vm.c revision 1.178 1 1.178 ad /* $NetBSD: vm.c,v 1.178 2019/12/31 12:40:27 ad Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.114 pooka * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.76 pooka * Development of this software was supported by
7 1.76 pooka * The Finnish Cultural Foundation and the Research Foundation of
8 1.76 pooka * The Helsinki University of Technology.
9 1.1 pooka *
10 1.1 pooka * Redistribution and use in source and binary forms, with or without
11 1.1 pooka * modification, are permitted provided that the following conditions
12 1.1 pooka * are met:
13 1.1 pooka * 1. Redistributions of source code must retain the above copyright
14 1.1 pooka * notice, this list of conditions and the following disclaimer.
15 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer in the
17 1.1 pooka * documentation and/or other materials provided with the distribution.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka */
31 1.1 pooka
32 1.1 pooka /*
33 1.88 pooka * Virtual memory emulation routines.
34 1.1 pooka */
35 1.1 pooka
36 1.1 pooka /*
37 1.5 pooka * XXX: we abuse pg->uanon for the virtual address of the storage
38 1.1 pooka * for each page. phys_addr would fit the job description better,
39 1.1 pooka * except that it will create unnecessary lossage on some platforms
40 1.1 pooka * due to not being a pointer type.
41 1.1 pooka */
42 1.1 pooka
43 1.48 pooka #include <sys/cdefs.h>
44 1.178 ad __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.178 2019/12/31 12:40:27 ad Exp $");
45 1.48 pooka
46 1.1 pooka #include <sys/param.h>
47 1.40 pooka #include <sys/atomic.h>
48 1.80 pooka #include <sys/buf.h>
49 1.80 pooka #include <sys/kernel.h>
50 1.67 pooka #include <sys/kmem.h>
51 1.121 para #include <sys/vmem.h>
52 1.69 pooka #include <sys/mman.h>
53 1.1 pooka #include <sys/null.h>
54 1.1 pooka #include <sys/vnode.h>
55 1.175 ad #include <sys/radixtree.h>
56 1.1 pooka
57 1.34 pooka #include <machine/pmap.h>
58 1.34 pooka
59 1.1 pooka #include <uvm/uvm.h>
60 1.56 pooka #include <uvm/uvm_ddb.h>
61 1.88 pooka #include <uvm/uvm_pdpolicy.h>
62 1.1 pooka #include <uvm/uvm_prot.h>
63 1.58 he #include <uvm/uvm_readahead.h>
64 1.160 chs #include <uvm/uvm_device.h>
65 1.1 pooka
66 1.169 pooka #include <rump-sys/kern.h>
67 1.169 pooka #include <rump-sys/vfs.h>
68 1.169 pooka
69 1.169 pooka #include <rump/rumpuser.h>
70 1.1 pooka
71 1.174 ad kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
72 1.152 pooka kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
73 1.88 pooka kmutex_t uvm_swap_data_lock;
74 1.25 ad
75 1.1 pooka struct uvmexp uvmexp;
76 1.7 pooka struct uvm uvm;
77 1.1 pooka
78 1.112 pooka #ifdef __uvmexp_pagesize
79 1.123 martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
80 1.123 martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
81 1.123 martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
82 1.112 pooka #endif
83 1.112 pooka
84 1.121 para static struct vm_map kernel_map_store;
85 1.121 para struct vm_map *kernel_map = &kernel_map_store;
86 1.121 para
87 1.130 pooka static struct vm_map module_map_store;
88 1.130 pooka extern struct vm_map *module_map;
89 1.130 pooka
90 1.164 pooka static struct pmap pmap_kernel;
91 1.164 pooka struct pmap rump_pmap_local;
92 1.164 pooka struct pmap *const kernel_pmap_ptr = &pmap_kernel;
93 1.164 pooka
94 1.121 para vmem_t *kmem_arena;
95 1.121 para vmem_t *kmem_va_arena;
96 1.35 pooka
97 1.80 pooka static unsigned int pdaemon_waiters;
98 1.80 pooka static kmutex_t pdaemonmtx;
99 1.80 pooka static kcondvar_t pdaemoncv, oomwait;
100 1.80 pooka
101 1.162 pooka /* all local non-proc0 processes share this vmspace */
102 1.162 pooka struct vmspace *rump_vmspace_local;
103 1.162 pooka
104 1.91 pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
105 1.147 pooka static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
106 1.84 pooka static unsigned long curphysmem;
107 1.92 pooka static unsigned long dddlim; /* 90% of memory limit used */
108 1.92 pooka #define NEED_PAGEDAEMON() \
109 1.92 pooka (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
110 1.158 pooka #define PDRESERVE (2*MAXPHYS)
111 1.92 pooka
112 1.92 pooka /*
113 1.92 pooka * Try to free two pages worth of pages from objects.
114 1.92 pooka * If this succesfully frees a full page cache page, we'll
115 1.120 yamt * free the released page plus PAGE_SIZE/sizeof(vm_page).
116 1.92 pooka */
117 1.92 pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
118 1.92 pooka
119 1.92 pooka /*
120 1.92 pooka * Keep a list of least recently used pages. Since the only way a
121 1.92 pooka * rump kernel can "access" a page is via lookup, we put the page
122 1.92 pooka * at the back of queue every time a lookup for it is done. If the
123 1.92 pooka * page is in front of this global queue and we're short of memory,
124 1.92 pooka * it's a candidate for pageout.
125 1.92 pooka */
126 1.92 pooka static struct pglist vmpage_lruqueue;
127 1.92 pooka static unsigned vmpage_onqueue;
128 1.84 pooka
129 1.1 pooka /*
130 1.1 pooka * vm pages
131 1.1 pooka */
132 1.1 pooka
133 1.90 pooka static int
134 1.90 pooka pgctor(void *arg, void *obj, int flags)
135 1.90 pooka {
136 1.90 pooka struct vm_page *pg = obj;
137 1.90 pooka
138 1.90 pooka memset(pg, 0, sizeof(*pg));
139 1.103 pooka pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
140 1.103 pooka (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
141 1.103 pooka return pg->uanon == NULL;
142 1.90 pooka }
143 1.90 pooka
144 1.90 pooka static void
145 1.90 pooka pgdtor(void *arg, void *obj)
146 1.90 pooka {
147 1.90 pooka struct vm_page *pg = obj;
148 1.90 pooka
149 1.90 pooka rump_hyperfree(pg->uanon, PAGE_SIZE);
150 1.90 pooka }
151 1.90 pooka
152 1.90 pooka static struct pool_cache pagecache;
153 1.90 pooka
154 1.92 pooka /*
155 1.92 pooka * Called with the object locked. We don't support anons.
