooka 	 * 2GB, use the lowest 2GB.
    821        1.82     pooka 	 *
    822        1.82     pooka 	 * Note: this assumes the rump kernel resides in
    823        1.82     pooka 	 * the lowest 2GB as well.
    824        1.82     pooka 	 *
    825        1.82     pooka 	 * Note2: yes, it's a quick hack, but since this the only
    826        1.82     pooka 	 * place where we care about the map we're allocating from,
    827        1.82     pooka 	 * just use a simple "if" instead of coming up with a fancy
    828        1.82     pooka 	 * generic solution.
    829        1.82     pooka 	 */
    830        1.82     pooka 	if (map == module_map) {
    831        1.82     pooka 		desired = (void *)(0x80000000 - size);
    832        1.82     pooka 	}
    833        1.82     pooka #endif
    834        1.82     pooka 
    835       1.130     pooka 	if (__predict_false(map == module_map)) {
    836       1.130     pooka 		alignbit = 0;
    837       1.130     pooka 		if (align) {
    838       1.130     pooka 			alignbit = ffs(align)-1;
    839       1.130     pooka 		}
    840       1.142     pooka 		error = rumpuser_anonmmap(desired, size, alignbit,
    841       1.142     pooka 		    flags & UVM_KMF_EXEC, &rv);
    842       1.130     pooka 	} else {
    843       1.142     pooka 		error = rumpuser_malloc(size, align, &rv);
    844        1.50     pooka 	}
    845        1.50     pooka 
    846       1.142     pooka 	if (error) {
    847        1.50     pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    848        1.50     pooka 			return 0;
    849        1.50     pooka 		else
    850        1.50     pooka 			panic("uvm_km_alloc failed");
    851        1.50     pooka 	}
    852        1.12     pooka 
    853        1.50     pooka 	if (flags & UVM_KMF_ZERO)
    854        1.12     pooka 		memset(rv, 0, size);
    855        1.12     pooka 
    856        1.12     pooka 	return (vaddr_t)rv;
    857        1.12     pooka }
    858        1.12     pooka 
    859        1.12     pooka void
    860        1.12     pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    861        1.12     pooka {
    862        1.12     pooka 
    863       1.130     pooka 	if (__predict_false(map == module_map))
    864       1.130     pooka 		rumpuser_unmap((void *)vaddr, size);
    865       1.130     pooka 	else
    866       1.138     pooka 		rumpuser_free((void *)vaddr, size);
    867        1.12     pooka }
    868        1.12     pooka 
    869       1.170  christos int
    870       1.170  christos uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
    871       1.170  christos {
    872       1.170  christos 	return 0;
    873       1.170  christos }
    874       1.170  christos 
    875        1.12     pooka struct vm_map *
    876        1.12     pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    877       1.121      para 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    878        1.12     pooka {
    879        1.12     pooka 
    880        1.12     pooka 	return (struct vm_map *)417416;
    881        1.12     pooka }
    882        1.40     pooka 
    883       1.121      para int
    884       1.121      para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    885       1.121      para     vmem_addr_t *addr)
    886        1.40     pooka {
    887       1.121      para 	vaddr_t va;
    888       1.121      para 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    889       1.121      para 	    (flags & VM_SLEEP), "kmalloc");
    890        1.40     pooka 
    891       1.121      para 	if (va) {
    892       1.121      para 		*addr = va;
    893       1.121      para 		return 0;
    894       1.121      para 	} else {
    895       1.121      para 		return ENOMEM;
    896       1.121      para 	}
    897        1.40     pooka }
    898        1.40     pooka 
    899        1.40     pooka void
    900       1.121      para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    901        1.40     pooka {
    902        1.40     pooka 
    903       1.121      para 	rump_hyperfree((void *)addr, size);
    904        1.74     pooka }
    905        1.74     pooka 
    906        1.57     pooka /*
    907       1.102     pooka  * VM space locking routines.  We don't really have to do anything,
    908       1.102     pooka  * since the pages are always "wired" (both local and remote processes).
