Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.173.14.1
      1  1.173.14.1    martin /*	$NetBSD: vm.c,v 1.173.14.1 2021/07/06 04:22:34 martin Exp $	*/
      2         1.1     pooka 
      3         1.1     pooka /*
      4       1.114     pooka  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5         1.1     pooka  *
      6        1.76     pooka  * Development of this software was supported by
      7        1.76     pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8        1.76     pooka  * The Helsinki University of Technology.
      9         1.1     pooka  *
     10         1.1     pooka  * Redistribution and use in source and binary forms, with or without
     11         1.1     pooka  * modification, are permitted provided that the following conditions
     12         1.1     pooka  * are met:
     13         1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     14         1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     15         1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16         1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     17         1.1     pooka  *    documentation and/or other materials provided with the distribution.
     18         1.1     pooka  *
     19         1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20         1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21         1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22         1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23         1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24         1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25         1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26         1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27         1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28         1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29         1.1     pooka  * SUCH DAMAGE.
     30         1.1     pooka  */
     31         1.1     pooka 
     32         1.1     pooka /*
     33        1.88     pooka  * Virtual memory emulation routines.
     34         1.1     pooka  */
     35         1.1     pooka 
     36         1.1     pooka /*
     37         1.5     pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38         1.1     pooka  * for each page.  phys_addr would fit the job description better,
     39         1.1     pooka  * except that it will create unnecessary lossage on some platforms
     40         1.1     pooka  * due to not being a pointer type.
     41         1.1     pooka  */
     42         1.1     pooka 
     43        1.48     pooka #include <sys/cdefs.h>
     44  1.173.14.1    martin __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.173.14.1 2021/07/06 04:22:34 martin Exp $");
     45        1.48     pooka 
     46         1.1     pooka #include <sys/param.h>
     47        1.40     pooka #include <sys/atomic.h>
     48        1.80     pooka #include <sys/buf.h>
     49        1.80     pooka #include <sys/kernel.h>
     50        1.67     pooka #include <sys/kmem.h>
     51       1.121      para #include <sys/vmem.h>
     52        1.69     pooka #include <sys/mman.h>
     53         1.1     pooka #include <sys/null.h>
     54         1.1     pooka #include <sys/vnode.h>
     55         1.1     pooka 
     56        1.34     pooka #include <machine/pmap.h>
     57        1.34     pooka 
     58         1.1     pooka #include <uvm/uvm.h>
     59        1.56     pooka #include <uvm/uvm_ddb.h>
     60        1.88     pooka #include <uvm/uvm_pdpolicy.h>
     61         1.1     pooka #include <uvm/uvm_prot.h>
     62        1.58        he #include <uvm/uvm_readahead.h>
     63       1.160       chs #include <uvm/uvm_device.h>
     64         1.1     pooka 
     65       1.169     pooka #include <rump-sys/kern.h>
     66       1.169     pooka #include <rump-sys/vfs.h>
     67       1.169     pooka 
     68       1.169     pooka #include <rump/rumpuser.h>
     69         1.1     pooka 
     70       1.152     pooka kmutex_t uvm_pageqlock; /* non-free page lock */
     71       1.152     pooka kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     72        1.88     pooka kmutex_t uvm_swap_data_lock;
     73        1.25        ad 
     74         1.1     pooka struct uvmexp uvmexp;
     75         1.7     pooka struct uvm uvm;
     76         1.1     pooka 
     77       1.112     pooka #ifdef __uvmexp_pagesize
     78       1.123    martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
     79       1.123    martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
     80       1.123    martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
     81       1.112     pooka #endif
     82       1.112     pooka 
     83       1.121      para static struct vm_map kernel_map_store;
     84       1.121      para struct vm_map *kernel_map = &kernel_map_store;
     85       1.121      para 
     86       1.130     pooka static struct vm_map module_map_store;
     87       1.130     pooka extern struct vm_map *module_map;
     88       1.130     pooka 
     89       1.164     pooka static struct pmap pmap_kernel;
     90       1.164     pooka struct pmap rump_pmap_local;
     91       1.164     pooka struct pmap *const kernel_pmap_ptr = &pmap_kernel;
     92       1.164     pooka 
     93       1.121      para vmem_t *kmem_arena;
     94       1.121      para vmem_t *kmem_va_arena;
     95        1.35     pooka 
     96        1.80     pooka static unsigned int pdaemon_waiters;
     97        1.80     pooka static kmutex_t pdaemonmtx;
     98        1.80     pooka static kcondvar_t pdaemoncv, oomwait;
     99        1.80     pooka 
    100       1.162     pooka /* all local non-proc0 processes share this vmspace */
    101       1.162     pooka struct vmspace *rump_vmspace_local;
    102       1.162     pooka 
    103        1.91     pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    104       1.147     pooka static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    105        1.84     pooka static unsigned long curphysmem;
    106        1.92     pooka static unsigned long dddlim;		/* 90% of memory limit used */
    107        1.92     pooka #define NEED_PAGEDAEMON() \
    108        1.92     pooka     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    109       1.158     pooka #define PDRESERVE (2*MAXPHYS)
    110        1.92     pooka 
    111        1.92     pooka /*
    112        1.92     pooka  * Try to free two pages worth of pages from objects.
    113        1.92     pooka  * If this succesfully frees a full page cache page, we'll
    114       1.120      yamt  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    115        1.92     pooka  */
    116        1.92     pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    117        1.92     pooka 
    118        1.92     pooka /*
    119        1.92     pooka  * Keep a list of least recently used pages.  Since the only way a
    120        1.92     pooka  * rump kernel can "access" a page is via lookup, we put the page
    121        1.92     pooka  * at the back of queue every time a lookup for it is done.  If the
    122        1.92     pooka  * page is in front of this global queue and we're short of memory,
    123        1.92     pooka  * it's a candidate for pageout.
    124        1.92     pooka  */
    125        1.92     pooka static struct pglist vmpage_lruqueue;
    126        1.92     pooka static unsigned vmpage_onqueue;
    127        1.84     pooka 
    128        1.89     pooka static int
    129        1.96     rmind pg_compare_key(void *ctx, const void *n, const void *key)
    130        1.89     pooka {
    131        1.89     pooka 	voff_t a = ((const struct vm_page *)n)->offset;
    132        1.89     pooka 	voff_t b = *(const voff_t *)key;
    133        1.89     pooka 
    134        1.89     pooka 	if (a < b)
    135        1.96     rmind 		return -1;
    136        1.96     rmind 	else if (a > b)
    137        1.89     pooka 		return 1;
    138        1.89     pooka 	else
    139        1.89     pooka 		return 0;
    140        1.89     pooka }
    141        1.89     pooka 
    142        1.89     pooka static int
    143        1.96     rmind pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    144        1.89     pooka {
    145        1.89     pooka 
    146        1.96     rmind 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    147        1.89     pooka }
    148        1.89     pooka 
    149        1.96     rmind const rb_tree_ops_t uvm_page_tree_ops = {
    150        1.89     pooka 	.rbto_compare_nodes = pg_compare_nodes,
    151        1.89     pooka 	.rbto_compare_key = pg_compare_key,
    152        1.96     rmind 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    153        1.96     rmind 	.rbto_context = NULL
    154        1.89     pooka };
    155        1.89     pooka 
    156         1.1     pooka /*
    157         1.1     pooka  * vm pages
    158         1.1     pooka  */
    159         1.1     pooka 
    160        1.90     pooka static int
    161        1.90     pooka pgctor(void *arg, void *obj, int flags)
    162        1.90     pooka {
    163        1.90     pooka 	struct vm_page *pg = obj;
    164        1.90     pooka 
    165        1.90     pooka 	memset(pg, 0, sizeof(*pg));
    166       1.103     pooka 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    167       1.103     pooka 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    168       1.103     pooka 	return pg->uanon == NULL;
    169        1.90     pooka }
    170        1.90     pooka 
    171        1.90     pooka static void
    172        1.90     pooka pgdtor(void *arg, void *obj)
    173        1.90     pooka {
    174        1.90     pooka 	struct vm_page *pg = obj;
    175        1.90     pooka 
    176        1.90     pooka 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    177        1.90     pooka }
    178        1.90     pooka 
    179        1.90     pooka static struct pool_cache pagecache;
    180        1.90     pooka 
    181        1.92     pooka /*
    182        1.92     pooka  * Called with the object locked.  We don't support anons.