156 1.92 pooka */
157 1.1 pooka struct vm_page *
158 1.76 pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
159 1.76 pooka int flags, int strat, int free_list)
160 1.1 pooka {
161 1.1 pooka struct vm_page *pg;
162 1.1 pooka
163 1.115 rmind KASSERT(uobj && mutex_owned(uobj->vmobjlock));
164 1.92 pooka KASSERT(anon == NULL);
165 1.92 pooka
166 1.103 pooka pg = pool_cache_get(&pagecache, PR_NOWAIT);
167 1.104 pooka if (__predict_false(pg == NULL)) {
168 1.103 pooka return NULL;
169 1.104 pooka }
170 1.103 pooka
171 1.1 pooka pg->offset = off;
172 1.5 pooka pg->uobject = uobj;
173 1.1 pooka
174 1.22 pooka pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
175 1.90 pooka if (flags & UVM_PGA_ZERO) {
176 1.90 pooka uvm_pagezero(pg);
177 1.90 pooka }
178 1.1 pooka
179 1.175 ad if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
180 1.175 ad pg) != 0) {
181 1.175 ad pool_cache_put(&pagecache, pg);
182 1.175 ad return NULL;
183 1.175 ad }
184 1.89 pooka
185 1.92 pooka /*
186 1.93 pooka * Don't put anons on the LRU page queue. We can't flush them
187 1.93 pooka * (there's no concept of swap in a rump kernel), so no reason
188 1.93 pooka * to bother with them.
189 1.92 pooka */
190 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
191 1.92 pooka atomic_inc_uint(&vmpage_onqueue);
192 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
193 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
194 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
195 1.92 pooka }
196 1.92 pooka
197 1.59 pooka uobj->uo_npages++;
198 1.21 pooka
199 1.1 pooka return pg;
200 1.1 pooka }
201 1.1 pooka
202 1.21 pooka /*
203 1.21 pooka * Release a page.
204 1.21 pooka *
205 1.22 pooka * Called with the vm object locked.
206 1.21 pooka */
207 1.1 pooka void
208 1.22 pooka uvm_pagefree(struct vm_page *pg)
209 1.1 pooka {
210 1.5 pooka struct uvm_object *uobj = pg->uobject;
211 1.175 ad struct vm_page *pg2 __unused;
212 1.1 pooka
213 1.115 rmind KASSERT(mutex_owned(uobj->vmobjlock));
214 1.92 pooka
215 1.22 pooka if (pg->flags & PG_WANTED)
216 1.22 pooka wakeup(pg);
217 1.22 pooka
218 1.59 pooka uobj->uo_npages--;
219 1.175 ad pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
220 1.175 ad KASSERT(pg == pg2);
221 1.92 pooka
222 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
223 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
224 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
225 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
226 1.92 pooka atomic_dec_uint(&vmpage_onqueue);
227 1.92 pooka }
228 1.92 pooka
229 1.90 pooka pool_cache_put(&pagecache, pg);
230 1.1 pooka }
231 1.1 pooka
232 1.15 pooka void
233 1.61 pooka uvm_pagezero(struct vm_page *pg)
234 1.15 pooka {
235 1.15 pooka
236 1.61 pooka pg->flags &= ~PG_CLEAN;
237 1.61 pooka memset((void *)pg->uanon, 0, PAGE_SIZE);
238 1.15 pooka }
239 1.15 pooka
240 1.1 pooka /*
241 1.178 ad * uvm_page_owner_locked_p: return true if object associated with page is
242 1.136 yamt * locked. this is a weak check for runtime assertions only.
243 1.136 yamt */
244 1.136 yamt
245 1.136 yamt bool
246 1.178 ad uvm_page_owner_locked_p(struct vm_page *pg)
247 1.136 yamt {
248 1.136 yamt
249 1.136 yamt return mutex_owned(pg->uobject->vmobjlock);
250 1.136 yamt }
251 1.136 yamt
252 1.136 yamt /*
253 1.1 pooka * Misc routines
254 1.1 pooka */
255 1.1 pooka
256 1.61 pooka static kmutex_t pagermtx;
257 1.61 pooka
258 1.1 pooka void
259 1.79 pooka uvm_init(void)
260 1.1 pooka {
261 1.84 pooka char buf[64];
262 1.84 pooka
263 1.141 pooka if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
264 1.105 pooka unsigned long tmp;
265 1.105 pooka char *ep;
266 1.105 pooka int mult;
267 1.105 pooka
268 1.109 pooka tmp = strtoul(buf, &ep, 10);
269 1.105 pooka if (strlen(ep) > 1)
270 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
271 1.105 pooka
272 1.105 pooka /* mini-dehumanize-number */
273 1.105 pooka mult = 1;
274 1.105 pooka switch (*ep) {
275 1.105 pooka case 'k':
276 1.105 pooka mult = 1024;
277 1.105 pooka break;
278 1.105 pooka case 'm':
279 1.105 pooka mult = 1024*1024;
280 1.105 pooka break;
281 1.105 pooka case 'g':
282 1.105 pooka mult = 1024*1024*1024;
283 1.105 pooka break;
284 1.105 pooka case 0:
285 1.105 pooka break;
286 1.105 pooka default:
287 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
288 1.105 pooka }
289 1.105 pooka rump_physmemlimit = tmp * mult;
290 1.105 pooka
291 1.105 pooka if (rump_physmemlimit / mult != tmp)
292 1.105 pooka panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
293 1.147 pooka
294 1.147 pooka /* reserve some memory for the pager */
295 1.158 pooka if (rump_physmemlimit <= PDRESERVE)
296 1.158 pooka panic("uvm_init: system reserves %d bytes of mem, "
297 1.158 pooka "only %lu bytes given",
298 1.158 pooka PDRESERVE, rump_physmemlimit);
299 1.147 pooka pdlimit = rump_physmemlimit;
300 1.158 pooka rump_physmemlimit -= PDRESERVE;
301 1.105 pooka
302 1.157 pooka if (pdlimit < 1024*1024)
303 1.157 pooka printf("uvm_init: WARNING: <1MB RAM limit, "
304 1.157 pooka "hope you know what you're doing\n");
305 1.157 pooka
306 1.84 pooka #define HUMANIZE_BYTES 9
307 1.84 pooka CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
308 1.91 pooka format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
309 1.84 pooka #undef HUMANIZE_BYTES
310 1.92 pooka dddlim = 9 * (rump_physmemlimit / 10);
311 1.84 pooka } else {
312 1.84 pooka strlcpy(buf, "unlimited (host limit)", sizeof(buf));
313 1.84 pooka }
314 1.84 pooka aprint_verbose("total memory = %s\n", buf);
315 1.1 pooka
316 1.92 pooka TAILQ_INIT(&vmpage_lruqueue);
317 1.92 pooka
318 1.157 pooka if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
319 1.157 pooka uvmexp.npages = physmem;
320 1.157 pooka } else {
321 1.157 pooka uvmexp.npages = pdlimit >> PAGE_SHIFT;
322 1.158 pooka uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
323 1.157 pooka uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
324 1.157 pooka }
325 1.157 pooka /*
326 1.157 pooka * uvmexp.free is not used internally or updated. The reason is
327 1.157 pooka * that the memory hypercall allocator is allowed to allocate
328 1.157 pooka * non-page sized chunks. We use a byte count in curphysmem
329 1.157 pooka * instead.
