Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.182.2.2
      1  1.182.2.2        ad /*	$NetBSD: vm.c,v 1.182.2.2 2020/02/29 20:21:09 ad Exp $	*/
      2        1.1     pooka 
      3        1.1     pooka /*
      4      1.114     pooka  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5        1.1     pooka  *
      6       1.76     pooka  * Development of this software was supported by
      7       1.76     pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8       1.76     pooka  * The Helsinki University of Technology.
      9        1.1     pooka  *
     10        1.1     pooka  * Redistribution and use in source and binary forms, with or without
     11        1.1     pooka  * modification, are permitted provided that the following conditions
     12        1.1     pooka  * are met:
     13        1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     14        1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     15        1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     17        1.1     pooka  *    documentation and/or other materials provided with the distribution.
     18        1.1     pooka  *
     19        1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20        1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21        1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22        1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23        1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24        1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25        1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26        1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27        1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28        1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29        1.1     pooka  * SUCH DAMAGE.
     30        1.1     pooka  */
     31        1.1     pooka 
     32        1.1     pooka /*
     33       1.88     pooka  * Virtual memory emulation routines.
     34        1.1     pooka  */
     35        1.1     pooka 
     36        1.1     pooka /*
     37        1.5     pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38        1.1     pooka  * for each page.  phys_addr would fit the job description better,
     39        1.1     pooka  * except that it will create unnecessary lossage on some platforms
     40        1.1     pooka  * due to not being a pointer type.
     41        1.1     pooka  */
     42        1.1     pooka 
     43       1.48     pooka #include <sys/cdefs.h>
     44  1.182.2.2        ad __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.182.2.2 2020/02/29 20:21:09 ad Exp $");
     45       1.48     pooka 
     46        1.1     pooka #include <sys/param.h>
     47       1.40     pooka #include <sys/atomic.h>
     48       1.80     pooka #include <sys/buf.h>
     49       1.80     pooka #include <sys/kernel.h>
     50       1.67     pooka #include <sys/kmem.h>
     51      1.121      para #include <sys/vmem.h>
     52       1.69     pooka #include <sys/mman.h>
     53        1.1     pooka #include <sys/null.h>
     54        1.1     pooka #include <sys/vnode.h>
     55      1.175        ad #include <sys/radixtree.h>
     56        1.1     pooka 
     57       1.34     pooka #include <machine/pmap.h>
     58       1.34     pooka 
     59        1.1     pooka #include <uvm/uvm.h>
     60       1.56     pooka #include <uvm/uvm_ddb.h>
     61       1.88     pooka #include <uvm/uvm_pdpolicy.h>
     62        1.1     pooka #include <uvm/uvm_prot.h>
     63       1.58        he #include <uvm/uvm_readahead.h>
     64      1.160       chs #include <uvm/uvm_device.h>
     65        1.1     pooka 
     66      1.169     pooka #include <rump-sys/kern.h>
     67      1.169     pooka #include <rump-sys/vfs.h>
     68      1.169     pooka 
     69      1.169     pooka #include <rump/rumpuser.h>
     70        1.1     pooka 
     71      1.174        ad kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
     72      1.152     pooka kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     73       1.88     pooka kmutex_t uvm_swap_data_lock;
     74       1.25        ad 
     75        1.1     pooka struct uvmexp uvmexp;
     76        1.7     pooka struct uvm uvm;
     77        1.1     pooka 
     78      1.112     pooka #ifdef __uvmexp_pagesize
     79      1.123    martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
     80      1.123    martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
     81      1.123    martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
     82      1.112     pooka #endif
     83      1.112     pooka 
     84      1.121      para static struct vm_map kernel_map_store;
     85      1.121      para struct vm_map *kernel_map = &kernel_map_store;
     86      1.121      para 
     87      1.130     pooka static struct vm_map module_map_store;
     88      1.130     pooka extern struct vm_map *module_map;
     89      1.130     pooka 
     90      1.164     pooka static struct pmap pmap_kernel;
     91      1.164     pooka struct pmap rump_pmap_local;
     92      1.164     pooka struct pmap *const kernel_pmap_ptr = &pmap_kernel;
     93      1.164     pooka 
     94      1.121      para vmem_t *kmem_arena;
     95      1.121      para vmem_t *kmem_va_arena;
     96       1.35     pooka 
     97       1.80     pooka static unsigned int pdaemon_waiters;
     98       1.80     pooka static kmutex_t pdaemonmtx;
     99       1.80     pooka static kcondvar_t pdaemoncv, oomwait;
    100       1.80     pooka 
    101      1.162     pooka /* all local non-proc0 processes share this vmspace */
    102      1.162     pooka struct vmspace *rump_vmspace_local;
    103      1.162     pooka 
    104       1.91     pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    105      1.147     pooka static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    106       1.84     pooka static unsigned long curphysmem;
    107       1.92     pooka static unsigned long dddlim;		/* 90% of memory limit used */
    108       1.92     pooka #define NEED_PAGEDAEMON() \
    109       1.92     pooka     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    110      1.158     pooka #define PDRESERVE (2*MAXPHYS)
    111       1.92     pooka 
    112       1.92     pooka /*
    113       1.92     pooka  * Try to free two pages worth of pages from objects.
    114       1.92     pooka  * If this succesfully frees a full page cache page, we'll
    115      1.120      yamt  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    116       1.92     pooka  */
    117       1.92     pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    118       1.92     pooka 
    119       1.92     pooka /*
    120       1.92     pooka  * Keep a list of least recently used pages.  Since the only way a
    121       1.92     pooka  * rump kernel can "access" a page is via lookup, we put the page
    122       1.92     pooka  * at the back of queue every time a lookup for it is done.  If the
    123       1.92     pooka  * page is in front of this global queue and we're short of memory,
    124       1.92     pooka  * it's a candidate for pageout.
    125       1.92     pooka  */
    126       1.92     pooka static struct pglist vmpage_lruqueue;
    127       1.92     pooka static unsigned vmpage_onqueue;
    128       1.84     pooka 
    129        1.1     pooka /*
    130        1.1     pooka  * vm pages
    131        1.1     pooka  */
    132        1.1     pooka 
    133       1.90     pooka static int
    134       1.90     pooka pgctor(void *arg, void *obj, int flags)
    135       1.90     pooka {
    136       1.90     pooka 	struct vm_page *pg = obj;
    137       1.90     pooka 
    138       1.90     pooka 	memset(pg, 0, sizeof(*pg));
    139      1.103     pooka 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    140      1.103     pooka 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    141      1.103     pooka 	return pg->uanon == NULL;
    142       1.90     pooka }
    143       1.90     pooka 
    144       1.90     pooka static void
    145       1.90     pooka pgdtor(void *arg, void *obj)
    146       1.90     pooka {
    147       1.90     pooka 	struct vm_page *pg = obj;
    148       1.90     pooka 
    149       1.90     pooka 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    150       1.90     pooka }
    151       1.90     pooka 
    152       1.90     pooka static struct pool_cache pagecache;
    153       1.90     pooka 
    154       1.92     pooka /*
    155       1.92     pooka  * Called with the object locked.  We don't support anons.