    183        1.92     pooka  */
    184         1.1     pooka struct vm_page *
    185        1.76     pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    186        1.76     pooka 	int flags, int strat, int free_list)
    187         1.1     pooka {
    188         1.1     pooka 	struct vm_page *pg;
    189         1.1     pooka 
    190       1.115     rmind 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    191        1.92     pooka 	KASSERT(anon == NULL);
    192        1.92     pooka 
    193       1.103     pooka 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    194       1.104     pooka 	if (__predict_false(pg == NULL)) {
    195       1.103     pooka 		return NULL;
    196       1.104     pooka 	}
    197       1.103     pooka 
    198         1.1     pooka 	pg->offset = off;
    199         1.5     pooka 	pg->uobject = uobj;
    200         1.1     pooka 
    201        1.22     pooka 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    202        1.90     pooka 	if (flags & UVM_PGA_ZERO) {
    203        1.90     pooka 		uvm_pagezero(pg);
    204        1.90     pooka 	}
    205         1.1     pooka 
    206        1.31        ad 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    207        1.96     rmind 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    208        1.89     pooka 
    209        1.92     pooka 	/*
    210        1.93     pooka 	 * Don't put anons on the LRU page queue.  We can't flush them
    211        1.93     pooka 	 * (there's no concept of swap in a rump kernel), so no reason
    212        1.93     pooka 	 * to bother with them.
    213        1.92     pooka 	 */
    214        1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    215        1.92     pooka 		atomic_inc_uint(&vmpage_onqueue);
    216        1.92     pooka 		mutex_enter(&uvm_pageqlock);
    217        1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    218        1.92     pooka 		mutex_exit(&uvm_pageqlock);
    219        1.92     pooka 	}
    220        1.92     pooka 
    221        1.59     pooka 	uobj->uo_npages++;
    222        1.21     pooka 
    223         1.1     pooka 	return pg;
    224         1.1     pooka }
    225         1.1     pooka 
    226        1.21     pooka /*
    227        1.21     pooka  * Release a page.
    228        1.21     pooka  *
    229        1.22     pooka  * Called with the vm object locked.
    230        1.21     pooka  */
    231         1.1     pooka void
    232        1.22     pooka uvm_pagefree(struct vm_page *pg)
    233         1.1     pooka {
    234         1.5     pooka 	struct uvm_object *uobj = pg->uobject;
    235         1.1     pooka 
    236        1.92     pooka 	KASSERT(mutex_owned(&uvm_pageqlock));
    237       1.115     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    238        1.92     pooka 
    239        1.22     pooka 	if (pg->flags & PG_WANTED)
    240        1.22     pooka 		wakeup(pg);
    241        1.22     pooka 
    242        1.92     pooka 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    243        1.92     pooka 
    244        1.59     pooka 	uobj->uo_npages--;
    245        1.96     rmind 	rb_tree_remove_node(&uobj->rb_tree, pg);
    246        1.92     pooka 
    247        1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    248        1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    249        1.92     pooka 		atomic_dec_uint(&vmpage_onqueue);
    250        1.92     pooka 	}
    251        1.92     pooka 
    252        1.90     pooka 	pool_cache_put(&pagecache, pg);
    253         1.1     pooka }
    254         1.1     pooka 
    255        1.15     pooka void
    256        1.61     pooka uvm_pagezero(struct vm_page *pg)
    257        1.15     pooka {
    258        1.15     pooka 
    259        1.61     pooka 	pg->flags &= ~PG_CLEAN;
    260        1.61     pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    261        1.15     pooka }
    262        1.15     pooka 
    263         1.1     pooka /*
    264       1.136      yamt  * uvm_page_locked_p: return true if object associated with page is
    265       1.136      yamt  * locked.  this is a weak check for runtime assertions only.
    266       1.136      yamt  */
    267       1.136      yamt 
    268       1.136      yamt bool
    269       1.136      yamt uvm_page_locked_p(struct vm_page *pg)
    270       1.136      yamt {
    271       1.136      yamt 
    272       1.136      yamt 	return mutex_owned(pg->uobject->vmobjlock);
    273       1.136      yamt }
    274       1.136      yamt 
    275       1.136      yamt /*
    276         1.1     pooka  * Misc routines
    277         1.1     pooka  */
    278         1.1     pooka 
    279        1.61     pooka static kmutex_t pagermtx;
    280        1.61     pooka 
    281         1.1     pooka void
    282        1.79     pooka uvm_init(void)
    283         1.1     pooka {
    284        1.84     pooka 	char buf[64];
    285        1.84     pooka 
    286       1.141     pooka 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    287       1.105     pooka 		unsigned long tmp;
    288       1.105     pooka 		char *ep;
    289       1.105     pooka 		int mult;
    290       1.105     pooka 
    291       1.109     pooka 		tmp = strtoul(buf, &ep, 10);
    292       1.105     pooka 		if (strlen(ep) > 1)
    293       1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    294       1.105     pooka 
    295       1.105     pooka 		/* mini-dehumanize-number */
    296       1.105     pooka 		mult = 1;
    297       1.105     pooka 		switch (*ep) {
    298       1.105     pooka 		case 'k':
    299       1.105     pooka 			mult = 1024;
    300       1.105     pooka 			break;
    301       1.105     pooka 		case 'm':
    302       1.105     pooka 			mult = 1024*1024;
    303       1.105     pooka 			break;
    304       1.105     pooka 		case 'g':
    305       1.105     pooka 			mult = 1024*1024*1024;
    306       1.105     pooka 			break;
    307       1.105     pooka 		case 0:
    308       1.105     pooka 			break;
    309       1.105     pooka 		default:
    310       1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    311       1.105     pooka 		}
    312       1.105     pooka 		rump_physmemlimit = tmp * mult;
    313       1.105     pooka 
    314       1.105     pooka 		if (rump_physmemlimit / mult != tmp)
    315       1.105     pooka 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    316       1.147     pooka 
    317       1.147     pooka 		/* reserve some memory for the pager */
    318       1.158     pooka 		if (rump_physmemlimit <= PDRESERVE)
    319       1.158     pooka 			panic("uvm_init: system reserves %d bytes of mem, "
    320       1.158     pooka 			    "only %lu bytes given",
    321       1.158     pooka 			    PDRESERVE, rump_physmemlimit);
    322       1.147     pooka 		pdlimit = rump_physmemlimit;
    323       1.158     pooka 		rump_physmemlimit -= PDRESERVE;
    324       1.105     pooka 
    325       1.157     pooka 		if (pdlimit < 1024*1024)
    326       1.157     pooka 			printf("uvm_init: WARNING: <1MB RAM limit, "
    327       1.157     pooka 			    "hope you know what you're doing\n");
    328       1.157     pooka 
    329        1.84     pooka #define HUMANIZE_BYTES 9
    330        1.84     pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    331        1.91     pooka 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    332        1.84     pooka #undef HUMANIZE_BYTES
    333        1.92     pooka 		dddlim = 9 * (rump_physmemlimit / 10);
    334        1.84     pooka 	} else {
    335        1.84     pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    336        1.84     pooka 	}
    337        1.84     pooka 	aprint_verbose("total memory = %s\n", buf);
    338         1.1     pooka 
    339        1.92     pooka 	TAILQ_INIT(&vmpage_lruqueue);
    340        1.92     pooka 
    341       1.157     pooka 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    342       1.157     pooka 		uvmexp.npages = physmem;
    343       1.157     pooka 	} else {
    344       1.157     pooka 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    345       1.158     pooka 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    346       1.157     pooka 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    347       1.157     pooka 	}
    348       1.157     pooka 	/*
    349       1.157     pooka 	 * uvmexp.free is not used internally or updated.  The reason is
    350       1.157     pooka 	 * that the memory hypercall allocator is allowed to allocate
    351       1.157     pooka 	 * non-page sized chunks.  We use a byte count in curphysmem
    352       1.157     pooka 	 * instead.