330 1.157 pooka */
331 1.157 pooka uvmexp.free = uvmexp.npages;
332 1.21 pooka
333 1.112 pooka #ifndef __uvmexp_pagesize
334 1.112 pooka uvmexp.pagesize = PAGE_SIZE;
335 1.112 pooka uvmexp.pagemask = PAGE_MASK;
336 1.112 pooka uvmexp.pageshift = PAGE_SHIFT;
337 1.112 pooka #else
338 1.112 pooka #define FAKE_PAGE_SHIFT 12
339 1.112 pooka uvmexp.pageshift = FAKE_PAGE_SHIFT;
340 1.112 pooka uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
341 1.112 pooka uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
342 1.112 pooka #undef FAKE_PAGE_SHIFT
343 1.112 pooka #endif
344 1.112 pooka
345 1.140 pooka mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
346 1.174 ad mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
347 1.140 pooka mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
348 1.35 pooka
349 1.152 pooka /* just to appease linkage */
350 1.152 pooka mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
351 1.152 pooka
352 1.140 pooka mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
353 1.80 pooka cv_init(&pdaemoncv, "pdaemon");
354 1.80 pooka cv_init(&oomwait, "oomwait");
355 1.80 pooka
356 1.130 pooka module_map = &module_map_store;
357 1.130 pooka
358 1.50 pooka kernel_map->pmap = pmap_kernel();
359 1.121 para
360 1.122 njoly pool_subsystem_init();
361 1.128 pooka
362 1.121 para kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
363 1.121 para NULL, NULL, NULL,
364 1.121 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
365 1.121 para
366 1.135 para vmem_subsystem_init(kmem_arena);
367 1.121 para
368 1.121 para kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
369 1.121 para vmem_alloc, vmem_free, kmem_arena,
370 1.124 para 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
371 1.90 pooka
372 1.90 pooka pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
373 1.90 pooka "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
374 1.162 pooka
375 1.175 ad radix_tree_init();
376 1.175 ad
377 1.162 pooka /* create vmspace used by local clients */
378 1.162 pooka rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
379 1.164 pooka uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
380 1.1 pooka }
381 1.1 pooka
382 1.83 pooka void
383 1.145 martin uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
384 1.145 martin bool topdown)
385 1.83 pooka {
386 1.83 pooka
387 1.162 pooka vm->vm_map.pmap = pmap;
388 1.83 pooka vm->vm_refcnt = 1;
389 1.83 pooka }
390 1.1 pooka
391 1.173 nat int
392 1.173 nat uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
393 1.173 nat bool new_pageable, int lockflags)
394 1.173 nat {
395 1.173 nat return 0;
396 1.173 nat }
397 1.173 nat
398 1.1 pooka void
399 1.7 pooka uvm_pagewire(struct vm_page *pg)
400 1.7 pooka {
401 1.7 pooka
402 1.7 pooka /* nada */
403 1.7 pooka }
404 1.7 pooka
405 1.7 pooka void
406 1.7 pooka uvm_pageunwire(struct vm_page *pg)
407 1.7 pooka {
408 1.7 pooka
409 1.7 pooka /* nada */
410 1.7 pooka }
411 1.7 pooka
412 1.177 ad int
413 1.177 ad uvm_free(void)
414 1.177 ad {
415 1.177 ad
416 1.177 ad return uvmexp.free;
417 1.177 ad }
418 1.177 ad
419 1.83 pooka /* where's your schmonz now? */
420 1.83 pooka #define PUNLIMIT(a) \
421 1.83 pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
422 1.83 pooka void
423 1.83 pooka uvm_init_limits(struct proc *p)
424 1.83 pooka {
425 1.83 pooka
426 1.155 pooka #ifndef DFLSSIZ
427 1.155 pooka #define DFLSSIZ (16*1024*1024)
428 1.155 pooka #endif
429 1.154 pooka p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
430 1.154 pooka p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
431 1.83 pooka PUNLIMIT(RLIMIT_DATA);
432 1.83 pooka PUNLIMIT(RLIMIT_RSS);
433 1.83 pooka PUNLIMIT(RLIMIT_AS);
434 1.83 pooka /* nice, cascade */
435 1.83 pooka }
436 1.83 pooka #undef PUNLIMIT
437 1.83 pooka
438 1.69 pooka /*
439 1.69 pooka * This satisfies the "disgusting mmap hack" used by proplib.
440 1.69 pooka */
441 1.49 pooka int
442 1.160 chs uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
443 1.49 pooka {
444 1.69 pooka int error;
445 1.49 pooka
446 1.69 pooka /* no reason in particular, but cf. uvm_default_mapaddr() */
447 1.160 chs if (*addrp != NULL)
448 1.69 pooka panic("uvm_mmap() variant unsupported");
449 1.69 pooka
450 1.106 pooka if (RUMP_LOCALPROC_P(curproc)) {
451 1.160 chs error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
452 1.98 pooka } else {
453 1.166 pooka error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
454 1.160 chs size, addrp);
455 1.98 pooka }
456 1.160 chs return error;
457 1.160 chs }
458 1.69 pooka
459 1.160 chs /*
460 1.160 chs * Stubs for things referenced from vfs_vnode.c but not used.
461 1.160 chs */
462 1.160 chs const dev_t zerodev;
463 1.160 chs
464 1.160 chs struct uvm_object *
465 1.160 chs udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
466 1.160 chs {
467 1.160 chs return NULL;
468 1.49 pooka }
469 1.49 pooka
470 1.61 pooka struct pagerinfo {
471 1.61 pooka vaddr_t pgr_kva;
472 1.61 pooka int pgr_npages;
473 1.61 pooka struct vm_page **pgr_pgs;
474 1.61 pooka bool pgr_read;
475 1.61 pooka
476 1.61 pooka LIST_ENTRY(pagerinfo) pgr_entries;
477 1.61 pooka };
478 1.61 pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
479 1.61 pooka
480 1.61 pooka /*
481 1.61 pooka * Pager "map" in routine. Instead of mapping, we allocate memory
482 1.159 pooka * and copy page contents there. The reason for copying instead of
483 1.159 pooka * mapping is simple: we do not assume we are running on virtual
484 1.159 pooka * memory. Even if we could emulate virtual memory in some envs
485 1.159 pooka * such as userspace, copying is much faster than trying to awkardly
486 1.159 pooka * cope with remapping (see "Design and Implementation" pp.95-98).