    909        1.57     pooka  */
    910        1.57     pooka int
    911        1.57     pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    912        1.57     pooka {
    913        1.57     pooka 
    914        1.57     pooka 	return 0;
    915        1.57     pooka }
    916        1.57     pooka 
    917        1.57     pooka void
    918        1.57     pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    919        1.57     pooka {
    920        1.57     pooka 
    921        1.57     pooka }
    922        1.57     pooka 
    923       1.102     pooka /*
    924       1.102     pooka  * For the local case the buffer mappers don't need to do anything.
    925       1.102     pooka  * For the remote case we need to reserve space and copy data in or
    926       1.102     pooka  * out, depending on B_READ/B_WRITE.
    927       1.102     pooka  */
    928       1.111     pooka int
    929        1.57     pooka vmapbuf(struct buf *bp, vsize_t len)
    930        1.57     pooka {
    931       1.111     pooka 	int error = 0;
    932        1.57     pooka 
    933        1.57     pooka 	bp->b_saveaddr = bp->b_data;
    934       1.102     pooka 
    935       1.102     pooka 	/* remote case */
    936       1.106     pooka 	if (!RUMP_LOCALPROC_P(curproc)) {
    937       1.102     pooka 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    938       1.102     pooka 		if (BUF_ISWRITE(bp)) {
    939       1.111     pooka 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    940       1.111     pooka 			if (error) {
    941       1.111     pooka 				rump_hyperfree(bp->b_data, len);
    942       1.111     pooka 				bp->b_data = bp->b_saveaddr;
    943       1.111     pooka 				bp->b_saveaddr = 0;
    944       1.111     pooka 			}
    945       1.102     pooka 		}
    946       1.102     pooka 	}
    947       1.111     pooka 
    948       1.111     pooka 	return error;
    949        1.57     pooka }
    950        1.57     pooka 
    951        1.57     pooka void
    952        1.57     pooka vunmapbuf(struct buf *bp, vsize_t len)
    953        1.57     pooka {
    954        1.57     pooka 
    955       1.102     pooka 	/* remote case */
    956       1.106     pooka 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    957       1.102     pooka 		if (BUF_ISREAD(bp)) {
    958       1.110     pooka 			bp->b_error = copyout_proc(bp->b_proc,
    959       1.102     pooka 			    bp->b_data, bp->b_saveaddr, len);
    960       1.102     pooka 		}
    961       1.102     pooka 		rump_hyperfree(bp->b_data, len);
    962       1.102     pooka 	}
    963       1.102     pooka 
    964        1.57     pooka 	bp->b_data = bp->b_saveaddr;
    965        1.57     pooka 	bp->b_saveaddr = 0;
    966        1.57     pooka }
    967        1.61     pooka 
    968        1.61     pooka void
    969        1.83     pooka uvmspace_addref(struct vmspace *vm)
    970        1.83     pooka {
    971        1.83     pooka 
    972        1.83     pooka 	/*
    973       1.103     pooka 	 * No dynamically allocated vmspaces exist.
    974        1.83     pooka 	 */
    975        1.83     pooka }
    976        1.83     pooka 
    977        1.83     pooka void
    978        1.66     pooka uvmspace_free(struct vmspace *vm)
    979        1.66     pooka {
    980        1.66     pooka 
    981        1.66     pooka 	/* nothing for now */
    982        1.66     pooka }
    983        1.66     pooka 
    984        1.61     pooka /*
    985        1.61     pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    986        1.61     pooka  */
    987        1.61     pooka 
    988        1.61     pooka void
    989        1.61     pooka uvm_pageactivate(struct vm_page *pg)
    990        1.61     pooka {
    991        1.61     pooka 
    992        1.61     pooka 	/* nada */
    993        1.61     pooka }
    994        1.61     pooka 
    995        1.61     pooka void
    996        1.61     pooka uvm_pagedeactivate(struct vm_page *pg)
    997        1.61     pooka {
    998        1.61     pooka 
    999        1.61     pooka 	/* nada */
   1000        1.61     pooka }
   1001        1.61     pooka 
   1002        1.61     pooka void
   1003        1.61     pooka uvm_pagedequeue(struct vm_page *pg)
   1004        1.61     pooka {
   1005        1.61     pooka 
   1006        1.61     pooka 	/* nada*/
   1007        1.61     pooka }
   1008        1.61     pooka 
   1009        1.61     pooka void
   1010        1.61     pooka uvm_pageenqueue(struct vm_page *pg)
   1011        1.61     pooka {
   1012        1.61     pooka 
   1013        1.61     pooka 	/* nada */
   1014        1.61     pooka }
   1015        1.80     pooka 
   1016        1.88     pooka void
   1017        1.88     pooka uvmpdpol_anfree(struct vm_anon *an)
   1018        1.88     pooka {
   1019        1.88     pooka 
   1020        1.88     pooka 	/* nada */
   1021        1.88     pooka }
   1022        1.88     pooka 
   1023        1.80     pooka /*
   1024        1.99  uebayasi  * Physical address accessors.