    353       1.157     pooka 	 */
    354       1.157     pooka 	uvmexp.free = uvmexp.npages;
    355        1.21     pooka 
    356       1.112     pooka #ifndef __uvmexp_pagesize
    357       1.112     pooka 	uvmexp.pagesize = PAGE_SIZE;
    358       1.112     pooka 	uvmexp.pagemask = PAGE_MASK;
    359       1.112     pooka 	uvmexp.pageshift = PAGE_SHIFT;
    360       1.112     pooka #else
    361       1.112     pooka #define FAKE_PAGE_SHIFT 12
    362       1.112     pooka 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    363       1.112     pooka 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    364       1.112     pooka 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    365       1.112     pooka #undef FAKE_PAGE_SHIFT
    366       1.112     pooka #endif
    367       1.112     pooka 
    368       1.140     pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    369       1.140     pooka 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
    370       1.140     pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    371        1.35     pooka 
    372       1.152     pooka 	/* just to appease linkage */
    373       1.152     pooka 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    374       1.152     pooka 
    375       1.140     pooka 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    376        1.80     pooka 	cv_init(&pdaemoncv, "pdaemon");
    377        1.80     pooka 	cv_init(&oomwait, "oomwait");
    378        1.80     pooka 
    379       1.130     pooka 	module_map = &module_map_store;
    380       1.130     pooka 
    381        1.50     pooka 	kernel_map->pmap = pmap_kernel();
    382       1.121      para 
    383       1.122     njoly 	pool_subsystem_init();
    384       1.128     pooka 
    385       1.121      para 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    386       1.121      para 	    NULL, NULL, NULL,
    387       1.121      para 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    388       1.121      para 
    389       1.135      para 	vmem_subsystem_init(kmem_arena);
    390       1.121      para 
    391       1.121      para 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    392       1.121      para 	    vmem_alloc, vmem_free, kmem_arena,
    393       1.124      para 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    394        1.90     pooka 
    395        1.90     pooka 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    396        1.90     pooka 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    397       1.162     pooka 
    398       1.162     pooka 	/* create vmspace used by local clients */
    399       1.162     pooka 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    400       1.164     pooka 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    401         1.1     pooka }
    402         1.1     pooka 
    403        1.83     pooka void
    404       1.145    martin uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    405       1.145    martin     bool topdown)
    406        1.83     pooka {
    407        1.83     pooka 
    408       1.162     pooka 	vm->vm_map.pmap = pmap;
    409        1.83     pooka 	vm->vm_refcnt = 1;
    410        1.83     pooka }
    411         1.1     pooka 
    412       1.173       nat int
    413       1.173       nat uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
    414       1.173       nat     bool new_pageable, int lockflags)
    415       1.173       nat {
    416       1.173       nat 	return 0;
    417       1.173       nat }
    418       1.173       nat 
    419         1.1     pooka void
    420         1.7     pooka uvm_pagewire(struct vm_page *pg)
    421         1.7     pooka {
    422         1.7     pooka 
    423         1.7     pooka 	/* nada */
    424         1.7     pooka }
    425         1.7     pooka 
    426         1.7     pooka void
    427         1.7     pooka uvm_pageunwire(struct vm_page *pg)
    428         1.7     pooka {
    429         1.7     pooka 
    430         1.7     pooka 	/* nada */
    431         1.7     pooka }
    432         1.7     pooka 
    433        1.83     pooka /* where's your schmonz now? */
    434        1.83     pooka #define PUNLIMIT(a)	\
    435        1.83     pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    436        1.83     pooka void
    437        1.83     pooka uvm_init_limits(struct proc *p)
    438        1.83     pooka {
    439        1.83     pooka 
    440       1.155     pooka #ifndef DFLSSIZ
    441       1.155     pooka #define DFLSSIZ (16*1024*1024)
    442       1.155     pooka #endif
    443       1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    444       1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    445        1.83     pooka 	PUNLIMIT(RLIMIT_DATA);
    446        1.83     pooka 	PUNLIMIT(RLIMIT_RSS);
    447        1.83     pooka 	PUNLIMIT(RLIMIT_AS);
    448        1.83     pooka 	/* nice, cascade */
    449        1.83     pooka }
    450        1.83     pooka #undef PUNLIMIT
    451        1.83     pooka 
    452        1.69     pooka /*
    453        1.69     pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    454        1.69     pooka  */
    455        1.49     pooka int
    456       1.160       chs uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    457        1.49     pooka {
    458        1.69     pooka 	int error;
    459        1.49     pooka 
    460        1.69     pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    461       1.160       chs 	if (*addrp != NULL)
    462        1.69     pooka 		panic("uvm_mmap() variant unsupported");
    463        1.69     pooka 
    464       1.106     pooka 	if (RUMP_LOCALPROC_P(curproc)) {
    465       1.160       chs 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    466        1.98     pooka 	} else {
    467       1.166     pooka 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
    468       1.160       chs 		    size, addrp);
    469        1.98     pooka 	}
    470       1.160       chs 	return error;
    471       1.160       chs }
    472        1.69     pooka 
    473       1.160       chs /*
    474       1.160       chs  * Stubs for things referenced from vfs_vnode.c but not used.
    475       1.160       chs  */
    476       1.160       chs const dev_t zerodev;
    477       1.160       chs 
    478       1.160       chs struct uvm_object *
    479       1.160       chs udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    480       1.160       chs {
    481       1.160       chs 	return NULL;
    482        1.49     pooka }
    483        1.49     pooka 
    484        1.61     pooka struct pagerinfo {
    485        1.61     pooka 	vaddr_t pgr_kva;
    486        1.61     pooka 	int pgr_npages;
    487        1.61     pooka 	struct vm_page **pgr_pgs;
    488        1.61     pooka 	bool pgr_read;
    489        1.61     pooka 
    490        1.61     pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    491        1.61     pooka };
    492        1.61     pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    493        1.61     pooka 
    494        1.61     pooka /*
    495        1.61     pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    496       1.159     pooka  * and copy page contents there.  The reason for copying instead of
    497       1.159     pooka  * mapping is simple: we do not assume we are running on virtual
    498       1.159     pooka  * memory.  Even if we could emulate virtual memory in some envs
    499       1.159     pooka  * such as userspace, copying is much faster than trying to awkardly
    500       1.159     pooka  * cope with remapping (see "Design and Implementation" pp.95-98).
    501       1.159     pooka  * The downside of the approach is that the pager requires MAXPHYS
    502       1.159     pooka  * free memory to perform paging, but short of virtual memory or
    503       1.159     pooka  * making the pager do I/O in page-sized chunks we cannot do much
    504       1.159     pooka  * about that.