487 1.159 pooka * The downside of the approach is that the pager requires MAXPHYS
488 1.159 pooka * free memory to perform paging, but short of virtual memory or
489 1.159 pooka * making the pager do I/O in page-sized chunks we cannot do much
490 1.159 pooka * about that.
491 1.61 pooka */
492 1.7 pooka vaddr_t
493 1.61 pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
494 1.7 pooka {
495 1.61 pooka struct pagerinfo *pgri;
496 1.61 pooka vaddr_t curkva;
497 1.61 pooka int i;
498 1.61 pooka
499 1.61 pooka /* allocate structures */
500 1.61 pooka pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
501 1.61 pooka pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
502 1.61 pooka pgri->pgr_npages = npages;
503 1.61 pooka pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
504 1.61 pooka pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
505 1.61 pooka
506 1.61 pooka /* copy contents to "mapped" memory */
507 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
508 1.61 pooka i < npages;
509 1.61 pooka i++, curkva += PAGE_SIZE) {
510 1.61 pooka /*
511 1.61 pooka * We need to copy the previous contents of the pages to
512 1.61 pooka * the window even if we are reading from the
513 1.61 pooka * device, since the device might not fill the contents of
514 1.61 pooka * the full mapped range and we will end up corrupting
515 1.61 pooka * data when we unmap the window.
516 1.61 pooka */
517 1.61 pooka memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
518 1.61 pooka pgri->pgr_pgs[i] = pgs[i];
519 1.61 pooka }
520 1.61 pooka
521 1.61 pooka mutex_enter(&pagermtx);
522 1.61 pooka LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
523 1.61 pooka mutex_exit(&pagermtx);
524 1.7 pooka
525 1.61 pooka return pgri->pgr_kva;
526 1.7 pooka }
527 1.7 pooka
528 1.61 pooka /*
529 1.61 pooka * map out the pager window. return contents from VA to page storage
530 1.61 pooka * and free structures.
531 1.61 pooka *
532 1.61 pooka * Note: does not currently support partial frees
533 1.61 pooka */
534 1.61 pooka void
535 1.61 pooka uvm_pagermapout(vaddr_t kva, int npages)
536 1.7 pooka {
537 1.61 pooka struct pagerinfo *pgri;
538 1.61 pooka vaddr_t curkva;
539 1.61 pooka int i;
540 1.7 pooka
541 1.61 pooka mutex_enter(&pagermtx);
542 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
543 1.61 pooka if (pgri->pgr_kva == kva)
544 1.61 pooka break;
545 1.61 pooka }
546 1.61 pooka KASSERT(pgri);
547 1.61 pooka if (pgri->pgr_npages != npages)
548 1.61 pooka panic("uvm_pagermapout: partial unmapping not supported");
549 1.61 pooka LIST_REMOVE(pgri, pgr_entries);
550 1.61 pooka mutex_exit(&pagermtx);
551 1.61 pooka
552 1.61 pooka if (pgri->pgr_read) {
553 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
554 1.61 pooka i < pgri->pgr_npages;
555 1.61 pooka i++, curkva += PAGE_SIZE) {
556 1.61 pooka memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
557 1.21 pooka }
558 1.21 pooka }
559 1.10 pooka
560 1.61 pooka kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
561 1.61 pooka kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
562 1.61 pooka kmem_free(pgri, sizeof(*pgri));
563 1.7 pooka }
564 1.7 pooka
565 1.61 pooka /*
566 1.61 pooka * convert va in pager window to page structure.
567 1.61 pooka * XXX: how expensive is this (global lock, list traversal)?
568 1.61 pooka */
569 1.14 pooka struct vm_page *
570 1.14 pooka uvm_pageratop(vaddr_t va)
571 1.14 pooka {
572 1.61 pooka struct pagerinfo *pgri;
573 1.61 pooka struct vm_page *pg = NULL;
574 1.61 pooka int i;
575 1.14 pooka
576 1.61 pooka mutex_enter(&pagermtx);
577 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
578 1.61 pooka if (pgri->pgr_kva <= va
579 1.61 pooka && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
580 1.21 pooka break;
581 1.61 pooka }
582 1.61 pooka if (pgri) {
583 1.61 pooka i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
584 1.61 pooka pg = pgri->pgr_pgs[i];
585 1.61 pooka }
586 1.61 pooka mutex_exit(&pagermtx);
587 1.21 pooka
588 1.61 pooka return pg;
589 1.61 pooka }
590 1.15 pooka
591 1.97 pooka /*
592 1.97 pooka * Called with the vm object locked.
593 1.97 pooka *
594 1.97 pooka * Put vnode object pages at the end of the access queue to indicate
595 1.97 pooka * they have been recently accessed and should not be immediate
596 1.97 pooka * candidates for pageout. Do not do this for lookups done by
597 1.97 pooka * the pagedaemon to mimic pmap_kentered mappings which don't track
598 1.97 pooka * access information.