   1025        1.99  uebayasi  */
   1026        1.99  uebayasi 
   1027        1.99  uebayasi struct vm_page *
   1028        1.99  uebayasi uvm_phys_to_vm_page(paddr_t pa)
   1029        1.99  uebayasi {
   1030        1.99  uebayasi 
   1031        1.99  uebayasi 	return NULL;
   1032        1.99  uebayasi }
   1033        1.99  uebayasi 
   1034        1.99  uebayasi paddr_t
   1035        1.99  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
   1036        1.99  uebayasi {
   1037        1.99  uebayasi 
   1038        1.99  uebayasi 	return 0;
   1039        1.99  uebayasi }
   1040        1.99  uebayasi 
   1041       1.153     pooka vaddr_t
   1042       1.153     pooka uvm_uarea_alloc(void)
   1043       1.153     pooka {
   1044       1.153     pooka 
   1045       1.153     pooka 	/* non-zero */
   1046       1.153     pooka 	return (vaddr_t)11;
   1047       1.153     pooka }
   1048       1.153     pooka 
   1049       1.153     pooka void
   1050       1.153     pooka uvm_uarea_free(vaddr_t uarea)
   1051       1.153     pooka {
   1052       1.153     pooka 
   1053       1.153     pooka 	/* nata, so creamy */
   1054       1.153     pooka }
   1055       1.153     pooka 
   1056        1.99  uebayasi /*
   1057        1.80     pooka  * Routines related to the Page Baroness.
   1058        1.80     pooka  */
   1059        1.80     pooka 
   1060        1.80     pooka void
   1061        1.80     pooka uvm_wait(const char *msg)
   1062        1.80     pooka {
   1063        1.80     pooka 
   1064        1.80     pooka 	if (__predict_false(rump_threads == 0))
   1065        1.80     pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
   1066        1.80     pooka 
   1067       1.147     pooka 	if (curlwp == uvm.pagedaemon_lwp) {
   1068       1.147     pooka 		/* is it possible for us to later get memory? */
   1069       1.147     pooka 		if (!uvmexp.paging)
   1070       1.147     pooka 			panic("pagedaemon out of memory");
   1071       1.147     pooka 	}
   1072       1.147     pooka 
   1073        1.80     pooka 	mutex_enter(&pdaemonmtx);
   1074        1.80     pooka 	pdaemon_waiters++;
   1075        1.80     pooka 	cv_signal(&pdaemoncv);
   1076        1.80     pooka 	cv_wait(&oomwait, &pdaemonmtx);
   1077        1.80     pooka 	mutex_exit(&pdaemonmtx);
   1078        1.80     pooka }
   1079        1.80     pooka 
   1080        1.80     pooka void
   1081        1.80     pooka uvm_pageout_start(int npages)
   1082        1.80     pooka {
   1083        1.80     pooka 
   1084       1.113     pooka 	mutex_enter(&pdaemonmtx);
   1085       1.113     pooka 	uvmexp.paging += npages;
   1086       1.113     pooka 	mutex_exit(&pdaemonmtx);
   1087        1.80     pooka }
   1088        1.80     pooka 
   1089        1.80     pooka void
   1090        1.80     pooka uvm_pageout_done(int npages)
   1091        1.80     pooka {
   1092        1.80     pooka 
   1093       1.113     pooka 	if (!npages)
   1094       1.113     pooka 		return;
   1095       1.113     pooka 
   1096       1.113     pooka 	mutex_enter(&pdaemonmtx);
   1097       1.113     pooka 	KASSERT(uvmexp.paging >= npages);
   1098       1.113     pooka 	uvmexp.paging -= npages;
   1099       1.113     pooka 
