vm.c revision 1.183 1 1.183 ad /* $NetBSD: vm.c,v 1.183 2020/01/15 17:55:44 ad Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.114 pooka * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.76 pooka * Development of this software was supported by
7 1.76 pooka * The Finnish Cultural Foundation and the Research Foundation of
8 1.76 pooka * The Helsinki University of Technology.
9 1.1 pooka *
10 1.1 pooka * Redistribution and use in source and binary forms, with or without
11 1.1 pooka * modification, are permitted provided that the following conditions
12 1.1 pooka * are met:
13 1.1 pooka * 1. Redistributions of source code must retain the above copyright
14 1.1 pooka * notice, this list of conditions and the following disclaimer.
15 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer in the
17 1.1 pooka * documentation and/or other materials provided with the distribution.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka */
31 1.1 pooka
32 1.1 pooka /*
33 1.88 pooka * Virtual memory emulation routines.
34 1.1 pooka */
35 1.1 pooka
36 1.1 pooka /*
37 1.5 pooka * XXX: we abuse pg->uanon for the virtual address of the storage
38 1.1 pooka * for each page. phys_addr would fit the job description better,
39 1.1 pooka * except that it will create unnecessary lossage on some platforms
40 1.1 pooka * due to not being a pointer type.
41 1.1 pooka */
42 1.1 pooka
43 1.48 pooka #include <sys/cdefs.h>
44 1.183 ad __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.183 2020/01/15 17:55:44 ad Exp $");
45 1.48 pooka
46 1.1 pooka #include <sys/param.h>
47 1.40 pooka #include <sys/atomic.h>
48 1.80 pooka #include <sys/buf.h>
49 1.80 pooka #include <sys/kernel.h>
50 1.67 pooka #include <sys/kmem.h>
51 1.121 para #include <sys/vmem.h>
52 1.69 pooka #include <sys/mman.h>
53 1.1 pooka #include <sys/null.h>
54 1.1 pooka #include <sys/vnode.h>
55 1.175 ad #include <sys/radixtree.h>
56 1.1 pooka
57 1.34 pooka #include <machine/pmap.h>
58 1.34 pooka
59 1.1 pooka #include <uvm/uvm.h>
60 1.56 pooka #include <uvm/uvm_ddb.h>
61 1.88 pooka #include <uvm/uvm_pdpolicy.h>
62 1.1 pooka #include <uvm/uvm_prot.h>
63 1.58 he #include <uvm/uvm_readahead.h>
64 1.160 chs #include <uvm/uvm_device.h>
65 1.1 pooka
66 1.169 pooka #include <rump-sys/kern.h>
67 1.169 pooka #include <rump-sys/vfs.h>
68 1.169 pooka
69 1.169 pooka #include <rump/rumpuser.h>
70 1.1 pooka
71 1.174 ad kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
72 1.152 pooka kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
73 1.88 pooka kmutex_t uvm_swap_data_lock;
74 1.25 ad
75 1.1 pooka struct uvmexp uvmexp;
76 1.7 pooka struct uvm uvm;
77 1.1 pooka
78 1.112 pooka #ifdef __uvmexp_pagesize
79 1.123 martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
80 1.123 martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
81 1.123 martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
82 1.112 pooka #endif
83 1.112 pooka
84 1.121 para static struct vm_map kernel_map_store;
85 1.121 para struct vm_map *kernel_map = &kernel_map_store;
86 1.121 para
87 1.130 pooka static struct vm_map module_map_store;
88 1.130 pooka extern struct vm_map *module_map;
89 1.130 pooka
90 1.164 pooka static struct pmap pmap_kernel;
91 1.164 pooka struct pmap rump_pmap_local;
92 1.164 pooka struct pmap *const kernel_pmap_ptr = &pmap_kernel;
93 1.164 pooka
94 1.121 para vmem_t *kmem_arena;
95 1.121 para vmem_t *kmem_va_arena;
96 1.35 pooka
97 1.80 pooka static unsigned int pdaemon_waiters;
98 1.80 pooka static kmutex_t pdaemonmtx;
99 1.80 pooka static kcondvar_t pdaemoncv, oomwait;
100 1.80 pooka
101 1.162 pooka /* all local non-proc0 processes share this vmspace */
102 1.162 pooka struct vmspace *rump_vmspace_local;
103 1.162 pooka
104 1.91 pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
105 1.147 pooka static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
106 1.84 pooka static unsigned long curphysmem;
107 1.92 pooka static unsigned long dddlim; /* 90% of memory limit used */
108 1.92 pooka #define NEED_PAGEDAEMON() \
109 1.92 pooka (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
110 1.158 pooka #define PDRESERVE (2*MAXPHYS)
111 1.92 pooka
112 1.92 pooka /*
113 1.92 pooka * Try to free two pages worth of pages from objects.