    505        1.61     pooka  */
    506         1.7     pooka vaddr_t
    507        1.61     pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    508         1.7     pooka {
    509        1.61     pooka 	struct pagerinfo *pgri;
    510        1.61     pooka 	vaddr_t curkva;
    511        1.61     pooka 	int i;
    512        1.61     pooka 
    513        1.61     pooka 	/* allocate structures */
    514        1.61     pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    515        1.61     pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    516        1.61     pooka 	pgri->pgr_npages = npages;
    517        1.61     pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    518        1.61     pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    519        1.61     pooka 
    520        1.61     pooka 	/* copy contents to "mapped" memory */
    521        1.61     pooka 	for (i = 0, curkva = pgri->pgr_kva;
    522        1.61     pooka 	    i < npages;
    523        1.61     pooka 	    i++, curkva += PAGE_SIZE) {
    524        1.61     pooka 		/*
    525        1.61     pooka 		 * We need to copy the previous contents of the pages to
    526        1.61     pooka 		 * the window even if we are reading from the
    527        1.61     pooka 		 * device, since the device might not fill the contents of
    528        1.61     pooka 		 * the full mapped range and we will end up corrupting
    529        1.61     pooka 		 * data when we unmap the window.
    530        1.61     pooka 		 */
    531        1.61     pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    532        1.61     pooka 		pgri->pgr_pgs[i] = pgs[i];
    533        1.61     pooka 	}
    534        1.61     pooka 
    535        1.61     pooka 	mutex_enter(&pagermtx);
    536        1.61     pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    537        1.61     pooka 	mutex_exit(&pagermtx);
    538         1.7     pooka 
    539        1.61     pooka 	return pgri->pgr_kva;
    540         1.7     pooka }
    541         1.7     pooka 
    542        1.61     pooka /*
    543        1.61     pooka  * map out the pager window.  return contents from VA to page storage
    544        1.61     pooka  * and free structures.
    545        1.61     pooka  *
    546        1.61     pooka  * Note: does not currently support partial frees
    547        1.61     pooka  */
    548        1.61     pooka void
    549        1.61     pooka uvm_pagermapout(vaddr_t kva, int npages)
    550         1.7     pooka {
    551        1.61     pooka 	struct pagerinfo *pgri;
    552        1.61     pooka 	vaddr_t curkva;
    553        1.61     pooka 	int i;
    554         1.7     pooka 
    555        1.61     pooka 	mutex_enter(&pagermtx);
    556        1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    557        1.61     pooka 		if (pgri->pgr_kva == kva)
    558        1.61     pooka 			break;
    559        1.61     pooka 	}
    560        1.61     pooka 	KASSERT(pgri);
    561        1.61     pooka 	if (pgri->pgr_npages != npages)
    562        1.61     pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    563        1.61     pooka 	LIST_REMOVE(pgri, pgr_entries);
    564        1.61     pooka 	mutex_exit(&pagermtx);
    565        1.61     pooka 
    566        1.61     pooka 	if (pgri->pgr_read) {
    567        1.61     pooka 		for (i = 0, curkva = pgri->pgr_kva;
    568        1.61     pooka 		    i < pgri->pgr_npages;
    569        1.61     pooka 		    i++, curkva += PAGE_SIZE) {
    570        1.61     pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    571        1.21     pooka 		}
    572        1.21     pooka 	}
    573        1.10     pooka 
    574        1.61     pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    575        1.61     pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    576        1.61     pooka 	kmem_free(pgri, sizeof(*pgri));
    577         1.7     pooka }
    578         1.7     pooka 
    579        1.61     pooka /*
    580        1.61     pooka  * convert va in pager window to page structure.
    581        1.61     pooka  * XXX: how expensive is this (global lock, list traversal)?
    582        1.61     pooka  */
    583        1.14     pooka struct vm_page *
    584        1.14     pooka uvm_pageratop(vaddr_t va)
    585        1.14     pooka {
    586        1.61     pooka 	struct pagerinfo *pgri;
    587        1.61     pooka 	struct vm_page *pg = NULL;
    588        1.61     pooka 	int i;
    589        1.14     pooka 
    590        1.61     pooka 	mutex_enter(&pagermtx);
    591        1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    592        1.61     pooka 		if (pgri->pgr_kva <= va
    593        1.61     pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    594        1.21     pooka 			break;
    595        1.61     pooka 	}
    596        1.61     pooka 	if (pgri) {
    597        1.61     pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    598        1.61     pooka 		pg = pgri->pgr_pgs[i];
    599        1.61     pooka 	}
    600        1.61     pooka 	mutex_exit(&pagermtx);
    601        1.21     pooka 
    602        1.61     pooka 	return pg;
    603        1.61     pooka }
    604        1.15     pooka 
    605        1.97     pooka /*
    606        1.97     pooka  * Called with the vm object locked.
    607        1.97     pooka  *
    608        1.97     pooka  * Put vnode object pages at the end of the access queue to indicate
    609        1.97     pooka  * they have been recently accessed and should not be immediate
    610        1.97     pooka  * candidates for pageout.  Do not do this for lookups done by
    611        1.97     pooka  * the pagedaemon to mimic pmap_kentered mappings which don't track
    612        1.97     pooka  * access information.
    613        1.97     pooka  */
    614        1.61     pooka struct vm_page *
    615        1.61     pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    616        1.61     pooka {
    617        1.92     pooka 	struct vm_page *pg;
    618        1.97     pooka 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    619        1.61     pooka 
    620        1.96     rmind 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    621        1.97     pooka 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    622        1.92     pooka 		mutex_enter(&uvm_pageqlock);
    623        1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    624        1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    625        1.92     pooka 		mutex_exit(&uvm_pageqlock);
    626        1.92     pooka 	}
    627        1.92     pooka 
    628        1.92     pooka 	return pg;
    629        1.14     pooka }
    630        1.14     pooka 
    631         1.7     pooka void
    632        1.22     pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    633        1.22     pooka {
    634        1.22     pooka 	struct vm_page *pg;
    635  1.173.14.1    martin 	int i, pageout_done;
    636        1.22     pooka 
    637        1.94     pooka 	KASSERT(npgs > 0);
    638        1.94     pooka 
    639  1.173.14.1    martin 	pageout_done = 0;
    640        1.22     pooka 	for (i = 0; i < npgs; i++) {
    641        1.22     pooka 		pg = pgs[i];
    642  1.173.14.1    martin 		if (pg == NULL || pg == PGO_DONTCARE) {
    643        1.22     pooka 			continue;
    644  1.173.14.1    martin 		}
    645        1.22     pooka 
    646  1.173.14.1    martin #if 0
    647  1.173.14.1    martin 		KASSERT(uvm_page_owner_locked_p(pg, true));
    648  1.173.14.1    martin #else
    649  1.173.14.1    martin 		/*
    650  1.173.14.1    martin 		 * uvm_page_owner_locked_p() is not available in rump,
    651  1.173.14.1    martin 		 * and rump doesn't support amaps anyway.