   1100       1.113     pooka 	if (pdaemon_waiters) {
   1101       1.113     pooka 		pdaemon_waiters = 0;
   1102       1.113     pooka 		cv_broadcast(&oomwait);
   1103       1.113     pooka 	}
   1104       1.113     pooka 	mutex_exit(&pdaemonmtx);
   1105        1.80     pooka }
   1106        1.80     pooka 
   1107        1.95     pooka static bool
   1108  1.173.10.1    martin processpage(struct vm_page *pg)
   1109        1.95     pooka {
   1110        1.95     pooka 	struct uvm_object *uobj;
   1111        1.95     pooka 
   1112        1.95     pooka 	uobj = pg->uobject;
   1113  1.173.10.1    martin 	if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
   1114        1.95     pooka 		if ((pg->flags & PG_BUSY) == 0) {
   1115  1.173.10.1    martin 			mutex_exit(&vmpage_lruqueue_lock);
   1116        1.95     pooka 			uobj->pgops->pgo_put(uobj, pg->offset,
   1117        1.95     pooka 			    pg->offset + PAGE_SIZE,
   1118        1.95     pooka 			    PGO_CLEANIT|PGO_FREE);
   1119  1.173.10.1    martin 			KASSERT(!rw_write_held(uobj->vmobjlock));
   1120        1.95     pooka 			return true;
   1121        1.95     pooka 		} else {
   1122  1.173.10.1    martin 			rw_exit(uobj->vmobjlock);
   1123       1.104     pooka 		}
   1124        1.95     pooka 	}
   1125        1.95     pooka 
   1126        1.95     pooka 	return false;
   1127        1.95     pooka }
   1128        1.95     pooka 
   1129        1.80     pooka /*
   1130        1.92     pooka  * The Diabolical pageDaemon Director (DDD).
   1131       1.113     pooka  *
   1132       1.113     pooka  * This routine can always use better heuristics.
   1133        1.80     pooka  */
   1134        1.80     pooka void
   1135        1.80     pooka uvm_pageout(void *arg)
   1136        1.80     pooka {
   1137        1.92     pooka 	struct vm_page *pg;
   1138        1.80     pooka 	struct pool *pp, *pp_first;
   1139        1.92     pooka 	int cleaned, skip, skipped;
   1140       1.113     pooka 	bool succ;
   1141        1.80     pooka 
   1142        1.80     pooka 	mutex_enter(&pdaemonmtx);
   1143        1.80     pooka 	for (;;) {
   1144       1.113     pooka 		if (!NEED_PAGEDAEMON()) {
   1145        1.92     pooka 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1146        1.92     pooka 		}
   1147        1.92     pooka 
   1148       1.113     pooka 		if (pdaemon_waiters) {
   1149       1.113     pooka 			pdaemon_waiters = 0;
   1150       1.113     pooka 			cv_broadcast(&oomwait);
   1151       1.104     pooka 		}
   1152        1.92     pooka 
   1153       1.113     pooka 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1154       1.113     pooka 		uvmexp.pdwoke++;
   1155       1.113     pooka 
   1156        1.92     pooka 		/* tell the world that we are hungry */
   1157        1.80     pooka 		kernel_map->flags |= VM_MAP_WANTVA;
   1158        1.80     pooka 		mutex_exit(&pdaemonmtx);
   1159        1.80     pooka 
   1160        1.92     pooka 		/*
   1161        1.92     pooka 		 * step one: reclaim the page cache.  this should give
   1162        1.92     pooka 		 * us the biggest earnings since whole pages are released
   1163        1.92     pooka 		 * into backing memory.