599 1.97 pooka */
600 1.61 pooka struct vm_page *
601 1.61 pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
602 1.61 pooka {
603 1.92 pooka struct vm_page *pg;
604 1.97 pooka bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
605 1.61 pooka
606 1.175 ad pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
607 1.97 pooka if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
608 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
609 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
610 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
611 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
612 1.92 pooka }
613 1.92 pooka
614 1.92 pooka return pg;
615 1.14 pooka }
616 1.14 pooka
617 1.7 pooka void
618 1.22 pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
619 1.22 pooka {
620 1.22 pooka struct vm_page *pg;
621 1.22 pooka int i;
622 1.22 pooka
623 1.94 pooka KASSERT(npgs > 0);
624 1.115 rmind KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
625 1.94 pooka
626 1.22 pooka for (i = 0; i < npgs; i++) {
627 1.22 pooka pg = pgs[i];
628 1.22 pooka if (pg == NULL)
629 1.22 pooka continue;
630 1.22 pooka
631 1.22 pooka KASSERT(pg->flags & PG_BUSY);
632 1.22 pooka if (pg->flags & PG_WANTED)
633 1.22 pooka wakeup(pg);
634 1.36 pooka if (pg->flags & PG_RELEASED)
635 1.36 pooka uvm_pagefree(pg);
636 1.36 pooka else
637 1.36 pooka pg->flags &= ~(PG_WANTED|PG_BUSY);
638 1.22 pooka }
639 1.22 pooka }
640 1.22 pooka
641 1.22 pooka void
642 1.7 pooka uvm_estimatepageable(int *active, int *inactive)
643 1.7 pooka {
644 1.7 pooka
645 1.19 pooka /* XXX: guessing game */
646 1.19 pooka *active = 1024;
647 1.19 pooka *inactive = 1024;
648 1.7 pooka }
649 1.7 pooka
650 1.41 pooka bool
651 1.41 pooka vm_map_starved_p(struct vm_map *map)
652 1.41 pooka {
653 1.41 pooka
654 1.80 pooka if (map->flags & VM_MAP_WANTVA)
655 1.80 pooka return true;
656 1.80 pooka
657 1.41 pooka return false;
658 1.41 pooka }
659 1.41 pooka
660 1.41 pooka int
661 1.41 pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
662 1.41 pooka {
663 1.41 pooka
664 1.41 pooka panic("%s: unimplemented", __func__);
665 1.41 pooka }
666 1.41 pooka
667 1.41 pooka void
668 1.41 pooka uvm_unloan(void *v, int npages, int flags)
669 1.41 pooka {
670 1.41 pooka
671 1.41 pooka panic("%s: unimplemented", __func__);
672 1.41 pooka }
673 1.41 pooka
674 1.43 pooka int
675 1.43 pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
676 1.43 pooka struct vm_page **opp)
677 1.43 pooka {
678 1.43 pooka
679 1.72 pooka return EBUSY;
680 1.43 pooka }
681 1.43 pooka
682 1.116 mrg struct vm_page *
683 1.116 mrg uvm_loanbreak(struct vm_page *pg)
684 1.116 mrg {
685 1.116 mrg
686 1.116 mrg panic("%s: unimplemented", __func__);
687 1.116 mrg }
688 1.116 mrg
689 1.116 mrg void
690 1.116 mrg ubc_purge(struct uvm_object *uobj)
691 1.116 mrg {
692 1.116 mrg
693 1.116 mrg }
694 1.116 mrg
695 1.68 pooka vaddr_t
696 1.168 martin uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
697 1.68 pooka {
698 1.68 pooka
699 1.68 pooka return 0;
700 1.68 pooka }
701 1.68 pooka
702 1.71 pooka int
703 1.71 pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
704 1.71 pooka vm_prot_t prot, bool set_max)
705 1.71 pooka {
706 1.71 pooka
707 1.71 pooka return EOPNOTSUPP;
708 1.71 pooka }
709 1.71 pooka
710 1.171 martin int
711 1.171 martin uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
712 1.171 martin struct uvm_object *uobj, voff_t uoffset, vsize_t align,
713 1.171 martin uvm_flag_t flags)
714 1.171 martin {
715 1.171 martin
716 1.172 martin *startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
717 1.172 martin return *startp != 0 ? 0 : ENOMEM;
718 1.172 martin }
719 1.172 martin
720 1.172 martin void
721 1.172 martin uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
722 1.172 martin {
723 1.172 martin
724 1.172 martin rump_hyperfree((void*)start, end-start);
725 1.171 martin }
726 1.171 martin
727 1.171 martin
728 1.9 pooka /*
729 1.12 pooka * UVM km
730 1.12 pooka */
731 1.12 pooka
732 1.12 pooka vaddr_t
733 1.12 pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
734 1.12 pooka {
735 1.82 pooka void *rv, *desired = NULL;
736 1.50 pooka int alignbit, error;
737 1.50 pooka
738 1.82 pooka #ifdef __x86_64__
739 1.82 pooka /*
740 1.82 pooka * On amd64, allocate all module memory from the lowest 2GB.
741 1.82 pooka * This is because NetBSD kernel modules are compiled
742 1.82 pooka * with -mcmodel=kernel and reserve only 4 bytes for
743 1.82 pooka * offsets. If we load code compiled with -mcmodel=kernel
744 1.82 pooka * anywhere except the lowest or highest 2GB, it will not
745 1.82 pooka * work. Since userspace does not have access to the highest
746 1.82 pooka * 2GB, use the lowest 2GB.
747 1.82 pooka *
748 1.82 pooka * Note: this assumes the rump kernel resides in
749 1.82 pooka * the lowest 2GB as well.
750 1.82 pooka *
751 1.82 pooka * Note2: yes, it's a quick hack, but since this the only
752 1.82 pooka * place where we care about the map we're allocating from,
753 1.82 pooka * just use a simple "if" instead of coming up with a fancy
754 1.82 pooka * generic solution.
755 1.82 pooka */
756 1.82 pooka if (map == module_map) {
757 1.82 pooka desired = (void *)(0x80000000 - size);
758 1.82 pooka }
759 1.82 pooka #endif
760 1.82 pooka
761 1.130 pooka if (__predict_false(map == module_map)) {
762 1.130 pooka alignbit = 0;
763 1.130 pooka if (align) {
764 1.130 pooka alignbit = ffs(align)-1;
765 1.130 pooka }
766 1.142 pooka error = rumpuser_anonmmap(desired, size, alignbit,
767 1.142 pooka flags & UVM_KMF_EXEC, &rv);
768 1.130 pooka } else {
769 1.142 pooka error = rumpuser_malloc(size, align, &rv);
770 1.50 pooka }
771 1.50 pooka
772 1.142 pooka if (error) {
773 1.50 pooka if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
774 1.50 pooka return 0;
775 1.50 pooka else
776 1.50 pooka panic("uvm_km_alloc failed");
777 1.50 pooka }
778 1.12 pooka
779 1.50 pooka if (flags & UVM_KMF_ZERO)
780 1.12 pooka memset(rv, 0, size);
781 1.12 pooka
782 1.12 pooka return (vaddr_t)rv;
783 1.12 pooka }
784 1.12 pooka
785 1.12 pooka void
786 1.12 pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
787 1.12 pooka {
788 1.12 pooka
789 1.130 pooka if (__predict_false(map == module_map))
790 1.130 pooka rumpuser_unmap((void *)vaddr, size);
791 1.130 pooka else
792 1.138 pooka rumpuser_free((void *)vaddr, size);
793 1.12 pooka }
794 1.12 pooka
795 1.170 christos int
796 1.170 christos uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
797 1.170 christos {
798 1.170 christos return 0;
799 1.170 christos }
800 1.170 christos
801 1.12 pooka struct vm_map *
802 1.12 pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
803 1.121 para vsize_t size, int pageable, bool fixed, struct vm_map *submap)
804 1.12 pooka {
805 1.12 pooka
806 1.12 pooka return (struct vm_map *)417416;
807 1.12 pooka }
808 1.40 pooka
809 1.121 para int
810 1.121 para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
811 1.121 para vmem_addr_t *addr)
812 1.40 pooka {
813 1.121 para vaddr_t va;
814 1.121 para va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
815 1.121 para (flags & VM_SLEEP), "kmalloc");
816 1.40 pooka
817 1.121 para if (va) {
818 1.121 para *addr = va;
819 1.121 para return 0;
820 1.121 para } else {
821 1.121 para return ENOMEM;
822 1.121 para }
823 1.40 pooka }
824 1.40 pooka
825 1.40 pooka void
826 1.121 para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
827 1.40 pooka {
828 1.40 pooka
829 1.121 para rump_hyperfree((void *)addr, size);
830 1.74 pooka }
831 1.74 pooka
832 1.57 pooka /*
833 1.102 pooka * VM space locking routines. We don't really have to do anything,
834 1.102 pooka * since the pages are always "wired" (both local and remote processes).