114 1.92 pooka * If this succesfully frees a full page cache page, we'll
115 1.120 yamt * free the released page plus PAGE_SIZE/sizeof(vm_page).
116 1.92 pooka */
117 1.92 pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
118 1.92 pooka
119 1.92 pooka /*
120 1.92 pooka * Keep a list of least recently used pages. Since the only way a
121 1.92 pooka * rump kernel can "access" a page is via lookup, we put the page
122 1.92 pooka * at the back of queue every time a lookup for it is done. If the
123 1.92 pooka * page is in front of this global queue and we're short of memory,
124 1.92 pooka * it's a candidate for pageout.
125 1.92 pooka */
126 1.92 pooka static struct pglist vmpage_lruqueue;
127 1.92 pooka static unsigned vmpage_onqueue;
128 1.84 pooka
129 1.1 pooka /*
130 1.1 pooka * vm pages
131 1.1 pooka */
132 1.1 pooka
133 1.90 pooka static int
134 1.90 pooka pgctor(void *arg, void *obj, int flags)
135 1.90 pooka {
136 1.90 pooka struct vm_page *pg = obj;
137 1.90 pooka
138 1.90 pooka memset(pg, 0, sizeof(*pg));
139 1.103 pooka pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
140 1.103 pooka (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
141 1.103 pooka return pg->uanon == NULL;
142 1.90 pooka }
143 1.90 pooka
144 1.90 pooka static void
145 1.90 pooka pgdtor(void *arg, void *obj)
146 1.90 pooka {
147 1.90 pooka struct vm_page *pg = obj;
148 1.90 pooka
149 1.90 pooka rump_hyperfree(pg->uanon, PAGE_SIZE);
150 1.90 pooka }
151 1.90 pooka
152 1.90 pooka static struct pool_cache pagecache;
153 1.90 pooka
154 1.92 pooka /*
155 1.92 pooka * Called with the object locked. We don't support anons.
156 1.92 pooka */
157 1.1 pooka struct vm_page *
158 1.76 pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
159 1.76 pooka int flags, int strat, int free_list)
160 1.1 pooka {
161 1.1 pooka struct vm_page *pg;
162 1.1 pooka
163 1.115 rmind KASSERT(uobj && mutex_owned(uobj->vmobjlock));
164 1.92 pooka KASSERT(anon == NULL);
165 1.92 pooka
166 1.103 pooka pg = pool_cache_get(&pagecache, PR_NOWAIT);
167 1.104 pooka if (__predict_false(pg == NULL)) {
168 1.103 pooka return NULL;
169 1.104 pooka }
170 1.181 ad mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
171 1.103 pooka
172 1.1 pooka pg->offset = off;
173 1.5 pooka pg->uobject = uobj;
174 1.1 pooka
175 1.22 pooka pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
176 1.90 pooka if (flags & UVM_PGA_ZERO) {
177 1.90 pooka uvm_pagezero(pg);
178 1.90 pooka }
179 1.1 pooka
180 1.175 ad if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
181 1.175 ad pg) != 0) {
182 1.175 ad pool_cache_put(&pagecache, pg);
183 1.175 ad return NULL;
184 1.175 ad }
185 1.89 pooka
186 1.92 pooka /*
187 1.93 pooka * Don't put anons on the LRU page queue. We can't flush them
188 1.93 pooka * (there's no concept of swap in a rump kernel), so no reason
189 1.93 pooka * to bother with them.