    156       1.92     pooka  */
    157        1.1     pooka struct vm_page *
    158       1.76     pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    159       1.76     pooka 	int flags, int strat, int free_list)
    160        1.1     pooka {
    161        1.1     pooka 	struct vm_page *pg;
    162        1.1     pooka 
    163  1.182.2.2        ad 	KASSERT(uobj && rw_write_held(uobj->vmobjlock));
    164       1.92     pooka 	KASSERT(anon == NULL);
    165       1.92     pooka 
    166      1.103     pooka 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    167      1.104     pooka 	if (__predict_false(pg == NULL)) {
    168      1.103     pooka 		return NULL;
    169      1.104     pooka 	}
    170      1.181        ad 	mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
    171      1.103     pooka 
    172        1.1     pooka 	pg->offset = off;
    173        1.5     pooka 	pg->uobject = uobj;
    174        1.1     pooka 
    175       1.22     pooka 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    176       1.90     pooka 	if (flags & UVM_PGA_ZERO) {
    177       1.90     pooka 		uvm_pagezero(pg);
    178       1.90     pooka 	}
    179        1.1     pooka 
    180      1.175        ad 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
    181      1.175        ad 	    pg) != 0) {
    182      1.175        ad 		pool_cache_put(&pagecache, pg);
    183      1.175        ad 		return NULL;
    184      1.175        ad 	}
    185       1.89     pooka 
    186       1.92     pooka 	/*
    187       1.93     pooka 	 * Don't put anons on the LRU page queue.  We can't flush them
    188       1.93     pooka 	 * (there's no concept of swap in a rump kernel), so no reason
    189       1.93     pooka 	 * to bother with them.
    190       1.92     pooka 	 */
    191       1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    192       1.92     pooka 		atomic_inc_uint(&vmpage_onqueue);
    193      1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
    194       1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    195      1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
    196       1.92     pooka 	}
    197       1.92     pooka 
    198       1.59     pooka 	uobj->uo_npages++;
    199       1.21     pooka 
    200        1.1     pooka 	return pg;
    201        1.1     pooka }
    202        1.1     pooka 
    203       1.21     pooka /*
    204       1.21     pooka  * Release a page.
    205       1.21     pooka  *
    206       1.22     pooka  * Called with the vm object locked.
    207       1.21     pooka  */
    208        1.1     pooka void
    209       1.22     pooka uvm_pagefree(struct vm_page *pg)
    210        1.1     pooka {
    211        1.5     pooka 	struct uvm_object *uobj = pg->uobject;
    212      1.175        ad 	struct vm_page *pg2 __unused;
    213        1.1     pooka 
    214  1.182.2.2        ad 	KASSERT(rw_write_held(uobj->vmobjlock));
    215       1.92     pooka 
    216       1.22     pooka 	if (pg->flags & PG_WANTED)
    217       1.22     pooka 		wakeup(pg);
    218       1.22     pooka 
    219       1.59     pooka 	uobj->uo_npages--;
    220      1.175        ad 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    221      1.175        ad 	KASSERT(pg == pg2);
    222       1.92     pooka 
    223       1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    224      1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
    225       1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    226      1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
    227       1.92     pooka 		atomic_dec_uint(&vmpage_onqueue);
    228       1.92     pooka 	}
    229       1.92     pooka 
    230      1.181        ad 	mutex_destroy(&pg->interlock);
    231       1.90     pooka 	pool_cache_put(&pagecache, pg);
    232        1.1     pooka }
    233        1.1     pooka 
    234       1.15     pooka void
    235       1.61     pooka uvm_pagezero(struct vm_page *pg)
    236       1.15     pooka {
    237       1.15     pooka 
    238  1.182.2.1        ad 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    239       1.61     pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    240       1.15     pooka }
    241       1.15     pooka 
    242        1.1     pooka /*
    243      1.178        ad  * uvm_page_owner_locked_p: return true if object associated with page is
    244      1.136      yamt  * locked.  this is a weak check for runtime assertions only.
    245      1.136      yamt  */
    246      1.136      yamt 
    247      1.136      yamt bool
    248  1.182.2.2        ad uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
    249      1.136      yamt {
    250      1.136      yamt 
    251  1.182.2.2        ad 	if (exclusive)
    252  1.182.2.2        ad 		return rw_write_held(pg->uobject->vmobjlock);
    253  1.182.2.2        ad 	else
    254  1.182.2.2        ad 		return rw_lock_held(pg->uobject->vmobjlock);
    255      1.136      yamt }
    256      1.136      yamt 
    257      1.136      yamt /*
    258        1.1     pooka  * Misc routines
    259        1.1     pooka  */
    260        1.1     pooka 
    261       1.61     pooka static kmutex_t pagermtx;
    262       1.61     pooka 
    263        1.1     pooka void
    264       1.79     pooka uvm_init(void)
    265        1.1     pooka {
    266       1.84     pooka 	char buf[64];
    267       1.84     pooka 
    268      1.141     pooka 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    269      1.105     pooka 		unsigned long tmp;
    270      1.105     pooka 		char *ep;
    271      1.105     pooka 		int mult;
    272      1.105     pooka 
    273      1.109     pooka 		tmp = strtoul(buf, &ep, 10);
    274      1.105     pooka 		if (strlen(ep) > 1)
    275      1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    276      1.105     pooka 
    277      1.105     pooka 		/* mini-dehumanize-number */
    278      1.105     pooka 		mult = 1;
    279      1.105     pooka 		switch (*ep) {
    280      1.105     pooka 		case 'k':
    281      1.105     pooka 			mult = 1024;
    282      1.105     pooka 			break;
    283      1.105     pooka 		case 'm':
    284      1.105     pooka 			mult = 1024*1024;
    285      1.105     pooka 			break;
    286      1.105     pooka 		case 'g':
    287      1.105     pooka 			mult = 1024*1024*1024;
    288      1.105     pooka 			break;
    289      1.105     pooka 		case 0:
    290      1.105     pooka 			break;
    291      1.105     pooka 		default:
    292      1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    293      1.105     pooka 		}
    294      1.105     pooka 		rump_physmemlimit = tmp * mult;
    295      1.105     pooka 
    296      1.105     pooka 		if (rump_physmemlimit / mult != tmp)
    297      1.105     pooka 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    298      1.147     pooka 
    299      1.147     pooka 		/* reserve some memory for the pager */
    300      1.158     pooka 		if (rump_physmemlimit <= PDRESERVE)
    301      1.158     pooka 			panic("uvm_init: system reserves %d bytes of mem, "
    302      1.158     pooka 			    "only %lu bytes given",
    303      1.158     pooka 			    PDRESERVE, rump_physmemlimit);
    304      1.147     pooka 		pdlimit = rump_physmemlimit;
    305      1.158     pooka 		rump_physmemlimit -= PDRESERVE;
    306      1.105     pooka 
    307      1.157     pooka 		if (pdlimit < 1024*1024)
    308      1.157     pooka 			printf("uvm_init: WARNING: <1MB RAM limit, "
    309      1.157     pooka 			    "hope you know what you're doing\n");
    310      1.157     pooka 
    311       1.84     pooka #define HUMANIZE_BYTES 9
    312       1.84     pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    313       1.91     pooka 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    314       1.84     pooka #undef HUMANIZE_BYTES
    315       1.92     pooka 		dddlim = 9 * (rump_physmemlimit / 10);
    316       1.84     pooka 	} else {
    317       1.84     pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    318       1.84     pooka 	}
    319       1.84     pooka 	aprint_verbose("total memory = %s\n", buf);
    320        1.1     pooka 
    321       1.92     pooka 	TAILQ_INIT(&vmpage_lruqueue);
    322       1.92     pooka 
    323      1.157     pooka 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    324      1.157     pooka 		uvmexp.npages = physmem;
    325      1.157     pooka 	} else {
    326      1.157     pooka 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    327      1.158     pooka 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    328      1.157     pooka 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    329      1.157     pooka 	}
    330      1.157     pooka 	/*
    331      1.157     pooka 	 * uvmexp.free is not used internally or updated.  The reason is
    332      1.157     pooka 	 * that the memory hypercall allocator is allowed to allocate
    333      1.157     pooka 	 * non-page sized chunks.  We use a byte count in curphysmem
    334      1.157     pooka 	 * instead.