    652  1.173.14.1    martin 		 */
    653  1.173.14.1    martin 		KASSERT(mutex_owned(pg->uobject->vmobjlock));
    654  1.173.14.1    martin #endif
    655        1.22     pooka 		KASSERT(pg->flags & PG_BUSY);
    656  1.173.14.1    martin 
    657  1.173.14.1    martin 		if (pg->flags & PG_PAGEOUT) {
    658  1.173.14.1    martin 			pg->flags &= ~PG_PAGEOUT;
    659  1.173.14.1    martin 			pg->flags |= PG_RELEASED;
    660  1.173.14.1    martin 			pageout_done++;
    661  1.173.14.1    martin 			atomic_inc_uint(&uvmexp.pdfreed);
    662  1.173.14.1    martin 		}
    663  1.173.14.1    martin 		if (pg->flags & PG_WANTED) {
    664        1.22     pooka 			wakeup(pg);
    665  1.173.14.1    martin 		}
    666  1.173.14.1    martin 		if (pg->flags & PG_RELEASED) {
    667  1.173.14.1    martin 			KASSERT(pg->uobject != NULL ||
    668  1.173.14.1    martin 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
    669  1.173.14.1    martin 			pg->flags &= ~PG_RELEASED;
    670        1.36     pooka 			uvm_pagefree(pg);
    671  1.173.14.1    martin 		} else {
    672  1.173.14.1    martin 			KASSERT((pg->flags & PG_FAKE) == 0);
    673        1.36     pooka 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    674  1.173.14.1    martin 			UVM_PAGE_OWN(pg, NULL);
    675  1.173.14.1    martin 		}
    676  1.173.14.1    martin 	}
    677  1.173.14.1    martin 	if (pageout_done != 0) {
    678  1.173.14.1    martin 		uvm_pageout_done(pageout_done);
    679        1.22     pooka 	}
    680        1.22     pooka }
    681        1.22     pooka 
    682        1.22     pooka void
    683         1.7     pooka uvm_estimatepageable(int *active, int *inactive)
    684         1.7     pooka {
    685         1.7     pooka 
    686        1.19     pooka 	/* XXX: guessing game */
    687        1.19     pooka 	*active = 1024;
    688        1.19     pooka 	*inactive = 1024;
    689         1.7     pooka }
    690         1.7     pooka 
    691        1.41     pooka bool
    692        1.41     pooka vm_map_starved_p(struct vm_map *map)
    693        1.41     pooka {
    694        1.41     pooka 
    695        1.80     pooka 	if (map->flags & VM_MAP_WANTVA)
    696        1.80     pooka 		return true;
    697        1.80     pooka 
    698        1.41     pooka 	return false;
    699        1.41     pooka }
    700        1.41     pooka 
    701        1.41     pooka int
    702        1.41     pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    703        1.41     pooka {
    704        1.41     pooka 
    705        1.41     pooka 	panic("%s: unimplemented", __func__);
    706        1.41     pooka }
    707        1.41     pooka 
    708        1.41     pooka void
    709        1.41     pooka uvm_unloan(void *v, int npages, int flags)
    710        1.41     pooka {
    711        1.41     pooka 
    712        1.41     pooka 	panic("%s: unimplemented", __func__);
    713        1.41     pooka }
    714        1.41     pooka 
    715        1.43     pooka int
    716        1.43     pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    717        1.43     pooka 	struct vm_page **opp)
    718        1.43     pooka {
    719        1.43     pooka 
    720        1.72     pooka 	return EBUSY;
    721        1.43     pooka }
    722        1.43     pooka 
    723       1.116       mrg struct vm_page *
    724       1.116       mrg uvm_loanbreak(struct vm_page *pg)
    725       1.116       mrg {
    726       1.116       mrg 
    727       1.116       mrg 	panic("%s: unimplemented", __func__);
    728       1.116       mrg }
    729       1.116       mrg 
    730       1.116       mrg void
    731       1.116       mrg ubc_purge(struct uvm_object *uobj)
    732       1.116       mrg {
    733       1.116       mrg 
    734       1.116       mrg }
    735       1.116       mrg 
    736        1.68     pooka vaddr_t
    737       1.168    martin uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
    738        1.68     pooka {
    739        1.68     pooka 
    740        1.68     pooka 	return 0;
    741        1.68     pooka }
    742        1.68     pooka 
    743        1.71     pooka int
    744        1.71     pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    745        1.71     pooka 	vm_prot_t prot, bool set_max)
    746        1.71     pooka {
    747        1.71     pooka 
    748        1.71     pooka 	return EOPNOTSUPP;
    749        1.71     pooka }
    750        1.71     pooka 
    751       1.171    martin int
    752       1.171    martin uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
    753       1.171    martin     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
    754       1.171    martin     uvm_flag_t flags)
    755       1.171    martin {
    756       1.171    martin 
    757       1.172    martin 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
    758       1.172    martin 	return *startp != 0 ? 0 : ENOMEM;
    759       1.172    martin }
    760       1.172    martin 
    761       1.172    martin void
    762       1.172    martin uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
    763       1.172    martin {
    764       1.172    martin 
    765       1.172    martin 	rump_hyperfree((void*)start, end-start);
    766       1.171    martin }
    767       1.171    martin 
    768       1.171    martin 
    769         1.9     pooka /*
    770        1.12     pooka  * UVM km
    771        1.12     pooka  */
    772        1.12     pooka 
    773        1.12     pooka vaddr_t
    774        1.12     pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    775        1.12     pooka {
    776        1.82     pooka 	void *rv, *desired = NULL;
    777        1.50     pooka 	int alignbit, error;
    778        1.50     pooka 
    779        1.82     pooka #ifdef __x86_64__
    780        1.82     pooka 	/*
    781        1.82     pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    782        1.82     pooka 	 * This is because NetBSD kernel modules are compiled
    783        1.82     pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    784        1.82     pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    785        1.82     pooka 	 * anywhere except the lowest or highest 2GB, it will not
    786        1.82     pooka 	 * work.  Since userspace does not have access to the highest
    787        1.82     pooka 	 * 2GB, use the lowest 2GB.
    788        1.82     pooka 	 *
    789        1.82     pooka 	 * Note: this assumes the rump kernel resides in
    790        1.82     pooka 	 * the lowest 2GB as well.
    791        1.82     pooka 	 *
    792        1.82     pooka 	 * Note2: yes, it's a quick hack, but since this the only
    793        1.82     pooka 	 * place where we care about the map we're allocating from,
    794        1.82     pooka 	 * just use a simple "if" instead of coming up with a fancy
    795        1.82     pooka 	 * generic solution.