190 1.92 pooka */
191 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
192 1.92 pooka atomic_inc_uint(&vmpage_onqueue);
193 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
194 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
195 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
196 1.92 pooka }
197 1.92 pooka
198 1.59 pooka uobj->uo_npages++;
199 1.21 pooka
200 1.1 pooka return pg;
201 1.1 pooka }
202 1.1 pooka
203 1.21 pooka /*
204 1.21 pooka * Release a page.
205 1.21 pooka *
206 1.22 pooka * Called with the vm object locked.
207 1.21 pooka */
208 1.1 pooka void
209 1.22 pooka uvm_pagefree(struct vm_page *pg)
210 1.1 pooka {
211 1.5 pooka struct uvm_object *uobj = pg->uobject;
212 1.175 ad struct vm_page *pg2 __unused;
213 1.1 pooka
214 1.115 rmind KASSERT(mutex_owned(uobj->vmobjlock));
215 1.92 pooka
216 1.22 pooka if (pg->flags & PG_WANTED)
217 1.22 pooka wakeup(pg);
218 1.22 pooka
219 1.59 pooka uobj->uo_npages--;
220 1.175 ad pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
221 1.175 ad KASSERT(pg == pg2);
222 1.92 pooka
223 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
224 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
225 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
226 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
227 1.92 pooka atomic_dec_uint(&vmpage_onqueue);
228 1.92 pooka }
229 1.92 pooka
230 1.181 ad mutex_destroy(&pg->interlock);
231 1.90 pooka pool_cache_put(&pagecache, pg);
232 1.1 pooka }
233 1.1 pooka
234 1.15 pooka void
235 1.61 pooka uvm_pagezero(struct vm_page *pg)
236 1.15 pooka {
237 1.15 pooka
238 1.183 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
239 1.61 pooka memset((void *)pg->uanon, 0, PAGE_SIZE);
240 1.15 pooka }
241 1.15 pooka
242 1.1 pooka /*
243 1.178 ad * uvm_page_owner_locked_p: return true if object associated with page is
244 1.136 yamt * locked. this is a weak check for runtime assertions only.
245 1.136 yamt */
246 1.136 yamt
247 1.136 yamt bool
248 1.178 ad uvm_page_owner_locked_p(struct vm_page *pg)
249 1.136 yamt {
250 1.136 yamt
251 1.136 yamt return mutex_owned(pg->uobject->vmobjlock);
252 1.136 yamt }
253 1.136 yamt
254 1.136 yamt /*
255 1.1 pooka * Misc routines
256 1.1 pooka */
257 1.1 pooka
258 1.61 pooka static kmutex_t pagermtx;
259 1.61 pooka
260 1.1 pooka void
261 1.79 pooka uvm_init(void)
262 1.1 pooka {
263 1.84 pooka char buf[64];
264 1.84 pooka
265 1.141 pooka if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
266 1.105 pooka unsigned long tmp;
267 1.105 pooka char *ep;
268 1.105 pooka int mult;
269 1.105 pooka
270 1.109 pooka tmp = strtoul(buf, &ep, 10);
271 1.105 pooka if (strlen(ep) > 1)
272 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
273 1.105 pooka
274 1.105 pooka /* mini-dehumanize-number */
275 1.105 pooka mult = 1;
276 1.105 pooka switch (*ep) {
277 1.105 pooka case 'k':
278 1.105 pooka mult = 1024;
279 1.105 pooka break;
280 1.105 pooka case 'm':
281 1.105 pooka mult = 1024*1024;
282 1.105 pooka break;
283 1.105 pooka case 'g':
284 1.105 pooka mult = 1024*1024*1024;
285 1.105 pooka break;
286 1.105 pooka case 0:
287 1.105 pooka break;
288 1.105 pooka default:
289 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
290 1.105 pooka }
291 1.105 pooka rump_physmemlimit = tmp * mult;
292 1.105 pooka