    335      1.157     pooka 	 */
    336      1.157     pooka 	uvmexp.free = uvmexp.npages;
    337       1.21     pooka 
    338      1.112     pooka #ifndef __uvmexp_pagesize
    339      1.112     pooka 	uvmexp.pagesize = PAGE_SIZE;
    340      1.112     pooka 	uvmexp.pagemask = PAGE_MASK;
    341      1.112     pooka 	uvmexp.pageshift = PAGE_SHIFT;
    342      1.112     pooka #else
    343      1.112     pooka #define FAKE_PAGE_SHIFT 12
    344      1.112     pooka 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    345      1.112     pooka 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    346      1.112     pooka 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    347      1.112     pooka #undef FAKE_PAGE_SHIFT
    348      1.112     pooka #endif
    349      1.112     pooka 
    350      1.140     pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    351      1.174        ad 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
    352      1.140     pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    353       1.35     pooka 
    354      1.152     pooka 	/* just to appease linkage */
    355      1.152     pooka 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    356      1.152     pooka 
    357      1.140     pooka 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    358       1.80     pooka 	cv_init(&pdaemoncv, "pdaemon");
    359       1.80     pooka 	cv_init(&oomwait, "oomwait");
    360       1.80     pooka 
    361      1.130     pooka 	module_map = &module_map_store;
    362      1.130     pooka 
    363       1.50     pooka 	kernel_map->pmap = pmap_kernel();
    364      1.121      para 
    365      1.122     njoly 	pool_subsystem_init();
    366      1.128     pooka 
    367      1.121      para 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    368      1.121      para 	    NULL, NULL, NULL,
    369      1.121      para 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    370      1.121      para 
    371      1.135      para 	vmem_subsystem_init(kmem_arena);
    372      1.121      para 
    373      1.121      para 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    374      1.121      para 	    vmem_alloc, vmem_free, kmem_arena,
    375      1.124      para 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    376       1.90     pooka 
    377       1.90     pooka 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    378       1.90     pooka 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    379      1.162     pooka 
    380      1.175        ad 	radix_tree_init();
    381      1.175        ad 
    382      1.162     pooka 	/* create vmspace used by local clients */
    383      1.162     pooka 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    384      1.164     pooka 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    385        1.1     pooka }
    386        1.1     pooka 
    387       1.83     pooka void
    388      1.145    martin uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    389      1.145    martin     bool topdown)
    390       1.83     pooka {
    391       1.83     pooka 
    392      1.162     pooka 	vm->vm_map.pmap = pmap;
    393       1.83     pooka 	vm->vm_refcnt = 1;
    394       1.83     pooka }
    395        1.1     pooka 
    396      1.173       nat int
    397      1.173       nat uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
    398      1.173       nat     bool new_pageable, int lockflags)
    399      1.173       nat {
    400      1.173       nat 	return 0;
    401      1.173       nat }
    402      1.173       nat 
    403        1.1     pooka void
    404        1.7     pooka uvm_pagewire(struct vm_page *pg)
    405        1.7     pooka {
    406        1.7     pooka 
    407        1.7     pooka 	/* nada */
    408        1.7     pooka }
    409        1.7     pooka 
    410        1.7     pooka void
    411        1.7     pooka uvm_pageunwire(struct vm_page *pg)
    412        1.7     pooka {
    413        1.7     pooka 
    414        1.7     pooka 	/* nada */
    415        1.7     pooka }
    416        1.7     pooka 
    417      1.177        ad int
    418      1.179        ad uvm_availmem(void)
    419      1.177        ad {
    420      1.177        ad 
    421      1.177        ad 	return uvmexp.free;
    422      1.177        ad }
    423      1.177        ad 
    424      1.180        ad void
    425      1.180        ad uvm_pagelock(struct vm_page *pg)
    426      1.180        ad {
    427      1.180        ad 
    428      1.180        ad 	mutex_enter(&pg->interlock);
    429      1.180        ad }
    430      1.180        ad 
    431      1.180        ad void
    432      1.180        ad uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
    433      1.180        ad {
    434      1.180        ad 
    435      1.180        ad 	if (pg1 < pg2) {
    436      1.180        ad 		mutex_enter(&pg1->interlock);
    437      1.180        ad 		mutex_enter(&pg2->interlock);
    438      1.180        ad 	} else {
    439      1.180        ad 		mutex_enter(&pg2->interlock);
    440      1.180        ad 		mutex_enter(&pg1->interlock);
    441      1.180        ad 	}
    442      1.180        ad }
    443      1.180        ad 
    444      1.180        ad void
    445      1.180        ad uvm_pageunlock(struct vm_page *pg)
    446      1.180        ad {
    447      1.180        ad 
    448      1.180        ad 	mutex_exit(&pg->interlock);
    449      1.180        ad }
    450      1.180        ad 
    451      1.180        ad void
    452      1.180        ad uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
    453      1.180        ad {
    454      1.180        ad 
    455      1.180        ad 	mutex_exit(&pg1->interlock);
    456      1.180        ad 	mutex_exit(&pg2->interlock);
    457      1.180        ad }
    458      1.180        ad 
    459       1.83     pooka /* where's your schmonz now? */
    460       1.83     pooka #define PUNLIMIT(a)	\
    461       1.83     pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    462       1.83     pooka void
    463       1.83     pooka uvm_init_limits(struct proc *p)
    464       1.83     pooka {
    465       1.83     pooka 
    466      1.155     pooka #ifndef DFLSSIZ
    467      1.155     pooka #define DFLSSIZ (16*1024*1024)
    468      1.155     pooka #endif
    469      1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    470      1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    471       1.83     pooka 	PUNLIMIT(RLIMIT_DATA);
    472       1.83     pooka 	PUNLIMIT(RLIMIT_RSS);
    473       1.83     pooka 	PUNLIMIT(RLIMIT_AS);
    474       1.83     pooka 	/* nice, cascade */
    475       1.83     pooka }
    476       1.83     pooka #undef PUNLIMIT
    477       1.83     pooka 
    478       1.69     pooka /*
    479       1.69     pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    480       1.69     pooka  */
    481       1.49     pooka int
    482      1.160       chs uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    483       1.49     pooka {
    484       1.69     pooka 	int error;
    485       1.49     pooka 
    486       1.69     pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    487      1.160       chs 	if (*addrp != NULL)
    488       1.69     pooka 		panic("uvm_mmap() variant unsupported");
    489       1.69     pooka 
    490      1.106     pooka 	if (RUMP_LOCALPROC_P(curproc)) {
    491      1.160       chs 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    492       1.98     pooka 	} else {
    493      1.166     pooka 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
    494      1.160       chs 		    size, addrp);
    495       1.98     pooka 	}
    496      1.160       chs 	return error;
    497      1.160       chs }
    498       1.69     pooka 
    499      1.160       chs /*
    500      1.160       chs  * Stubs for things referenced from vfs_vnode.c but not used.