    796        1.82     pooka 	 */
    797        1.82     pooka 	if (map == module_map) {
    798        1.82     pooka 		desired = (void *)(0x80000000 - size);
    799        1.82     pooka 	}
    800        1.82     pooka #endif
    801        1.82     pooka 
    802       1.130     pooka 	if (__predict_false(map == module_map)) {
    803       1.130     pooka 		alignbit = 0;
    804       1.130     pooka 		if (align) {
    805       1.130     pooka 			alignbit = ffs(align)-1;
    806       1.130     pooka 		}
    807       1.142     pooka 		error = rumpuser_anonmmap(desired, size, alignbit,
    808       1.142     pooka 		    flags & UVM_KMF_EXEC, &rv);
    809       1.130     pooka 	} else {
    810       1.142     pooka 		error = rumpuser_malloc(size, align, &rv);
    811        1.50     pooka 	}
    812        1.50     pooka 
    813       1.142     pooka 	if (error) {
    814        1.50     pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    815        1.50     pooka 			return 0;
    816        1.50     pooka 		else
    817        1.50     pooka 			panic("uvm_km_alloc failed");
    818        1.50     pooka 	}
    819        1.12     pooka 
    820        1.50     pooka 	if (flags & UVM_KMF_ZERO)
    821        1.12     pooka 		memset(rv, 0, size);
    822        1.12     pooka 
    823        1.12     pooka 	return (vaddr_t)rv;
    824        1.12     pooka }
    825        1.12     pooka 
    826        1.12     pooka void
    827        1.12     pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    828        1.12     pooka {
    829        1.12     pooka 
    830       1.130     pooka 	if (__predict_false(map == module_map))
    831       1.130     pooka 		rumpuser_unmap((void *)vaddr, size);
    832       1.130     pooka 	else
    833       1.138     pooka 		rumpuser_free((void *)vaddr, size);
    834        1.12     pooka }
    835        1.12     pooka 
    836       1.170  christos int
    837       1.170  christos uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
    838       1.170  christos {
    839       1.170  christos 	return 0;
    840       1.170  christos }
    841       1.170  christos 
    842        1.12     pooka struct vm_map *
    843        1.12     pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    844       1.121      para 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    845        1.12     pooka {
    846        1.12     pooka 
    847        1.12     pooka 	return (struct vm_map *)417416;
    848        1.12     pooka }
    849        1.40     pooka 
    850       1.121      para int
    851       1.121      para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    852       1.121      para     vmem_addr_t *addr)
    853        1.40     pooka {
    854       1.121      para 	vaddr_t va;
    855       1.121      para 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    856       1.121      para 	    (flags & VM_SLEEP), "kmalloc");
    857        1.40     pooka 
    858       1.121      para 	if (va) {
    859       1.121      para 		*addr = va;
    860       1.121      para 		return 0;
    861       1.121      para 	} else {
    862       1.121      para 		return ENOMEM;
    863       1.121      para 	}
    864        1.40     pooka }
    865        1.40     pooka 
    866        1.40     pooka void
    867       1.121      para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    868        1.40     pooka {
    869        1.40     pooka 
    870       1.121      para 	rump_hyperfree((void *)addr, size);
    871        1.74     pooka }
    872        1.74     pooka 
    873        1.57     pooka /*
    874       1.102     pooka  * VM space locking routines.  We don't really have to do anything,
    875       1.102     pooka  * since the pages are always "wired" (both local and remote processes).
    876        1.57     pooka  */
    877        1.57     pooka int
    878        1.57     pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    879        1.57     pooka {
    880        1.57     pooka 
    881        1.57     pooka 	return 0;
    882        1.57     pooka }
    883        1.57     pooka 
    884        1.57     pooka void
    885        1.57     pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    886        1.57     pooka {
    887        1.57     pooka 
    888        1.57     pooka }
    889        1.57     pooka 
    890       1.102     pooka /*
    891       1.102     pooka  * For the local case the buffer mappers don't need to do anything.
    892       1.102     pooka  * For the remote case we need to reserve space and copy data in or
    893       1.102     pooka  * out, depending on B_READ/B_WRITE.
    894       1.102     pooka  */
    895       1.111     pooka int
    896        1.57     pooka vmapbuf(struct buf *bp, vsize_t len)
    897        1.57     pooka {
    898       1.111     pooka 	int error = 0;
    899        1.57     pooka 
    900        1.57     pooka 	bp->b_saveaddr = bp->b_data;
    901       1.102     pooka 
    902       1.102     pooka 	/* remote case */
    903       1.106     pooka 	if (!RUMP_LOCALPROC_P(curproc)) {
    904       1.102     pooka 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    905       1.102     pooka 		if (BUF_ISWRITE(bp)) {
    906       1.111     pooka 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    907       1.111     pooka 			if (error) {
    908       1.111     pooka 				rump_hyperfree(bp->b_data, len);
    909       1.111     pooka 				bp->b_data = bp->b_saveaddr;
    910       1.111     pooka 				bp->b_saveaddr = 0;
    911       1.111     pooka 			}
    912       1.102     pooka 		}
    913       1.102     pooka 	}
    914       1.111     pooka 
    915       1.111     pooka 	return error;
    916        1.57     pooka }
    917        1.57     pooka 
    918        1.57     pooka void
    919        1.57     pooka vunmapbuf(struct buf *bp, vsize_t len)
    920        1.57     pooka {
    921        1.57     pooka 
    922       1.102     pooka 	/* remote case */
    923       1.106     pooka 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    924       1.102     pooka 		if (BUF_ISREAD(bp)) {
    925       1.110     pooka 			bp->b_error = copyout_proc(bp->b_proc,
    926       1.102     pooka 			    bp->b_data, bp->b_saveaddr, len);
    927       1.102     pooka 		}
    928       1.102     pooka 		rump_hyperfree(bp->b_data, len);
    929       1.102     pooka 	}
    930       1.102     pooka 
    931        1.57     pooka 	bp->b_data = bp->b_saveaddr;
    932        1.57     pooka 	bp->b_saveaddr = 0;
    933        1.57     pooka }
    934        1.61     pooka 
    935        1.61     pooka void
    936        1.83     pooka uvmspace_addref(struct vmspace *vm)
    937        1.83     pooka {
    938        1.83     pooka 
    939        1.83     pooka 	/*
    940       1.103     pooka 	 * No dynamically allocated vmspaces exist.
    941        1.83     pooka 	 */
    942        1.83     pooka }
    943        1.83     pooka 
    944        1.83     pooka void
    945        1.66     pooka uvmspace_free(struct vmspace *vm)
    946        1.66     pooka {
    947        1.66     pooka 
    948        1.66     pooka 	/* nothing for now */
    949        1.66     pooka }
    950        1.66     pooka 
    951        1.61     pooka /*
    952        1.61     pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    953        1.61     pooka  */
    954        1.61     pooka 
    955        1.61     pooka void
    956        1.61     pooka uvm_pageactivate(struct vm_page *pg)
    957        1.61     pooka {
    958        1.61     pooka 
    959        1.61     pooka 	/* nada */
    960        1.61     pooka }
    961        1.61     pooka 
    962        1.61     pooka void
    963        1.61     pooka uvm_pagedeactivate(struct vm_page *pg)
    964        1.61     pooka {
    965        1.61     pooka 
    966        1.61     pooka 	/* nada */
    967        1.61     pooka }
    968        1.61     pooka 
    969        1.61     pooka void
    970        1.61     pooka uvm_pagedequeue(struct vm_page *pg)
    971        1.61     pooka {
    972        1.61     pooka 
    973        1.61     pooka 	/* nada*/
    974        1.61     pooka }
    975        1.61     pooka 
    976        1.61     pooka void
    977        1.61     pooka uvm_pageenqueue(struct vm_page *pg)
    978        1.61     pooka {
    979        1.61     pooka 
    980        1.61     pooka 	/* nada */
    981        1.61     pooka }
    982        1.80     pooka 
    983        1.88     pooka void
    984        1.88     pooka uvmpdpol_anfree(struct vm_anon *an)
    985        1.88     pooka {
    986        1.88     pooka 
    987        1.88     pooka 	/* nada */
    988        1.88     pooka }
    989        1.88     pooka 
    990        1.80     pooka /*
    991        1.99  uebayasi  * Physical address accessors.
    992        1.99  uebayasi  */
    993        1.99  uebayasi 
    994        1.99  uebayasi struct vm_page *
    995        1.99  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    996        1.99  uebayasi {
    997        1.99  uebayasi 
    998        1.99  uebayasi 	return NULL;
    999        1.99  uebayasi }
   1000        1.99  uebayasi 
   1001        1.99  uebayasi paddr_t
   1002        1.99  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
   1003        1.99  uebayasi {
   1004        1.99  uebayasi 
   1005        1.99  uebayasi 	return 0;
   1006        1.99  uebayasi }
   1007        1.99  uebayasi 
   1008       1.153     pooka vaddr_t
   1009       1.153     pooka uvm_uarea_alloc(void)
   1010       1.153     pooka {
   1011       1.153     pooka 
   1012       1.153     pooka 	/* non-zero */
   1013       1.153     pooka 	return (vaddr_t)11;
   1014       1.153     pooka }
   1015       1.153     pooka 
   1016       1.153     pooka void
   1017       1.153     pooka uvm_uarea_free(vaddr_t uarea)
   1018       1.153     pooka {
   1019       1.153     pooka 
   1020       1.153     pooka 	/* nata, so creamy */
   1021       1.153     pooka }
   1022       1.153     pooka 
   1023        1.99  uebayasi /*
   1024        1.80     pooka  * Routines related to the Page Baroness.