835 1.57 pooka */
836 1.57 pooka int
837 1.57 pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
838 1.57 pooka {
839 1.57 pooka
840 1.57 pooka return 0;
841 1.57 pooka }
842 1.57 pooka
843 1.57 pooka void
844 1.57 pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
845 1.57 pooka {
846 1.57 pooka
847 1.57 pooka }
848 1.57 pooka
849 1.102 pooka /*
850 1.102 pooka * For the local case the buffer mappers don't need to do anything.
851 1.102 pooka * For the remote case we need to reserve space and copy data in or
852 1.102 pooka * out, depending on B_READ/B_WRITE.
853 1.102 pooka */
854 1.111 pooka int
855 1.57 pooka vmapbuf(struct buf *bp, vsize_t len)
856 1.57 pooka {
857 1.111 pooka int error = 0;
858 1.57 pooka
859 1.57 pooka bp->b_saveaddr = bp->b_data;
860 1.102 pooka
861 1.102 pooka /* remote case */
862 1.106 pooka if (!RUMP_LOCALPROC_P(curproc)) {
863 1.102 pooka bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
864 1.102 pooka if (BUF_ISWRITE(bp)) {
865 1.111 pooka error = copyin(bp->b_saveaddr, bp->b_data, len);
866 1.111 pooka if (error) {
867 1.111 pooka rump_hyperfree(bp->b_data, len);
868 1.111 pooka bp->b_data = bp->b_saveaddr;
869 1.111 pooka bp->b_saveaddr = 0;
870 1.111 pooka }
871 1.102 pooka }
872 1.102 pooka }
873 1.111 pooka
874 1.111 pooka return error;
875 1.57 pooka }
876 1.57 pooka
877 1.57 pooka void
878 1.57 pooka vunmapbuf(struct buf *bp, vsize_t len)
879 1.57 pooka {
880 1.57 pooka
881 1.102 pooka /* remote case */
882 1.106 pooka if (!RUMP_LOCALPROC_P(bp->b_proc)) {
883 1.102 pooka if (BUF_ISREAD(bp)) {
884 1.110 pooka bp->b_error = copyout_proc(bp->b_proc,
885 1.102 pooka bp->b_data, bp->b_saveaddr, len);
886 1.102 pooka }
887 1.102 pooka rump_hyperfree(bp->b_data, len);
888 1.102 pooka }
889 1.102 pooka
890 1.57 pooka bp->b_data = bp->b_saveaddr;
891 1.57 pooka bp->b_saveaddr = 0;
892 1.57 pooka }
893 1.61 pooka
894 1.61 pooka void
895 1.83 pooka uvmspace_addref(struct vmspace *vm)
896 1.83 pooka {
897 1.83 pooka
898 1.83 pooka /*
899 1.103 pooka * No dynamically allocated vmspaces exist.
900 1.83 pooka */
901 1.83 pooka }
902 1.83 pooka
903 1.83 pooka void
904 1.66 pooka uvmspace_free(struct vmspace *vm)
905 1.66 pooka {
906 1.66 pooka
907 1.66 pooka /* nothing for now */
908 1.66 pooka }
909 1.66 pooka
910 1.61 pooka /*
911 1.61 pooka * page life cycle stuff. it really doesn't exist, so just stubs.
912 1.61 pooka */
913 1.61 pooka
914 1.61 pooka void
915 1.61 pooka uvm_pageactivate(struct vm_page *pg)
916 1.61 pooka {
917 1.61 pooka
918 1.61 pooka /* nada */
919 1.61 pooka }
920 1.61 pooka
921 1.61 pooka void
922 1.61 pooka uvm_pagedeactivate(struct vm_page *pg)
923 1.61 pooka {
924 1.61 pooka
925 1.61 pooka /* nada */
926 1.61 pooka }
927 1.61 pooka
928 1.61 pooka void
929 1.61 pooka uvm_pagedequeue(struct vm_page *pg)
930 1.61 pooka {
931 1.61 pooka
932 1.61 pooka /* nada*/
933 1.61 pooka }
934 1.61 pooka
935 1.61 pooka void
936 1.61 pooka uvm_pageenqueue(struct vm_page *pg)
937 1.61 pooka {
938 1.61 pooka
939 1.61 pooka /* nada */
940 1.61 pooka }
941 1.80 pooka
942 1.88 pooka void
943 1.88 pooka uvmpdpol_anfree(struct vm_anon *an)
944 1.88 pooka {
945 1.88 pooka
946 1.88 pooka /* nada */
947 1.88 pooka }
948 1.88 pooka
949 1.80 pooka /*
950 1.99 uebayasi * Physical address accessors.
951 1.99 uebayasi */
952 1.99 uebayasi
953 1.99 uebayasi struct vm_page *
954 1.99 uebayasi uvm_phys_to_vm_page(paddr_t pa)
955 1.99 uebayasi {
956 1.99 uebayasi
957 1.99 uebayasi return NULL;
958 1.99 uebayasi }
959 1.99 uebayasi
960 1.99 uebayasi paddr_t
961 1.99 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
962 1.99 uebayasi {
963 1.99 uebayasi
964 1.99 uebayasi return 0;
965 1.99 uebayasi }
966 1.99 uebayasi
967 1.153 pooka vaddr_t
968 1.153 pooka uvm_uarea_alloc(void)
969 1.153 pooka {
970 1.153 pooka
971 1.153 pooka /* non-zero */
972 1.153 pooka return (vaddr_t)11;
973 1.153 pooka }
974 1.153 pooka
975 1.153 pooka void
976 1.153 pooka uvm_uarea_free(vaddr_t uarea)
977 1.153 pooka {
978 1.153 pooka
979 1.153 pooka /* nata, so creamy */
980 1.153 pooka }
981 1.153 pooka
982 1.99 uebayasi /*
983 1.80 pooka * Routines related to the Page Baroness.