    501      1.160       chs  */
    502      1.160       chs const dev_t zerodev;
    503      1.160       chs 
    504      1.160       chs struct uvm_object *
    505      1.160       chs udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    506      1.160       chs {
    507      1.160       chs 	return NULL;
    508       1.49     pooka }
    509       1.49     pooka 
    510       1.61     pooka struct pagerinfo {
    511       1.61     pooka 	vaddr_t pgr_kva;
    512       1.61     pooka 	int pgr_npages;
    513       1.61     pooka 	struct vm_page **pgr_pgs;
    514       1.61     pooka 	bool pgr_read;
    515       1.61     pooka 
    516       1.61     pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    517       1.61     pooka };
    518       1.61     pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    519       1.61     pooka 
    520       1.61     pooka /*
    521       1.61     pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    522      1.159     pooka  * and copy page contents there.  The reason for copying instead of
    523      1.159     pooka  * mapping is simple: we do not assume we are running on virtual
    524      1.159     pooka  * memory.  Even if we could emulate virtual memory in some envs
    525      1.159     pooka  * such as userspace, copying is much faster than trying to awkardly
    526      1.159     pooka  * cope with remapping (see "Design and Implementation" pp.95-98).
    527      1.159     pooka  * The downside of the approach is that the pager requires MAXPHYS
    528      1.159     pooka  * free memory to perform paging, but short of virtual memory or
    529      1.159     pooka  * making the pager do I/O in page-sized chunks we cannot do much
    530      1.159     pooka  * about that.
    531       1.61     pooka  */
    532        1.7     pooka vaddr_t
    533       1.61     pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    534        1.7     pooka {
    535       1.61     pooka 	struct pagerinfo *pgri;
    536       1.61     pooka 	vaddr_t curkva;
    537       1.61     pooka 	int i;
    538       1.61     pooka 
    539       1.61     pooka 	/* allocate structures */
    540       1.61     pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    541       1.61     pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    542       1.61     pooka 	pgri->pgr_npages = npages;
    543       1.61     pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    544       1.61     pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    545       1.61     pooka 
    546       1.61     pooka 	/* copy contents to "mapped" memory */
    547       1.61     pooka 	for (i = 0, curkva = pgri->pgr_kva;
    548       1.61     pooka 	    i < npages;
    549       1.61     pooka 	    i++, curkva += PAGE_SIZE) {
    550       1.61     pooka 		/*
    551       1.61     pooka 		 * We need to copy the previous contents of the pages to
    552       1.61     pooka 		 * the window even if we are reading from the
    553       1.61     pooka 		 * device, since the device might not fill the contents of
    554       1.61     pooka 		 * the full mapped range and we will end up corrupting
    555       1.61     pooka 		 * data when we unmap the window.
    556       1.61     pooka 		 */
    557       1.61     pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    558       1.61     pooka 		pgri->pgr_pgs[i] = pgs[i];
    559       1.61     pooka 	}
    560       1.61     pooka 
    561       1.61     pooka 	mutex_enter(&pagermtx);
    562       1.61     pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    563       1.61     pooka 	mutex_exit(&pagermtx);
    564        1.7     pooka 
    565       1.61     pooka 	return pgri->pgr_kva;
    566        1.7     pooka }
    567        1.7     pooka 
    568       1.61     pooka /*
    569       1.61     pooka  * map out the pager window.  return contents from VA to page storage
    570       1.61     pooka  * and free structures.
    571       1.61     pooka  *
    572       1.61     pooka  * Note: does not currently support partial frees
    573       1.61     pooka  */
    574       1.61     pooka void
    575       1.61     pooka uvm_pagermapout(vaddr_t kva, int npages)
    576        1.7     pooka {
    577       1.61     pooka 	struct pagerinfo *pgri;
    578       1.61     pooka 	vaddr_t curkva;
    579       1.61     pooka 	int i;
    580        1.7     pooka 
    581       1.61     pooka 	mutex_enter(&pagermtx);
    582       1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    583       1.61     pooka 		if (pgri->pgr_kva == kva)
    584       1.61     pooka 			break;
    585       1.61     pooka 	}
    586       1.61     pooka 	KASSERT(pgri);
    587       1.61     pooka 	if (pgri->pgr_npages != npages)
    588       1.61     pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    589       1.61     pooka 	LIST_REMOVE(pgri, pgr_entries);
    590       1.61     pooka 	mutex_exit(&pagermtx);
    591       1.61     pooka 
    592       1.61     pooka 	if (pgri->pgr_read) {
    593       1.61     pooka 		for (i = 0, curkva = pgri->pgr_kva;
    594       1.61     pooka 		    i < pgri->pgr_npages;
    595       1.61     pooka 		    i++, curkva += PAGE_SIZE) {
    596       1.61     pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    597       1.21     pooka 		}
    598       1.21     pooka 	}
    599       1.10     pooka 
    600       1.61     pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    601       1.61     pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    602       1.61     pooka 	kmem_free(pgri, sizeof(*pgri));
    603        1.7     pooka }
    604        1.7     pooka 
    605       1.61     pooka /*
    606       1.61     pooka  * convert va in pager window to page structure.
    607       1.61     pooka  * XXX: how expensive is this (global lock, list traversal)?
    608       1.61     pooka  */
    609       1.14     pooka struct vm_page *
    610       1.14     pooka uvm_pageratop(vaddr_t va)
    611       1.14     pooka {
    612       1.61     pooka 	struct pagerinfo *pgri;
    613       1.61     pooka 	struct vm_page *pg = NULL;
    614       1.61     pooka 	int i;
    615       1.14     pooka 
    616       1.61     pooka 	mutex_enter(&pagermtx);
    617       1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    618       1.61     pooka 		if (pgri->pgr_kva <= va
    619       1.61     pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    620       1.21     pooka 			break;
    621       1.61     pooka 	}
    622       1.61     pooka 	if (pgri) {
    623       1.61     pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    624       1.61     pooka 		pg = pgri->pgr_pgs[i];
    625       1.61     pooka 	}
    626       1.61     pooka 	mutex_exit(&pagermtx);
    627       1.21     pooka 
    628       1.61     pooka 	return pg;
    629       1.61     pooka }
    630       1.15     pooka 
    631       1.97     pooka /*
    632       1.97     pooka  * Called with the vm object locked.
    633       1.97     pooka  *
    634       1.97     pooka  * Put vnode object pages at the end of the access queue to indicate
    635       1.97     pooka  * they have been recently accessed and should not be immediate
    636       1.97     pooka  * candidates for pageout.  Do not do this for lookups done by
    637       1.97     pooka  * the pagedaemon to mimic pmap_kentered mappings which don't track
    638       1.97     pooka  * access information.