   1025        1.80     pooka  */
   1026        1.80     pooka 
   1027        1.80     pooka void
   1028        1.80     pooka uvm_wait(const char *msg)
   1029        1.80     pooka {
   1030        1.80     pooka 
   1031        1.80     pooka 	if (__predict_false(rump_threads == 0))
   1032        1.80     pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
   1033        1.80     pooka 
   1034       1.147     pooka 	if (curlwp == uvm.pagedaemon_lwp) {
   1035       1.147     pooka 		/* is it possible for us to later get memory? */
   1036       1.147     pooka 		if (!uvmexp.paging)
   1037       1.147     pooka 			panic("pagedaemon out of memory");
   1038       1.147     pooka 	}
   1039       1.147     pooka 
   1040        1.80     pooka 	mutex_enter(&pdaemonmtx);
   1041        1.80     pooka 	pdaemon_waiters++;
   1042        1.80     pooka 	cv_signal(&pdaemoncv);
   1043        1.80     pooka 	cv_wait(&oomwait, &pdaemonmtx);
   1044        1.80     pooka 	mutex_exit(&pdaemonmtx);
   1045        1.80     pooka }
   1046        1.80     pooka 
   1047        1.80     pooka void
   1048        1.80     pooka uvm_pageout_start(int npages)
   1049        1.80     pooka {
   1050        1.80     pooka 
   1051       1.113     pooka 	mutex_enter(&pdaemonmtx);
   1052       1.113     pooka 	uvmexp.paging += npages;
   1053       1.113     pooka 	mutex_exit(&pdaemonmtx);
   1054        1.80     pooka }
   1055        1.80     pooka 
   1056        1.80     pooka void
   1057        1.80     pooka uvm_pageout_done(int npages)
   1058        1.80     pooka {
   1059        1.80     pooka 
   1060       1.113     pooka 	if (!npages)
   1061       1.113     pooka 		return;
   1062       1.113     pooka 
   1063       1.113     pooka 	mutex_enter(&pdaemonmtx);
   1064       1.113     pooka 	KASSERT(uvmexp.paging >= npages);
   1065       1.113     pooka 	uvmexp.paging -= npages;
   1066       1.113     pooka 
   1067       1.113     pooka 	if (pdaemon_waiters) {
   1068       1.113     pooka 		pdaemon_waiters = 0;
   1069       1.113     pooka 		cv_broadcast(&oomwait);
   1070       1.113     pooka 	}
   1071       1.113     pooka 	mutex_exit(&pdaemonmtx);
   1072        1.80     pooka }
   1073        1.80     pooka 
   1074        1.95     pooka static bool
   1075       1.104     pooka processpage(struct vm_page *pg, bool *lockrunning)
   1076        1.95     pooka {
   1077        1.95     pooka 	struct uvm_object *uobj;
   1078        1.95     pooka 
   1079        1.95     pooka 	uobj = pg->uobject;
   1080       1.115     rmind 	if (mutex_tryenter(uobj->vmobjlock)) {
   1081        1.95     pooka 		if ((pg->flags & PG_BUSY) == 0) {
   1082        1.95     pooka 			mutex_exit(&uvm_pageqlock);
   1083        1.95     pooka 			uobj->pgops->pgo_put(uobj, pg->offset,
   1084        1.95     pooka 			    pg->offset + PAGE_SIZE,
   1085        1.95     pooka 			    PGO_CLEANIT|PGO_FREE);
   1086       1.115     rmind 			KASSERT(!mutex_owned(uobj->vmobjlock));
   1087        1.95     pooka 			return true;
   1088        1.95     pooka 		} else {
   1089       1.115     rmind 			mutex_exit(uobj->vmobjlock);
   1090        1.95     pooka 		}
   1091       1.104     pooka 	} else if (*lockrunning == false && ncpu > 1) {
   1092       1.104     pooka 		CPU_INFO_ITERATOR cii;
   1093       1.104     pooka 		struct cpu_info *ci;
   1094       1.104     pooka 		struct lwp *l;
   1095       1.104     pooka 
   1096       1.115     rmind 		l = mutex_owner(uobj->vmobjlock);
   1097       1.104     pooka 		for (CPU_INFO_FOREACH(cii, ci)) {
   1098       1.104     pooka 			if (ci->ci_curlwp == l) {
   1099       1.104     pooka 				*lockrunning = true;
   1100       1.104     pooka 				break;
   1101       1.104     pooka 			}
   1102       1.104     pooka 		}
   1103        1.95     pooka 	}
   1104        1.95     pooka 
   1105        1.95     pooka 	return false;
   1106        1.95     pooka }
   1107        1.95     pooka 
   1108        1.80     pooka /*
   1109        1.92     pooka  * The Diabolical pageDaemon Director (DDD).
   1110       1.113     pooka  *
   1111       1.113     pooka  * This routine can always use better heuristics.
   1112        1.80     pooka  */
   1113        1.80     pooka void
   1114        1.80     pooka uvm_pageout(void *arg)
   1115        1.80     pooka {
   1116        1.92     pooka 	struct vm_page *pg;
   1117        1.80     pooka 	struct pool *pp, *pp_first;
   1118        1.92     pooka 	int cleaned, skip, skipped;
   1119       1.113     pooka 	bool succ;
   1120       1.104     pooka 	bool lockrunning;
   1121        1.80     pooka 
   1122        1.80     pooka 	mutex_enter(&pdaemonmtx);
   1123        1.80     pooka 	for (;;) {
   1124       1.113     pooka 		if (!NEED_PAGEDAEMON()) {
   1125        1.92     pooka 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1126        1.92     pooka 		}
   1127        1.92     pooka 
   1128       1.113     pooka 		if (pdaemon_waiters) {
   1129       1.113     pooka 			pdaemon_waiters = 0;
   1130       1.113     pooka 			cv_broadcast(&oomwait);
   1131       1.104     pooka 		}
   1132        1.92     pooka 
   1133       1.113     pooka 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1134       1.113     pooka 		uvmexp.pdwoke++;
   1135       1.113     pooka 
   1136        1.92     pooka 		/* tell the world that we are hungry */
   1137        1.80     pooka 		kernel_map->flags |= VM_MAP_WANTVA;
   1138        1.80     pooka 		mutex_exit(&pdaemonmtx);
   1139        1.80     pooka 
   1140        1.92     pooka 		/*
   1141        1.92     pooka 		 * step one: reclaim the page cache.  this should give
   1142        1.92     pooka 		 * us the biggest earnings since whole pages are released
   1143        1.92     pooka 		 * into backing memory.
   1144        1.92     pooka 		 */
   1145        1.92     pooka 		pool_cache_reclaim(&pagecache);
   1146        1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1147        1.92     pooka 			mutex_enter(&pdaemonmtx);
   1148        1.92     pooka 			continue;
   1149        1.92     pooka 		}
   1150        1.92     pooka 
   1151        1.92     pooka 		/*
   1152        1.92     pooka 		 * Ok, so that didn't help.  Next, try to hunt memory
   1153        1.92     pooka 		 * by pushing out vnode pages.  The pages might contain
   1154        1.92     pooka 		 * useful cached data, but we need the memory.