984 1.80 pooka */
985 1.80 pooka
986 1.80 pooka void
987 1.80 pooka uvm_wait(const char *msg)
988 1.80 pooka {
989 1.80 pooka
990 1.80 pooka if (__predict_false(rump_threads == 0))
991 1.80 pooka panic("pagedaemon missing (RUMP_THREADS = 0)");
992 1.80 pooka
993 1.147 pooka if (curlwp == uvm.pagedaemon_lwp) {
994 1.147 pooka /* is it possible for us to later get memory? */
995 1.147 pooka if (!uvmexp.paging)
996 1.147 pooka panic("pagedaemon out of memory");
997 1.147 pooka }
998 1.147 pooka
999 1.80 pooka mutex_enter(&pdaemonmtx);
1000 1.80 pooka pdaemon_waiters++;
1001 1.80 pooka cv_signal(&pdaemoncv);
1002 1.80 pooka cv_wait(&oomwait, &pdaemonmtx);
1003 1.80 pooka mutex_exit(&pdaemonmtx);
1004 1.80 pooka }
1005 1.80 pooka
1006 1.80 pooka void
1007 1.80 pooka uvm_pageout_start(int npages)
1008 1.80 pooka {
1009 1.80 pooka
1010 1.113 pooka mutex_enter(&pdaemonmtx);
1011 1.113 pooka uvmexp.paging += npages;
1012 1.113 pooka mutex_exit(&pdaemonmtx);
1013 1.80 pooka }
1014 1.80 pooka
1015 1.80 pooka void
1016 1.80 pooka uvm_pageout_done(int npages)
1017 1.80 pooka {
1018 1.80 pooka
1019 1.113 pooka if (!npages)
1020 1.113 pooka return;
1021 1.113 pooka
1022 1.113 pooka mutex_enter(&pdaemonmtx);
1023 1.113 pooka KASSERT(uvmexp.paging >= npages);
1024 1.113 pooka uvmexp.paging -= npages;
1025 1.113 pooka
1026 1.113 pooka if (pdaemon_waiters) {
1027 1.113 pooka pdaemon_waiters = 0;
1028 1.113 pooka cv_broadcast(&oomwait);
1029 1.113 pooka }
1030 1.113 pooka mutex_exit(&pdaemonmtx);
1031 1.80 pooka }
1032 1.80 pooka
1033 1.95 pooka static bool
1034 1.104 pooka processpage(struct vm_page *pg, bool *lockrunning)
1035 1.95 pooka {
1036 1.95 pooka struct uvm_object *uobj;
1037 1.95 pooka
1038 1.95 pooka uobj = pg->uobject;
1039 1.115 rmind if (mutex_tryenter(uobj->vmobjlock)) {
1040 1.95 pooka if ((pg->flags & PG_BUSY) == 0) {
1041 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
1042 1.95 pooka uobj->pgops->pgo_put(uobj, pg->offset,
1043 1.95 pooka pg->offset + PAGE_SIZE,
1044 1.95 pooka PGO_CLEANIT|PGO_FREE);
1045 1.115 rmind KASSERT(!mutex_owned(uobj->vmobjlock));
1046 1.95 pooka return true;
1047 1.95 pooka } else {
1048 1.115 rmind mutex_exit(uobj->vmobjlock);
1049 1.95 pooka }
1050 1.104 pooka } else if (*lockrunning == false && ncpu > 1) {
1051 1.104 pooka CPU_INFO_ITERATOR cii;
1052 1.104 pooka struct cpu_info *ci;
1053 1.104 pooka struct lwp *l;
1054 1.104 pooka
1055 1.115 rmind l = mutex_owner(uobj->vmobjlock);
1056 1.104 pooka for (CPU_INFO_FOREACH(cii, ci)) {
1057 1.104 pooka if (ci->ci_curlwp == l) {
1058 1.104 pooka *lockrunning = true;
1059 1.104 pooka break;
1060 1.104 pooka }
1061 1.104 pooka }
1062 1.95 pooka }
1063 1.95 pooka
1064 1.95 pooka return false;
1065 1.95 pooka }
1066 1.95 pooka
1067 1.80 pooka /*
1068 1.92 pooka * The Diabolical pageDaemon Director (DDD).
1069 1.113 pooka *
1070 1.113 pooka * This routine can always use better heuristics.
1071 1.80 pooka */
1072 1.80 pooka void
1073 1.80 pooka uvm_pageout(void *arg)
1074 1.80 pooka {
1075 1.92 pooka struct vm_page *pg;
1076 1.80 pooka struct pool *pp, *pp_first;
1077 1.92 pooka int cleaned, skip, skipped;
1078 1.113 pooka bool succ;
1079 1.104 pooka bool lockrunning;
1080 1.80 pooka
1081 1.80 pooka mutex_enter(&pdaemonmtx);
1082 1.80 pooka for (;;) {
1083 1.113 pooka if (!NEED_PAGEDAEMON()) {
1084 1.92 pooka kernel_map->flags &= ~VM_MAP_WANTVA;
1085 1.92 pooka }
1086 1.92 pooka
1087 1.113 pooka if (pdaemon_waiters) {
1088 1.113 pooka pdaemon_waiters = 0;
1089 1.113 pooka cv_broadcast(&oomwait);
1090 1.104 pooka }
1091 1.92 pooka
1092 1.113 pooka cv_wait(&pdaemoncv, &pdaemonmtx);
1093 1.113 pooka uvmexp.pdwoke++;
1094 1.113 pooka
1095 1.92 pooka /* tell the world that we are hungry */
1096 1.80 pooka kernel_map->flags |= VM_MAP_WANTVA;
1097 1.80 pooka mutex_exit(&pdaemonmtx);
1098 1.80 pooka
1099 1.92 pooka /*
1100 1.92 pooka * step one: reclaim the page cache. this should give
1101 1.92 pooka * us the biggest earnings since whole pages are released
1102 1.92 pooka * into backing memory.
1103 1.92 pooka */
1104 1.92 pooka pool_cache_reclaim(&pagecache);
1105 1.92 pooka if (!NEED_PAGEDAEMON()) {
1106 1.92 pooka mutex_enter(&pdaemonmtx);
1107 1.92 pooka continue;
1108 1.92 pooka }
1109 1.92 pooka
1110 1.92 pooka /*
1111 1.92 pooka * Ok, so that didn't help. Next, try to hunt memory
1112 1.92 pooka * by pushing out vnode pages. The pages might contain
1113 1.92 pooka * useful cached data, but we need the memory.