    639       1.97     pooka  */
    640       1.61     pooka struct vm_page *
    641       1.61     pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    642       1.61     pooka {
    643       1.92     pooka 	struct vm_page *pg;
    644       1.97     pooka 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    645       1.61     pooka 
    646      1.175        ad 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    647       1.97     pooka 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    648      1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
    649       1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    650       1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    651      1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
    652       1.92     pooka 	}
    653       1.92     pooka 
    654       1.92     pooka 	return pg;
    655       1.14     pooka }
    656       1.14     pooka 
    657        1.7     pooka void
    658       1.22     pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    659       1.22     pooka {
    660       1.22     pooka 	struct vm_page *pg;
    661       1.22     pooka 	int i;
    662       1.22     pooka 
    663       1.94     pooka 	KASSERT(npgs > 0);
    664  1.182.2.2        ad 	KASSERT(rw_write_held(pgs[0]->uobject->vmobjlock));
    665       1.94     pooka 
    666       1.22     pooka 	for (i = 0; i < npgs; i++) {
    667       1.22     pooka 		pg = pgs[i];
    668       1.22     pooka 		if (pg == NULL)
    669       1.22     pooka 			continue;
    670       1.22     pooka 
    671       1.22     pooka 		KASSERT(pg->flags & PG_BUSY);
    672       1.22     pooka 		if (pg->flags & PG_WANTED)
    673       1.22     pooka 			wakeup(pg);
    674       1.36     pooka 		if (pg->flags & PG_RELEASED)
    675       1.36     pooka 			uvm_pagefree(pg);
    676       1.36     pooka 		else
    677       1.36     pooka 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    678       1.22     pooka 	}
    679       1.22     pooka }
    680       1.22     pooka 
    681       1.22     pooka void
    682        1.7     pooka uvm_estimatepageable(int *active, int *inactive)
    683        1.7     pooka {
    684        1.7     pooka 
    685       1.19     pooka 	/* XXX: guessing game */
    686       1.19     pooka 	*active = 1024;
    687       1.19     pooka 	*inactive = 1024;
    688        1.7     pooka }
    689        1.7     pooka 
    690       1.41     pooka int
    691       1.41     pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    692       1.41     pooka {
    693       1.41     pooka 
    694       1.41     pooka 	panic("%s: unimplemented", __func__);
    695       1.41     pooka }
    696       1.41     pooka 
    697       1.41     pooka void
    698       1.41     pooka uvm_unloan(void *v, int npages, int flags)
    699       1.41     pooka {
    700       1.41     pooka 
    701       1.41     pooka 	panic("%s: unimplemented", __func__);
    702       1.41     pooka }
    703       1.41     pooka 
    704       1.43     pooka int
    705       1.43     pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    706       1.43     pooka 	struct vm_page **opp)
    707       1.43     pooka {
    708       1.43     pooka 
    709       1.72     pooka 	return EBUSY;
    710       1.43     pooka }
    711       1.43     pooka 
    712      1.116       mrg struct vm_page *
    713      1.116       mrg uvm_loanbreak(struct vm_page *pg)
    714      1.116       mrg {
    715      1.116       mrg 
    716      1.116       mrg 	panic("%s: unimplemented", __func__);
    717      1.116       mrg }
    718      1.116       mrg 
    719      1.116       mrg void
    720      1.116       mrg ubc_purge(struct uvm_object *uobj)
    721      1.116       mrg {
    722      1.116       mrg 
    723      1.116       mrg }
    724      1.116       mrg 
    725       1.68     pooka vaddr_t
    726      1.168    martin uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
    727       1.68     pooka {
    728       1.68     pooka 
    729       1.68     pooka 	return 0;
    730       1.68     pooka }
    731       1.68     pooka 
    732       1.71     pooka int
    733       1.71     pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    734       1.71     pooka 	vm_prot_t prot, bool set_max)
    735       1.71     pooka {
    736       1.71     pooka 
    737       1.71     pooka 	return EOPNOTSUPP;
    738       1.71     pooka }
    739       1.71     pooka 
    740      1.171    martin int
    741      1.171    martin uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
    742      1.171    martin     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
    743      1.171    martin     uvm_flag_t flags)
    744      1.171    martin {
    745      1.171    martin 
    746      1.172    martin 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
    747      1.172    martin 	return *startp != 0 ? 0 : ENOMEM;
    748      1.172    martin }
    749      1.172    martin 
    750      1.172    martin void
    751      1.172    martin uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
    752      1.172    martin {
    753      1.172    martin 
    754      1.172    martin 	rump_hyperfree((void*)start, end-start);
    755      1.171    martin }
    756      1.171    martin 
    757      1.171    martin 
    758        1.9     pooka /*
    759       1.12     pooka  * UVM km
    760       1.12     pooka  */
    761       1.12     pooka 
    762       1.12     pooka vaddr_t
    763       1.12     pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    764       1.12     pooka {
    765       1.82     pooka 	void *rv, *desired = NULL;
    766       1.50     pooka 	int alignbit, error;
    767       1.50     pooka 
    768       1.82     pooka #ifdef __x86_64__
    769       1.82     pooka 	/*
    770       1.82     pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    771       1.82     pooka 	 * This is because NetBSD kernel modules are compiled
    772       1.82     pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    773       1.82     pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    774       1.82     pooka 	 * anywhere except the lowest or highest 2GB, it will not
    775       1.82     pooka 	 * work.  Since userspace does not have access to the highest
    776       1.82     pooka 	 * 2GB, use the lowest 2GB.
    777       1.82     pooka 	 *
    778       1.82     pooka 	 * Note: this assumes the rump kernel resides in
    779       1.82     pooka 	 * the lowest 2GB as well.
    780       1.82     pooka 	 *
    781       1.82     pooka 	 * Note2: yes, it's a quick hack, but since this the only
    782       1.82     pooka 	 * place where we care about the map we're allocating from,
    783       1.82     pooka 	 * just use a simple "if" instead of coming up with a fancy
    784       1.82     pooka 	 * generic solution.