   1155        1.92     pooka 		 */
   1156        1.92     pooka 		cleaned = 0;
   1157        1.92     pooka 		skip = 0;
   1158       1.104     pooka 		lockrunning = false;
   1159        1.92     pooka  again:
   1160        1.92     pooka 		mutex_enter(&uvm_pageqlock);
   1161        1.92     pooka 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1162        1.92     pooka 			skipped = 0;
   1163        1.92     pooka 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1164        1.92     pooka 
   1165        1.92     pooka 				/*
   1166        1.92     pooka 				 * skip over pages we _might_ have tried
   1167        1.92     pooka 				 * to handle earlier.  they might not be
   1168        1.92     pooka 				 * exactly the same ones, but I'm not too
   1169        1.92     pooka 				 * concerned.
   1170        1.92     pooka 				 */
   1171        1.92     pooka 				while (skipped++ < skip)
   1172        1.92     pooka 					continue;
   1173        1.92     pooka 
   1174       1.104     pooka 				if (processpage(pg, &lockrunning)) {
   1175        1.95     pooka 					cleaned++;
   1176        1.95     pooka 					goto again;
   1177        1.92     pooka 				}
   1178        1.92     pooka 
   1179        1.92     pooka 				skip++;
   1180        1.92     pooka 			}
   1181        1.92     pooka 			break;
   1182        1.92     pooka 		}
   1183        1.92     pooka 		mutex_exit(&uvm_pageqlock);
   1184        1.92     pooka 
   1185        1.92     pooka 		/*
   1186       1.104     pooka 		 * Ok, someone is running with an object lock held.
   1187       1.104     pooka 		 * We want to yield the host CPU to make sure the
   1188       1.104     pooka 		 * thread is not parked on the host.  Since sched_yield()
   1189       1.104     pooka 		 * doesn't appear to do anything on NetBSD, nanosleep
   1190       1.104     pooka 		 * for the smallest possible time and hope we're back in
   1191       1.104     pooka 		 * the game soon.
   1192       1.104     pooka 		 */
   1193       1.104     pooka 		if (cleaned == 0 && lockrunning) {
   1194       1.144     pooka 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1195       1.104     pooka 
   1196       1.104     pooka 			lockrunning = false;
   1197       1.104     pooka 			skip = 0;
   1198       1.104     pooka 
   1199       1.104     pooka 			/* and here we go again */
   1200       1.104     pooka 			goto again;
   1201       1.104     pooka 		}
   1202       1.104     pooka 
   1203       1.104     pooka 		/*
   1204        1.92     pooka 		 * And of course we need to reclaim the page cache
   1205        1.92     pooka 		 * again to actually release memory.
   1206        1.92     pooka 		 */
   1207        1.92     pooka 		pool_cache_reclaim(&pagecache);
   1208        1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1209        1.92     pooka 			mutex_enter(&pdaemonmtx);
   1210        1.92     pooka 			continue;
   1211        1.92     pooka 		}
   1212        1.92     pooka 
   1213        1.92     pooka 		/*
   1214        1.92     pooka 		 * And then drain the pools.  Wipe them out ... all of them.
   1215        1.92     pooka 		 */
   1216       1.127       jym 		for (pp_first = NULL;;) {
   1217       1.156     pooka 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1218        1.92     pooka 
   1219       1.127       jym 			succ = pool_drain(&pp);
   1220       1.127       jym 			if (succ || pp == pp_first)
   1221        1.80     pooka 				break;
   1222       1.127       jym 
   1223       1.127       jym 			if (pp_first == NULL)
   1224       1.127       jym 				pp_first = pp;
   1225        1.80     pooka 		}
   1226        1.92     pooka 
   1227        1.92     pooka 		/*
   1228        1.92     pooka 		 * Need to use PYEC on our bag of tricks.
   1229        1.92     pooka 		 * Unfortunately, the wife just borrowed it.
   1230        1.92     pooka 		 */
   1231        1.80     pooka 
   1232       1.113     pooka 		mutex_enter(&pdaemonmtx);
   1233       1.113     pooka 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1234       1.113     pooka 		    uvmexp.paging == 0) {
   1235        1.80     pooka 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1236        1.80     pooka 			    "memory ... sleeping (deadlock?)\n");
   1237       1.167     pooka 			kpause("pddlk", false, hz, &pdaemonmtx);
   1238        1.80     pooka 		}
   1239        1.80     pooka 	}
   1240        1.80     pooka 
   1241        1.80     pooka 	panic("you can swap out any time you like, but you can never leave");
   1242        1.80     pooka }
   1243        1.80     pooka 
   1244        1.80     pooka void
   1245        1.80     pooka uvm_kick_pdaemon()
   1246        1.80     pooka {
   1247        1.80     pooka 
   1248        1.92     pooka 	/*
   1249        1.92     pooka 	 * Wake up the diabolical pagedaemon director if we are over
   1250        1.92     pooka 	 * 90% of the memory limit.  This is a complete and utter
   1251        1.92     pooka 	 * stetson-harrison decision which you are allowed to finetune.
   1252        1.92     pooka 	 * Don't bother locking.  If we have some unflushed caches,
   1253        1.92     pooka 	 * other waker-uppers will deal with the issue.
   1254        1.92     pooka 	 */
   1255        1.92     pooka 	if (NEED_PAGEDAEMON()) {
   1256        1.92     pooka 		cv_signal(&pdaemoncv);
   1257        1.92     pooka 	}
   1258        1.80     pooka }
   1259        1.80     pooka 
   1260        1.80     pooka void *
   1261        1.80     pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1262        1.80     pooka {
   1263       1.150     pooka 	const unsigned long thelimit =
   1264       1.150     pooka 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1265        1.84     pooka 	unsigned long newmem;
   1266        1.80     pooka 	void *rv;
   1267       1.142     pooka 	int error;
   1268        1.80     pooka 
   1269        1.92     pooka 	uvm_kick_pdaemon(); /* ouch */
   1270        1.92     pooka 
   1271        1.84     pooka 	/* first we must be within the limit */
   1272        1.84     pooka  limitagain:
   1273       1.150     pooka 	if (thelimit != RUMPMEM_UNLIMITED) {
   1274        1.84     pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1275       1.150     pooka 		if (newmem > thelimit) {
   1276        1.84     pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1277       1.103     pooka 			if (!waitok) {
   1278        1.84     pooka 				return NULL;
   1279       1.103     pooka 			}
   1280        1.84     pooka 			uvm_wait(wmsg);
   1281        1.84     pooka 			goto limitagain;
   1282        1.84     pooka 		}
   1283        1.84     pooka 	}
   1284        1.84     pooka 
   1285        1.84     pooka 	/* second, we must get something from the backend */
   1286        1.80     pooka  again:
   1287       1.142     pooka 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1288       1.142     pooka 	if (__predict_false(error && waitok)) {
   1289        1.80     pooka 		uvm_wait(wmsg);
   1290        1.80     pooka 		goto again;
   1291        1.80     pooka 	}
   1292        1.80     pooka 
   1293        1.80     pooka 	return rv;
   1294        1.80     pooka }
   1295        1.84     pooka 
   1296        1.84     pooka void
   1297        1.84     pooka rump_hyperfree(void *what, size_t size)
   1298        1.84     pooka {
   1299        1.84     pooka 
   1300        1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1301        1.84     pooka 		atomic_add_long(&curphysmem, -size);
   1302        1.84     pooka 	}
   1303       1.138     pooka 	rumpuser_free(what, size);
   1304        1.84     pooka }
   1305