1114 1.92 pooka */
1115 1.92 pooka cleaned = 0;
1116 1.92 pooka skip = 0;
1117 1.104 pooka lockrunning = false;
1118 1.92 pooka again:
1119 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
1120 1.92 pooka while (cleaned < PAGEDAEMON_OBJCHUNK) {
1121 1.92 pooka skipped = 0;
1122 1.92 pooka TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1123 1.92 pooka
1124 1.92 pooka /*
1125 1.92 pooka * skip over pages we _might_ have tried
1126 1.92 pooka * to handle earlier. they might not be
1127 1.92 pooka * exactly the same ones, but I'm not too
1128 1.92 pooka * concerned.
1129 1.92 pooka */
1130 1.92 pooka while (skipped++ < skip)
1131 1.92 pooka continue;
1132 1.92 pooka
1133 1.104 pooka if (processpage(pg, &lockrunning)) {
1134 1.95 pooka cleaned++;
1135 1.95 pooka goto again;
1136 1.92 pooka }
1137 1.92 pooka
1138 1.92 pooka skip++;
1139 1.92 pooka }
1140 1.92 pooka break;
1141 1.92 pooka }
1142 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
1143 1.92 pooka
1144 1.92 pooka /*
1145 1.104 pooka * Ok, someone is running with an object lock held.
1146 1.104 pooka * We want to yield the host CPU to make sure the
1147 1.104 pooka * thread is not parked on the host. Since sched_yield()
1148 1.104 pooka * doesn't appear to do anything on NetBSD, nanosleep
1149 1.104 pooka * for the smallest possible time and hope we're back in
1150 1.104 pooka * the game soon.
1151 1.104 pooka */
1152 1.104 pooka if (cleaned == 0 && lockrunning) {
1153 1.144 pooka rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
1154 1.104 pooka
1155 1.104 pooka lockrunning = false;
1156 1.104 pooka skip = 0;
1157 1.104 pooka
1158 1.104 pooka /* and here we go again */
1159 1.104 pooka goto again;
1160 1.104 pooka }
1161 1.104 pooka
1162 1.104 pooka /*
1163 1.92 pooka * And of course we need to reclaim the page cache
1164 1.92 pooka * again to actually release memory.
1165 1.92 pooka */
1166 1.92 pooka pool_cache_reclaim(&pagecache);
1167 1.92 pooka if (!NEED_PAGEDAEMON()) {
1168 1.92 pooka mutex_enter(&pdaemonmtx);
1169 1.92 pooka continue;
1170 1.92 pooka }
1171 1.92 pooka
1172 1.92 pooka /*
1173 1.92 pooka * And then drain the pools. Wipe them out ... all of them.
1174 1.92 pooka */
1175 1.127 jym for (pp_first = NULL;;) {
1176 1.156 pooka rump_vfs_drainbufs(10 /* XXX: estimate! */);
1177 1.92 pooka
1178 1.127 jym succ = pool_drain(&pp);
1179 1.127 jym if (succ || pp == pp_first)
1180 1.80 pooka break;
1181 1.127 jym
1182 1.127 jym if (pp_first == NULL)
1183 1.127 jym pp_first = pp;
1184 1.80 pooka }
1185 1.92 pooka
1186 1.92 pooka /*
1187 1.92 pooka * Need to use PYEC on our bag of tricks.
1188 1.92 pooka * Unfortunately, the wife just borrowed it.
1189 1.92 pooka */
1190 1.80 pooka
1191 1.113 pooka mutex_enter(&pdaemonmtx);
1192 1.113 pooka if (!succ && cleaned == 0 && pdaemon_waiters &&
1193 1.113 pooka uvmexp.paging == 0) {
1194 1.80 pooka rumpuser_dprintf("pagedaemoness: failed to reclaim "
1195 1.80 pooka "memory ... sleeping (deadlock?)\n");
1196 1.167 pooka kpause("pddlk", false, hz, &pdaemonmtx);
1197 1.80 pooka }
1198 1.80 pooka }
1199 1.80 pooka
1200 1.80 pooka panic("you can swap out any time you like, but you can never leave");
1201 1.80 pooka }
1202 1.80 pooka
1203 1.80 pooka void
1204 1.80 pooka uvm_kick_pdaemon()
1205 1.80 pooka {
1206 1.80 pooka
1207 1.92 pooka /*
1208 1.92 pooka * Wake up the diabolical pagedaemon director if we are over
1209 1.92 pooka * 90% of the memory limit. This is a complete and utter
1210 1.92 pooka * stetson-harrison decision which you are allowed to finetune.
1211 1.92 pooka * Don't bother locking. If we have some unflushed caches,
1212 1.92 pooka * other waker-uppers will deal with the issue.
1213 1.92 pooka */
1214 1.92 pooka if (NEED_PAGEDAEMON()) {
1215 1.92 pooka cv_signal(&pdaemoncv);
1216 1.92 pooka }
1217 1.80 pooka }
1218 1.80 pooka
1219 1.80 pooka void *
1220 1.80 pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1221 1.80 pooka {
1222 1.150 pooka const unsigned long thelimit =
1223 1.150 pooka curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1224 1.84 pooka unsigned long newmem;
1225 1.80 pooka void *rv;
1226 1.142 pooka int error;
1227 1.80 pooka
1228 1.92 pooka uvm_kick_pdaemon(); /* ouch */
1229 1.92 pooka
1230 1.84 pooka /* first we must be within the limit */
1231 1.84 pooka limitagain:
1232 1.150 pooka if (thelimit != RUMPMEM_UNLIMITED) {
1233 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, howmuch);
1234 1.150 pooka if (newmem > thelimit) {
1235 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1236 1.103 pooka if (!waitok) {
1237 1.84 pooka return NULL;
1238 1.103 pooka }
1239 1.84 pooka uvm_wait(wmsg);
1240 1.84 pooka goto limitagain;
1241 1.84 pooka }
1242 1.84 pooka }
1243 1.84 pooka
1244 1.84 pooka /* second, we must get something from the backend */
1245 1.80 pooka again:
1246 1.142 pooka error = rumpuser_malloc(howmuch, alignment, &rv);
1247 1.142 pooka if (__predict_false(error && waitok)) {
1248 1.80 pooka uvm_wait(wmsg);
1249 1.80 pooka goto again;
1250 1.80 pooka }
1251 1.80 pooka
1252 1.80 pooka return rv;
1253 1.80 pooka }
1254 1.84 pooka
1255 1.84 pooka void
1256 1.84 pooka rump_hyperfree(void *what, size_t size)
1257 1.84 pooka {
1258 1.84 pooka
1259 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1260 1.84 pooka atomic_add_long(&curphysmem, -size);
1261 1.84 pooka }
1262 1.138 pooka rumpuser_free(what, size);
1263 1.84 pooka }
1264