293 1.105 pooka if (rump_physmemlimit / mult != tmp)
294 1.105 pooka panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
295 1.147 pooka
296 1.147 pooka /* reserve some memory for the pager */
297 1.158 pooka if (rump_physmemlimit <= PDRESERVE)
298 1.158 pooka panic("uvm_init: system reserves %d bytes of mem, "
299 1.158 pooka "only %lu bytes given",
300 1.158 pooka PDRESERVE, rump_physmemlimit);
301 1.147 pooka pdlimit = rump_physmemlimit;
302 1.158 pooka rump_physmemlimit -= PDRESERVE;
303 1.105 pooka
304 1.157 pooka if (pdlimit < 1024*1024)
305 1.157 pooka printf("uvm_init: WARNING: <1MB RAM limit, "
306 1.157 pooka "hope you know what you're doing\n");
307 1.157 pooka
308 1.84 pooka #define HUMANIZE_BYTES 9
309 1.84 pooka CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
310 1.91 pooka format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
311 1.84 pooka #undef HUMANIZE_BYTES
312 1.92 pooka dddlim = 9 * (rump_physmemlimit / 10);
313 1.84 pooka } else {
314 1.84 pooka strlcpy(buf, "unlimited (host limit)", sizeof(buf));
315 1.84 pooka }
316 1.84 pooka aprint_verbose("total memory = %s\n", buf);
317 1.1 pooka
318 1.92 pooka TAILQ_INIT(&vmpage_lruqueue);
319 1.92 pooka
320 1.157 pooka if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
321 1.157 pooka uvmexp.npages = physmem;
322 1.157 pooka } else {
323 1.157 pooka uvmexp.npages = pdlimit >> PAGE_SHIFT;
324 1.158 pooka uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
325 1.157 pooka uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
326 1.157 pooka }
327 1.157 pooka /*
328 1.157 pooka * uvmexp.free is not used internally or updated. The reason is
329 1.157 pooka * that the memory hypercall allocator is allowed to allocate
330 1.157 pooka * non-page sized chunks. We use a byte count in curphysmem
331 1.157 pooka * instead.
332 1.157 pooka */
333 1.157 pooka uvmexp.free = uvmexp.npages;
334 1.21 pooka
335 1.112 pooka #ifndef __uvmexp_pagesize
336 1.112 pooka uvmexp.pagesize = PAGE_SIZE;
337 1.112 pooka uvmexp.pagemask = PAGE_MASK;
338 1.112 pooka uvmexp.pageshift = PAGE_SHIFT;
339 1.112 pooka #else
340 1.112 pooka #define FAKE_PAGE_SHIFT 12
341 1.112 pooka uvmexp.pageshift = FAKE_PAGE_SHIFT;
342 1.112 pooka uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
343 1.112 pooka uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
344 1.112 pooka #undef FAKE_PAGE_SHIFT
345 1.112 pooka #endif
346 1.112 pooka
347 1.140 pooka mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
348 1.174 ad mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
349 1.140 pooka mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
350 1.35 pooka
351 1.152 pooka /* just to appease linkage */
352 1.152 pooka mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
353 1.152 pooka
354 1.140 pooka mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
355 1.80 pooka cv_init(&pdaemoncv, "pdaemon");
356 1.80 pooka cv_init(&oomwait, "oomwait");
357 1.80 pooka
358 1.130 pooka module_map = &module_map_store;
359 1.130 pooka
360 1.50 pooka kernel_map->pmap = pmap_kernel();
361 1.121 para
362 1.122 njoly pool_subsystem_init();
363 1.128 pooka
364 1.121 para kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
365 1.121 para NULL, NULL, NULL,
366 1.121 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
367 1.121 para