   1164        1.92     pooka 		 */
   1165        1.92     pooka 		pool_cache_reclaim(&pagecache);
   1166        1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1167        1.92     pooka 			mutex_enter(&pdaemonmtx);
   1168        1.92     pooka 			continue;
   1169        1.92     pooka 		}
   1170        1.92     pooka 
   1171        1.92     pooka 		/*
   1172        1.92     pooka 		 * Ok, so that didn't help.  Next, try to hunt memory
   1173        1.92     pooka 		 * by pushing out vnode pages.  The pages might contain
   1174        1.92     pooka 		 * useful cached data, but we need the memory.
   1175        1.92     pooka 		 */
   1176        1.92     pooka 		cleaned = 0;
   1177        1.92     pooka 		skip = 0;
   1178        1.92     pooka  again:
   1179  1.173.10.1    martin 		mutex_enter(&vmpage_lruqueue_lock);
   1180        1.92     pooka 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1181        1.92     pooka 			skipped = 0;
   1182        1.92     pooka 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1183        1.92     pooka 
   1184        1.92     pooka 				/*
   1185        1.92     pooka 				 * skip over pages we _might_ have tried
   1186        1.92     pooka 				 * to handle earlier.  they might not be
   1187        1.92     pooka 				 * exactly the same ones, but I'm not too
   1188        1.92     pooka 				 * concerned.
   1189        1.92     pooka 				 */
   1190        1.92     pooka 				while (skipped++ < skip)
   1191        1.92     pooka 					continue;
   1192        1.92     pooka 
   1193  1.173.10.1    martin 				if (processpage(pg)) {
   1194        1.95     pooka 					cleaned++;
   1195        1.95     pooka 					goto again;
   1196        1.92     pooka 				}
   1197        1.92     pooka 
   1198        1.92     pooka 				skip++;
   1199        1.92     pooka 			}
   1200        1.92     pooka 			break;
   1201        1.92     pooka 		}
   1202  1.173.10.1    martin 		mutex_exit(&vmpage_lruqueue_lock);
   1203        1.92     pooka 
   1204        1.92     pooka 		/*
   1205       1.104     pooka 		 * Ok, someone is running with an object lock held.
   1206       1.104     pooka 		 * We want to yield the host CPU to make sure the
   1207  1.173.10.1    martin 		 * thread is not parked on the host.  nanosleep
   1208       1.104     pooka 		 * for the smallest possible time and hope we're back in
   1209       1.104     pooka 		 * the game soon.
   1210       1.104     pooka 		 */
   1211  1.173.10.1    martin 		if (cleaned == 0) {
   1212       1.144     pooka 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1213       1.104     pooka 
   1214       1.104     pooka 			skip = 0;
   1215       1.104     pooka 
   1216       1.104     pooka 			/* and here we go again */
   1217       1.104     pooka 			goto again;
   1218       1.104     pooka 		}
   1219       1.104     pooka 
   1220       1.104     pooka 		/*
   1221        1.92     pooka 		 * And of course we need to reclaim the page cache
   1222        1.92     pooka 		 * again to actually release memory.
   1223        1.92     pooka 		 */
   1224        1.92     pooka 		pool_cache_reclaim(&pagecache);
   1225        1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1226        1.92     pooka 			mutex_enter(&pdaemonmtx);
   1227        1.92     pooka 			continue;
   1228        1.92     pooka 		}
   1229        1.92     pooka 
   1230        1.92     pooka 		/*
   1231        1.92     pooka 		 * And then drain the pools.  Wipe them out ... all of them.
   1232        1.92     pooka 		 */
   1233       1.127       jym 		for (pp_first = NULL;;) {
   1234       1.156     pooka 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1235        1.92     pooka 
   1236       1.127       jym 			succ = pool_drain(&pp);
   1237       1.127       jym 			if (succ || pp == pp_first)
   1238        1.80     pooka 				break;
   1239       1.127       jym 
   1240       1.127       jym 			if (pp_first == NULL)
   1241       1.127       jym 				pp_first = pp;
   1242        1.80     pooka 		}
   1243        1.92     pooka 
   1244        1.92     pooka 		/*
   1245        1.92     pooka 		 * Need to use PYEC on our bag of tricks.