    785       1.82     pooka 	 */
    786       1.82     pooka 	if (map == module_map) {
    787       1.82     pooka 		desired = (void *)(0x80000000 - size);
    788       1.82     pooka 	}
    789       1.82     pooka #endif
    790       1.82     pooka 
    791      1.130     pooka 	if (__predict_false(map == module_map)) {
    792      1.130     pooka 		alignbit = 0;
    793      1.130     pooka 		if (align) {
    794      1.130     pooka 			alignbit = ffs(align)-1;
    795      1.130     pooka 		}
    796      1.142     pooka 		error = rumpuser_anonmmap(desired, size, alignbit,
    797      1.142     pooka 		    flags & UVM_KMF_EXEC, &rv);
    798      1.130     pooka 	} else {
    799      1.142     pooka 		error = rumpuser_malloc(size, align, &rv);
    800       1.50     pooka 	}
    801       1.50     pooka 
    802      1.142     pooka 	if (error) {
    803       1.50     pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    804       1.50     pooka 			return 0;
    805       1.50     pooka 		else
    806       1.50     pooka 			panic("uvm_km_alloc failed");
    807       1.50     pooka 	}
    808       1.12     pooka 
    809       1.50     pooka 	if (flags & UVM_KMF_ZERO)
    810       1.12     pooka 		memset(rv, 0, size);
    811       1.12     pooka 
    812       1.12     pooka 	return (vaddr_t)rv;
    813       1.12     pooka }
    814       1.12     pooka 
    815       1.12     pooka void
    816       1.12     pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    817       1.12     pooka {
    818       1.12     pooka 
    819      1.130     pooka 	if (__predict_false(map == module_map))
    820      1.130     pooka 		rumpuser_unmap((void *)vaddr, size);
    821      1.130     pooka 	else
    822      1.138     pooka 		rumpuser_free((void *)vaddr, size);
    823       1.12     pooka }
    824       1.12     pooka 
    825      1.170  christos int
    826      1.170  christos uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
    827      1.170  christos {
    828      1.170  christos 	return 0;
    829      1.170  christos }
    830      1.170  christos 
    831       1.12     pooka struct vm_map *
    832       1.12     pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    833      1.121      para 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    834       1.12     pooka {
    835       1.12     pooka 
    836       1.12     pooka 	return (struct vm_map *)417416;
    837       1.12     pooka }
    838       1.40     pooka 
    839      1.121      para int
    840      1.121      para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    841      1.121      para     vmem_addr_t *addr)
    842       1.40     pooka {
    843      1.121      para 	vaddr_t va;
    844      1.121      para 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    845      1.121      para 	    (flags & VM_SLEEP), "kmalloc");
    846       1.40     pooka 
    847      1.121      para 	if (va) {
    848      1.121      para 		*addr = va;
    849      1.121      para 		return 0;
    850      1.121      para 	} else {
    851      1.121      para 		return ENOMEM;
    852      1.121      para 	}
    853       1.40     pooka }
    854       1.40     pooka 
    855       1.40     pooka void
    856      1.121      para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    857       1.40     pooka {
    858       1.40     pooka 
    859      1.121      para 	rump_hyperfree((void *)addr, size);
    860       1.74     pooka }
    861       1.74     pooka 
    862       1.57     pooka /*
    863      1.102     pooka  * VM space locking routines.  We don't really have to do anything,
    864      1.102     pooka  * since the pages are always "wired" (both local and remote processes).
    865       1.57     pooka  */
    866       1.57     pooka int
    867       1.57     pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    868       1.57     pooka {
    869       1.57     pooka 
    870       1.57     pooka 	return 0;
    871       1.57     pooka }
    872       1.57     pooka 
    873       1.57     pooka void
    874       1.57     pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    875       1.57     pooka {
    876       1.57     pooka 
    877       1.57     pooka }
    878       1.57     pooka 
    879      1.102     pooka /*
    880      1.102     pooka  * For the local case the buffer mappers don't need to do anything.
    881      1.102     pooka  * For the remote case we need to reserve space and copy data in or
    882      1.102     pooka  * out, depending on B_READ/B_WRITE.
    883      1.102     pooka  */
    884      1.111     pooka int
    885       1.57     pooka vmapbuf(struct buf *bp, vsize_t len)
    886       1.57     pooka {
    887      1.111     pooka 	int error = 0;
    888       1.57     pooka 
    889       1.57     pooka 	bp->b_saveaddr = bp->b_data;
    890      1.102     pooka 
    891      1.102     pooka 	/* remote case */
    892      1.106     pooka 	if (!RUMP_LOCALPROC_P(curproc)) {
    893      1.102     pooka 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    894      1.102     pooka 		if (BUF_ISWRITE(bp)) {
    895      1.111     pooka 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    896      1.111     pooka 			if (error) {
    897      1.111     pooka 				rump_hyperfree(bp->b_data, len);
    898      1.111     pooka 				bp->b_data = bp->b_saveaddr;
    899      1.111     pooka 				bp->b_saveaddr = 0;
    900      1.111     pooka 			}
    901      1.102     pooka 		}
    902      1.102     pooka 	}
    903      1.111     pooka 
    904      1.111     pooka 	return error;
    905       1.57     pooka }
    906       1.57     pooka 
    907       1.57     pooka void
    908       1.57     pooka vunmapbuf(struct buf *bp, vsize_t len)
    909       1.57     pooka {
    910       1.57     pooka 
    911      1.102     pooka 	/* remote case */
    912      1.106     pooka 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    913      1.102     pooka 		if (BUF_ISREAD(bp)) {
    914      1.110     pooka 			bp->b_error = copyout_proc(bp->b_proc,
    915      1.102     pooka 			    bp->b_data, bp->b_saveaddr, len);
    916      1.102     pooka 		}
    917      1.102     pooka 		rump_hyperfree(bp->b_data, len);
    918      1.102     pooka 	}
    919      1.102     pooka 
    920       1.57     pooka 	bp->b_data = bp->b_saveaddr;
    921       1.57     pooka 	bp->b_saveaddr = 0;
    922       1.57     pooka }
    923       1.61     pooka 
    924       1.61     pooka void
    925       1.83     pooka uvmspace_addref(struct vmspace *vm)
    926       1.83     pooka {
    927       1.83     pooka 
    928       1.83     pooka 	/*
    929      1.103     pooka 	 * No dynamically allocated vmspaces exist.
    930       1.83     pooka 	 */
    931       1.83     pooka }
    932       1.83     pooka 
    933       1.83     pooka void
    934       1.66     pooka uvmspace_free(struct vmspace *vm)
    935       1.66     pooka {
    936       1.66     pooka 
    937       1.66     pooka 	/* nothing for now */
    938       1.66     pooka }
    939       1.66     pooka 
    940       1.61     pooka /*
    941       1.61     pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    942       1.61     pooka  */
    943       1.61     pooka 
    944       1.61     pooka void
    945       1.61     pooka uvm_pageactivate(struct vm_page *pg)
    946       1.61     pooka {
    947       1.61     pooka 
    948       1.61     pooka 	/* nada */
    949       1.61     pooka }
    950       1.61     pooka 
    951       1.61     pooka void
    952       1.61     pooka uvm_pagedeactivate(struct vm_page *pg)
    953       1.61     pooka {
    954       1.61     pooka 
    955       1.61     pooka 	/* nada */
    956       1.61     pooka }
    957       1.61     pooka 
    958       1.61     pooka void
    959       1.61     pooka uvm_pagedequeue(struct vm_page *pg)
    960       1.61     pooka {
    961       1.61     pooka 
    962       1.61     pooka 	/* nada*/
    963       1.61     pooka }
    964       1.61     pooka 
    965       1.61     pooka void
    966       1.61     pooka uvm_pageenqueue(struct vm_page *pg)
    967       1.61     pooka {
    968       1.61     pooka 
    969       1.61     pooka 	/* nada */
    970       1.61     pooka }
    971       1.80     pooka 
    972       1.88     pooka void
    973       1.88     pooka uvmpdpol_anfree(struct vm_anon *an)
    974       1.88     pooka {
    975       1.88     pooka 
    976       1.88     pooka 	/* nada */
    977       1.88     pooka }
    978       1.88     pooka 
    979       1.80     pooka /*
    980       1.99  uebayasi  * Physical address accessors.