368 1.135 para vmem_subsystem_init(kmem_arena);
369 1.121 para
370 1.121 para kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
371 1.121 para vmem_alloc, vmem_free, kmem_arena,
372 1.124 para 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
373 1.90 pooka
374 1.90 pooka pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
375 1.90 pooka "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
376 1.162 pooka
377 1.175 ad radix_tree_init();
378 1.175 ad
379 1.162 pooka /* create vmspace used by local clients */
380 1.162 pooka rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
381 1.164 pooka uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
382 1.1 pooka }
383 1.1 pooka
384 1.83 pooka void
385 1.145 martin uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
386 1.145 martin bool topdown)
387 1.83 pooka {
388 1.83 pooka
389 1.162 pooka vm->vm_map.pmap = pmap;
390 1.83 pooka vm->vm_refcnt = 1;
391 1.83 pooka }
392 1.1 pooka
393 1.173 nat int
394 1.173 nat uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
395 1.173 nat bool new_pageable, int lockflags)
396 1.173 nat {
397 1.173 nat return 0;
398 1.173 nat }
399 1.173 nat
400 1.1 pooka void
401 1.7 pooka uvm_pagewire(struct vm_page *pg)
402 1.7 pooka {
403 1.7 pooka
404 1.7 pooka /* nada */
405 1.7 pooka }
406 1.7 pooka
407 1.7 pooka void
408 1.7 pooka uvm_pageunwire(struct vm_page *pg)
409 1.7 pooka {
410 1.7 pooka
411 1.7 pooka /* nada */
412 1.7 pooka }
413 1.7 pooka
414 1.177 ad int
415 1.179 ad uvm_availmem(void)
416 1.177 ad {
417 1.177 ad
418 1.177 ad return uvmexp.free;
419 1.177 ad }
420 1.177 ad
421 1.180 ad void
422 1.180 ad uvm_pagelock(struct vm_page *pg)
423 1.180 ad {
424 1.180 ad
425 1.180 ad mutex_enter(&pg->interlock);
426 1.180 ad }
427 1.180 ad
428 1.180 ad void
429 1.180 ad uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
430 1.180 ad {
431 1.180 ad
432 1.180 ad if (pg1 < pg2) {
433 1.180 ad mutex_enter(&pg1->interlock);
434 1.180 ad mutex_enter(&pg2->interlock);
435 1.180 ad } else {
436 1.180 ad mutex_enter(&pg2->interlock);
437 1.180 ad mutex_enter(&pg1->interlock);
438 1.180 ad }
439 1.180 ad }
440 1.180 ad
441 1.180 ad void
442 1.180 ad uvm_pageunlock(struct vm_page *pg)
443 1.180 ad {
444 1.180 ad
445 1.180 ad mutex_exit(&pg->interlock);
446 1.180 ad }
447 1.180 ad
448 1.180 ad void
449 1.180 ad uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
450 1.180 ad {
451 1.180 ad
452 1.180 ad mutex_exit(&pg1->interlock);
453 1.180 ad mutex_exit(&pg2->interlock);
454 1.180 ad }
455 1.180 ad
456 1.83 pooka /* where's your schmonz now? */
457 1.83 pooka #define PUNLIMIT(a) \
458 1.83 pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
459 1.83 pooka void
460 1.83 pooka uvm_init_limits(struct proc *p)
461 1.83 pooka {
462 1.83 pooka
463 1.155 pooka #ifndef DFLSSIZ
464 1.155 pooka #define DFLSSIZ (16*1024*1024)
465 1.155 pooka #endif
466 1.154 pooka p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
467 1.154 pooka p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
468 1.83 pooka PUNLIMIT(RLIMIT_DATA);
469 1.83 pooka PUNLIMIT(RLIMIT_RSS);
470 1.83 pooka PUNLIMIT(RLIMIT_AS);
471 1.83 pooka /* nice, cascade */
472 1.83 pooka }
473 1.83 pooka #undef PUNLIMIT
474 1.83 pooka
475 1.69 pooka /*
476 1.69 pooka * This satisfies the "disgusting mmap hack" used by proplib.