   1246        1.92     pooka 		 * Unfortunately, the wife just borrowed it.
   1247        1.92     pooka 		 */
   1248        1.80     pooka 
   1249       1.113     pooka 		mutex_enter(&pdaemonmtx);
   1250       1.113     pooka 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1251       1.113     pooka 		    uvmexp.paging == 0) {
   1252        1.80     pooka 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1253        1.80     pooka 			    "memory ... sleeping (deadlock?)\n");
   1254       1.167     pooka 			kpause("pddlk", false, hz, &pdaemonmtx);
   1255        1.80     pooka 		}
   1256        1.80     pooka 	}
   1257        1.80     pooka 
   1258        1.80     pooka 	panic("you can swap out any time you like, but you can never leave");
   1259        1.80     pooka }
   1260        1.80     pooka 
   1261        1.80     pooka void
   1262        1.80     pooka uvm_kick_pdaemon()
   1263        1.80     pooka {
   1264        1.80     pooka 
   1265        1.92     pooka 	/*
   1266        1.92     pooka 	 * Wake up the diabolical pagedaemon director if we are over
   1267        1.92     pooka 	 * 90% of the memory limit.  This is a complete and utter
   1268        1.92     pooka 	 * stetson-harrison decision which you are allowed to finetune.
   1269        1.92     pooka 	 * Don't bother locking.  If we have some unflushed caches,
   1270        1.92     pooka 	 * other waker-uppers will deal with the issue.
   1271        1.92     pooka 	 */
   1272        1.92     pooka 	if (NEED_PAGEDAEMON()) {
   1273        1.92     pooka 		cv_signal(&pdaemoncv);
   1274        1.92     pooka 	}
   1275        1.80     pooka }
   1276        1.80     pooka 
   1277        1.80     pooka void *
   1278        1.80     pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1279        1.80     pooka {
   1280       1.150     pooka 	const unsigned long thelimit =
   1281       1.150     pooka 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1282        1.84     pooka 	unsigned long newmem;
   1283        1.80     pooka 	void *rv;
   1284       1.142     pooka 	int error;
   1285        1.80     pooka 
   1286        1.92     pooka 	uvm_kick_pdaemon(); /* ouch */
   1287        1.92     pooka 
   1288        1.84     pooka 	/* first we must be within the limit */
   1289        1.84     pooka  limitagain:
   1290       1.150     pooka 	if (thelimit != RUMPMEM_UNLIMITED) {
   1291        1.84     pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1292       1.150     pooka 		if (newmem > thelimit) {
   1293        1.84     pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1294       1.103     pooka 			if (!waitok) {
   1295        1.84     pooka 				return NULL;
   1296       1.103     pooka 			}
   1297        1.84     pooka 			uvm_wait(wmsg);
   1298        1.84     pooka 			goto limitagain;
   1299        1.84     pooka 		}
   1300        1.84     pooka 	}
   1301        1.84     pooka 
   1302        1.84     pooka 	/* second, we must get something from the backend */
   1303        1.80     pooka  again:
   1304       1.142     pooka 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1305       1.142     pooka 	if (__predict_false(error && waitok)) {
   1306        1.80     pooka 		uvm_wait(wmsg);
   1307        1.80     pooka 		goto again;
   1308        1.80     pooka 	}
   1309        1.80     pooka 
   1310        1.80     pooka 	return rv;
   1311        1.80     pooka }
   1312        1.84     pooka 
   1313        1.84     pooka void
   1314        1.84     pooka rump_hyperfree(void *what, size_t size)
   1315        1.84     pooka {
   1316        1.84     pooka 
   1317        1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1318        1.84     pooka 		atomic_add_long(&curphysmem, -size);
   1319        1.84     pooka 	}
   1320       1.138     pooka 	rumpuser_free(what, size);
   1321        1.84     pooka }
   1322