    981       1.99  uebayasi  */
    982       1.99  uebayasi 
    983       1.99  uebayasi struct vm_page *
    984       1.99  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    985       1.99  uebayasi {
    986       1.99  uebayasi 
    987       1.99  uebayasi 	return NULL;
    988       1.99  uebayasi }
    989       1.99  uebayasi 
    990       1.99  uebayasi paddr_t
    991       1.99  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
    992       1.99  uebayasi {
    993       1.99  uebayasi 
    994       1.99  uebayasi 	return 0;
    995       1.99  uebayasi }
    996       1.99  uebayasi 
    997      1.153     pooka vaddr_t
    998      1.153     pooka uvm_uarea_alloc(void)
    999      1.153     pooka {
   1000      1.153     pooka 
   1001      1.153     pooka 	/* non-zero */
   1002      1.153     pooka 	return (vaddr_t)11;
   1003      1.153     pooka }
   1004      1.153     pooka 
   1005      1.153     pooka void
   1006      1.153     pooka uvm_uarea_free(vaddr_t uarea)
   1007      1.153     pooka {
   1008      1.153     pooka 
   1009      1.153     pooka 	/* nata, so creamy */
   1010      1.153     pooka }
   1011      1.153     pooka 
   1012       1.99  uebayasi /*
   1013       1.80     pooka  * Routines related to the Page Baroness.
   1014       1.80     pooka  */
   1015       1.80     pooka 
   1016       1.80     pooka void
   1017       1.80     pooka uvm_wait(const char *msg)
   1018       1.80     pooka {
   1019       1.80     pooka 
   1020       1.80     pooka 	if (__predict_false(rump_threads == 0))
   1021       1.80     pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
   1022       1.80     pooka 
   1023      1.147     pooka 	if (curlwp == uvm.pagedaemon_lwp) {
   1024      1.147     pooka 		/* is it possible for us to later get memory? */
   1025      1.147     pooka 		if (!uvmexp.paging)
   1026      1.147     pooka 			panic("pagedaemon out of memory");
   1027      1.147     pooka 	}
   1028      1.147     pooka 
   1029       1.80     pooka 	mutex_enter(&pdaemonmtx);
   1030       1.80     pooka 	pdaemon_waiters++;
   1031       1.80     pooka 	cv_signal(&pdaemoncv);
   1032       1.80     pooka 	cv_wait(&oomwait, &pdaemonmtx);
   1033       1.80     pooka 	mutex_exit(&pdaemonmtx);
   1034       1.80     pooka }
   1035       1.80     pooka 
   1036       1.80     pooka void
   1037       1.80     pooka uvm_pageout_start(int npages)
   1038       1.80     pooka {
   1039       1.80     pooka 
   1040      1.113     pooka 	mutex_enter(&pdaemonmtx);
   1041      1.113     pooka 	uvmexp.paging += npages;
   1042      1.113     pooka 	mutex_exit(&pdaemonmtx);
   1043       1.80     pooka }
   1044       1.80     pooka 
   1045       1.80     pooka void
   1046       1.80     pooka uvm_pageout_done(int npages)
   1047       1.80     pooka {
   1048       1.80     pooka 
   1049      1.113     pooka 	if (!npages)
   1050      1.113     pooka 		return;
   1051      1.113     pooka 
   1052      1.113     pooka 	mutex_enter(&pdaemonmtx);
   1053      1.113     pooka 	KASSERT(uvmexp.paging >= npages);
   1054      1.113     pooka 	uvmexp.paging -= npages;
   1055      1.113     pooka 
   1056      1.113     pooka 	if (pdaemon_waiters) {
   1057      1.113     pooka 		pdaemon_waiters = 0;
   1058      1.113     pooka 		cv_broadcast(&oomwait);
   1059      1.113     pooka 	}
   1060      1.113     pooka 	mutex_exit(&pdaemonmtx);
   1061       1.80     pooka }
   1062       1.80     pooka 
   1063       1.95     pooka static bool
   1064  1.182.2.2        ad processpage(struct vm_page *pg)
   1065       1.95     pooka {
   1066       1.95     pooka 	struct uvm_object *uobj;
   1067       1.95     pooka 
   1068       1.95     pooka 	uobj = pg->uobject;
   1069  1.182.2.2        ad 	if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
   1070       1.95     pooka 		if ((pg->flags & PG_BUSY) == 0) {
   1071      1.174        ad 			mutex_exit(&vmpage_lruqueue_lock);
   1072       1.95     pooka 			uobj->pgops->pgo_put(uobj, pg->offset,
   1073       1.95     pooka 			    pg->offset + PAGE_SIZE,
   1074       1.95     pooka 			    PGO_CLEANIT|PGO_FREE);
   1075  1.182.2.2        ad 			KASSERT(!rw_write_held(uobj->vmobjlock));
   1076       1.95     pooka 			return true;
   1077       1.95     pooka 		} else {
   1078  1.182.2.2        ad 			rw_exit(uobj->vmobjlock);
   1079      1.104     pooka 		}
   1080       1.95     pooka 	}
   1081       1.95     pooka 
   1082       1.95     pooka 	return false;
   1083       1.95     pooka }
   1084       1.95     pooka 
   1085       1.80     pooka /*
   1086       1.92     pooka  * The Diabolical pageDaemon Director (DDD).
   1087      1.113     pooka  *
   1088      1.113     pooka  * This routine can always use better heuristics.
   1089       1.80     pooka  */
   1090       1.80     pooka void
   1091       1.80     pooka uvm_pageout(void *arg)
   1092       1.80     pooka {
   1093       1.92     pooka 	struct vm_page *pg;
   1094       1.80     pooka 	struct pool *pp, *pp_first;
   1095       1.92     pooka 	int cleaned, skip, skipped;
   1096      1.113     pooka 	bool succ;
   1097       1.80     pooka 
   1098       1.80     pooka 	mutex_enter(&pdaemonmtx);
   1099       1.80     pooka 	for (;;) {
   1100      1.113     pooka 		if (!NEED_PAGEDAEMON()) {
   1101       1.92     pooka 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1102       1.92     pooka 		}
   1103       1.92     pooka 
   1104      1.113     pooka 		if (pdaemon_waiters) {
   1105      1.113     pooka 			pdaemon_waiters = 0;
   1106      1.113     pooka 			cv_broadcast(&oomwait);
   1107      1.104     pooka 		}
   1108       1.92     pooka 
   1109      1.113     pooka 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1110      1.113     pooka 		uvmexp.pdwoke++;
   1111      1.113     pooka 
   1112       1.92     pooka 		/* tell the world that we are hungry */
   1113       1.80     pooka 		kernel_map->flags |= VM_MAP_WANTVA;
   1114       1.80     pooka 		mutex_exit(&pdaemonmtx);
   1115       1.80     pooka 
   1116       1.92     pooka 		/*
   1117       1.92     pooka 		 * step one: reclaim the page cache.  this should give
   1118       1.92     pooka 		 * us the biggest earnings since whole pages are released
   1119       1.92     pooka 		 * into backing memory.
   1120       1.92     pooka 		 */
   1121       1.92     pooka 		pool_cache_reclaim(&pagecache);
   1122       1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1123       1.92     pooka 			mutex_enter(&pdaemonmtx);
   1124       1.92     pooka 			continue;
   1125       1.92     pooka 		}
   1126       1.92     pooka 
   1127       1.92     pooka 		/*
   1128       1.92     pooka 		 * Ok, so that didn't help.  Next, try to hunt memory
   1129       1.92     pooka 		 * by pushing out vnode pages.  The pages might contain
   1130       1.92     pooka 		 * useful cached data, but we need the memory.