477 1.69 pooka */
478 1.49 pooka int
479 1.160 chs uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
480 1.49 pooka {
481 1.69 pooka int error;
482 1.49 pooka
483 1.69 pooka /* no reason in particular, but cf. uvm_default_mapaddr() */
484 1.160 chs if (*addrp != NULL)
485 1.69 pooka panic("uvm_mmap() variant unsupported");
486 1.69 pooka
487 1.106 pooka if (RUMP_LOCALPROC_P(curproc)) {
488 1.160 chs error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
489 1.98 pooka } else {
490 1.166 pooka error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
491 1.160 chs size, addrp);
492 1.98 pooka }
493 1.160 chs return error;
494 1.160 chs }
495 1.69 pooka
496 1.160 chs /*
497 1.160 chs * Stubs for things referenced from vfs_vnode.c but not used.
498 1.160 chs */
499 1.160 chs const dev_t zerodev;
500 1.160 chs
501 1.160 chs struct uvm_object *
502 1.160 chs udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
503 1.160 chs {
504 1.160 chs return NULL;
505 1.49 pooka }
506 1.49 pooka
507 1.61 pooka struct pagerinfo {
508 1.61 pooka vaddr_t pgr_kva;
509 1.61 pooka int pgr_npages;
510 1.61 pooka struct vm_page **pgr_pgs;
511 1.61 pooka bool pgr_read;
512 1.61 pooka
513 1.61 pooka LIST_ENTRY(pagerinfo) pgr_entries;
514 1.61 pooka };
515 1.61 pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
516 1.61 pooka
517 1.61 pooka /*
518 1.61 pooka * Pager "map" in routine. Instead of mapping, we allocate memory
519 1.159 pooka * and copy page contents there. The reason for copying instead of
520 1.159 pooka * mapping is simple: we do not assume we are running on virtual
521 1.159 pooka * memory. Even if we could emulate virtual memory in some envs
522 1.159 pooka * such as userspace, copying is much faster than trying to awkardly
523 1.159 pooka * cope with remapping (see "Design and Implementation" pp.95-98).
524 1.159 pooka * The downside of the approach is that the pager requires MAXPHYS
525 1.159 pooka * free memory to perform paging, but short of virtual memory or
526 1.159 pooka * making the pager do I/O in page-sized chunks we cannot do much
527 1.159 pooka * about that.
528 1.61 pooka */
529 1.7 pooka vaddr_t
530 1.61 pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
531 1.7 pooka {
532 1.61 pooka struct pagerinfo *pgri;
533 1.61 pooka vaddr_t curkva;
534 1.61 pooka int i;
535 1.61 pooka
536 1.61 pooka /* allocate structures */
537 1.61 pooka pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
538 1.61 pooka pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
539 1.61 pooka pgri->pgr_npages = npages;
540 1.61 pooka pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
541 1.61 pooka pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
542 1.61 pooka
543 1.61 pooka /* copy contents to "mapped" memory */
544 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
545 1.61 pooka i < npages;
546 1.61 pooka i++, curkva += PAGE_SIZE) {
547 1.61 pooka /*
548 1.61 pooka * We need to copy the previous contents of the pages to
549 1.61 pooka * the window even if we are reading from the
550 1.61 pooka * device, since the device might not fill the contents of
551 1.61 pooka * the full mapped range and we will end up corrupting
552 1.61 pooka * data when we unmap the window.