   1131       1.92     pooka 		 */
   1132       1.92     pooka 		cleaned = 0;
   1133       1.92     pooka 		skip = 0;
   1134       1.92     pooka  again:
   1135      1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
   1136       1.92     pooka 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1137       1.92     pooka 			skipped = 0;
   1138       1.92     pooka 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1139       1.92     pooka 
   1140       1.92     pooka 				/*
   1141       1.92     pooka 				 * skip over pages we _might_ have tried
   1142       1.92     pooka 				 * to handle earlier.  they might not be
   1143       1.92     pooka 				 * exactly the same ones, but I'm not too
   1144       1.92     pooka 				 * concerned.
   1145       1.92     pooka 				 */
   1146       1.92     pooka 				while (skipped++ < skip)
   1147       1.92     pooka 					continue;
   1148       1.92     pooka 
   1149  1.182.2.2        ad 				if (processpage(pg)) {
   1150       1.95     pooka 					cleaned++;
   1151       1.95     pooka 					goto again;
   1152       1.92     pooka 				}
   1153       1.92     pooka 
   1154       1.92     pooka 				skip++;
   1155       1.92     pooka 			}
   1156       1.92     pooka 			break;
   1157       1.92     pooka 		}
   1158      1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
   1159       1.92     pooka 
   1160       1.92     pooka 		/*
   1161      1.104     pooka 		 * Ok, someone is running with an object lock held.
   1162      1.104     pooka 		 * We want to yield the host CPU to make sure the
   1163  1.182.2.2        ad 		 * thread is not parked on the host.  nanosleep
   1164      1.104     pooka 		 * for the smallest possible time and hope we're back in
   1165      1.104     pooka 		 * the game soon.
   1166      1.104     pooka 		 */
   1167  1.182.2.2        ad 		if (cleaned == 0) {
   1168      1.144     pooka 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1169      1.104     pooka 
   1170      1.104     pooka 			skip = 0;
   1171      1.104     pooka 
   1172      1.104     pooka 			/* and here we go again */
   1173      1.104     pooka 			goto again;
   1174      1.104     pooka 		}
   1175      1.104     pooka 
   1176      1.104     pooka 		/*
   1177       1.92     pooka 		 * And of course we need to reclaim the page cache
   1178       1.92     pooka 		 * again to actually release memory.
   1179       1.92     pooka 		 */
   1180       1.92     pooka 		pool_cache_reclaim(&pagecache);
   1181       1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1182       1.92     pooka 			mutex_enter(&pdaemonmtx);
   1183       1.92     pooka 			continue;
   1184       1.92     pooka 		}
   1185       1.92     pooka 
   1186       1.92     pooka 		/*
   1187       1.92     pooka 		 * And then drain the pools.  Wipe them out ... all of them.
   1188       1.92     pooka 		 */
   1189      1.127       jym 		for (pp_first = NULL;;) {
   1190      1.156     pooka 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1191       1.92     pooka 
   1192      1.127       jym 			succ = pool_drain(&pp);
   1193      1.127       jym 			if (succ || pp == pp_first)
   1194       1.80     pooka 				break;
   1195      1.127       jym 
   1196      1.127       jym 			if (pp_first == NULL)
   1197      1.127       jym 				pp_first = pp;
   1198       1.80     pooka 		}
   1199       1.92     pooka 
   1200       1.92     pooka 		/*
   1201       1.92     pooka 		 * Need to use PYEC on our bag of tricks.
   1202       1.92     pooka 		 * Unfortunately, the wife just borrowed it.
   1203       1.92     pooka 		 */
   1204       1.80     pooka 
   1205      1.113     pooka 		mutex_enter(&pdaemonmtx);
   1206      1.113     pooka 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1207      1.113     pooka 		    uvmexp.paging == 0) {
   1208       1.80     pooka 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1209       1.80     pooka 			    "memory ... sleeping (deadlock?)\n");
   1210      1.167     pooka 			kpause("pddlk", false, hz, &pdaemonmtx);
   1211       1.80     pooka 		}
   1212       1.80     pooka 	}
   1213       1.80     pooka 
   1214       1.80     pooka 	panic("you can swap out any time you like, but you can never leave");
   1215       1.80     pooka }
   1216       1.80     pooka 
   1217       1.80     pooka void
   1218       1.80     pooka uvm_kick_pdaemon()
   1219       1.80     pooka {
   1220       1.80     pooka 
   1221       1.92     pooka 	/*
   1222       1.92     pooka 	 * Wake up the diabolical pagedaemon director if we are over
   1223       1.92     pooka 	 * 90% of the memory limit.  This is a complete and utter
   1224       1.92     pooka 	 * stetson-harrison decision which you are allowed to finetune.
   1225       1.92     pooka 	 * Don't bother locking.  If we have some unflushed caches,
   1226       1.92     pooka 	 * other waker-uppers will deal with the issue.
   1227       1.92     pooka 	 */
   1228       1.92     pooka 	if (NEED_PAGEDAEMON()) {
   1229       1.92     pooka 		cv_signal(&pdaemoncv);
   1230       1.92     pooka 	}
   1231       1.80     pooka }
   1232       1.80     pooka 
   1233       1.80     pooka void *
   1234       1.80     pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1235       1.80     pooka {
   1236      1.150     pooka 	const unsigned long thelimit =
   1237      1.150     pooka 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1238       1.84     pooka 	unsigned long newmem;
   1239       1.80     pooka 	void *rv;
   1240      1.142     pooka 	int error;
   1241       1.80     pooka 
   1242       1.92     pooka 	uvm_kick_pdaemon(); /* ouch */
   1243       1.92     pooka 
   1244       1.84     pooka 	/* first we must be within the limit */
   1245       1.84     pooka  limitagain:
   1246      1.150     pooka 	if (thelimit != RUMPMEM_UNLIMITED) {
   1247       1.84     pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1248      1.150     pooka 		if (newmem > thelimit) {
   1249       1.84     pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1250      1.103     pooka 			if (!waitok) {
   1251       1.84     pooka 				return NULL;
   1252      1.103     pooka 			}
   1253       1.84     pooka 			uvm_wait(wmsg);
   1254       1.84     pooka 			goto limitagain;
   1255       1.84     pooka 		}
   1256       1.84     pooka 	}
   1257       1.84     pooka 
   1258       1.84     pooka 	/* second, we must get something from the backend */
   1259       1.80     pooka  again:
   1260      1.142     pooka 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1261      1.142     pooka 	if (__predict_false(error && waitok)) {
   1262       1.80     pooka 		uvm_wait(wmsg);
   1263       1.80     pooka 		goto again;
   1264       1.80     pooka 	}
   1265       1.80     pooka 
   1266       1.80     pooka 	return rv;
   1267       1.80     pooka }
   1268       1.84     pooka 
   1269       1.84     pooka void
   1270       1.84     pooka rump_hyperfree(void *what, size_t size)
   1271       1.84     pooka {
   1272       1.84     pooka 
   1273       1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1274       1.84     pooka 		atomic_add_long(&curphysmem, -size);
   1275       1.84     pooka 	}
   1276      1.138     pooka 	rumpuser_free(what, size);
   1277       1.84     pooka }
   1278