553 1.61 pooka */
554 1.61 pooka memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
555 1.61 pooka pgri->pgr_pgs[i] = pgs[i];
556 1.61 pooka }
557 1.61 pooka
558 1.61 pooka mutex_enter(&pagermtx);
559 1.61 pooka LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
560 1.61 pooka mutex_exit(&pagermtx);
561 1.7 pooka
562 1.61 pooka return pgri->pgr_kva;
563 1.7 pooka }
564 1.7 pooka
565 1.61 pooka /*
566 1.61 pooka * map out the pager window. return contents from VA to page storage
567 1.61 pooka * and free structures.
568 1.61 pooka *
569 1.61 pooka * Note: does not currently support partial frees
570 1.61 pooka */
571 1.61 pooka void
572 1.61 pooka uvm_pagermapout(vaddr_t kva, int npages)
573 1.7 pooka {
574 1.61 pooka struct pagerinfo *pgri;
575 1.61 pooka vaddr_t curkva;
576 1.61 pooka int i;
577 1.7 pooka
578 1.61 pooka mutex_enter(&pagermtx);
579 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
580 1.61 pooka if (pgri->pgr_kva == kva)
581 1.61 pooka break;
582 1.61 pooka }
583 1.61 pooka KASSERT(pgri);
584 1.61 pooka if (pgri->pgr_npages != npages)
585 1.61 pooka panic("uvm_pagermapout: partial unmapping not supported");
586 1.61 pooka LIST_REMOVE(pgri, pgr_entries);
587 1.61 pooka mutex_exit(&pagermtx);
588 1.61 pooka
589 1.61 pooka if (pgri->pgr_read) {
590 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
591 1.61 pooka i < pgri->pgr_npages;
592 1.61 pooka i++, curkva += PAGE_SIZE) {
593 1.61 pooka memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
594 1.21 pooka }
595 1.21 pooka }
596 1.10 pooka
597 1.61 pooka kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
598 1.61 pooka kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
599 1.61 pooka kmem_free(pgri, sizeof(*pgri));
600 1.7 pooka }
601 1.7 pooka
602 1.61 pooka /*
603 1.61 pooka * convert va in pager window to page structure.
604 1.61 pooka * XXX: how expensive is this (global lock, list traversal)?
605 1.61 pooka */
606 1.14 pooka struct vm_page *
607 1.14 pooka uvm_pageratop(vaddr_t va)
608 1.14 pooka {
609 1.61 pooka struct pagerinfo *pgri;
610 1.61 pooka struct vm_page *pg = NULL;
611 1.61 pooka int i;
612 1.14 pooka
613 1.61 pooka mutex_enter(&pagermtx);
614 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
615 1.61 pooka if (pgri->pgr_kva <= va
616 1.61 pooka && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
617 1.21 pooka break;
618 1.61 pooka }
619 1.61 pooka if (pgri) {
620 1.61 pooka i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
621 1.61 pooka pg = pgri->pgr_pgs[i];
622 1.61 pooka }
623 1.61 pooka mutex_exit(&pagermtx);
624 1.21 pooka
625 1.61 pooka return pg;
626 1.61 pooka }
627 1.15 pooka
628 1.97 pooka /*
629 1.97 pooka * Called with the vm object locked.
630 1.97 pooka *
631 1.97 pooka * Put vnode object pages at the end of the access queue to indicate
632 1.97 pooka * they have been recently accessed and should not be immediate
633 1.97 pooka * candidates for pageout. Do not do this for lookups done by
634 1.97 pooka * the pagedaemon to mimic pmap_kentered mappings which don't track
635 1.97 pooka * access information.
636 1.97 pooka */
637 1.61 pooka struct vm_page *
638 1.61 pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
639 1.61 pooka {
640 1.92 pooka struct vm_page *pg;
641 1.97 pooka bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
642 1.61 pooka
643 1.175 ad pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
644 1.97 pooka if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
645 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
646 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
647 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
648 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
649 1.92 pooka }
650 1.92 pooka
651 1.92 pooka return pg;
652 1.14 pooka }
653 1.14 pooka
654 1.7 pooka void
655 1.22 pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
656 1.22 pooka {
657 1.22 pooka struct vm_page *pg;
658 1.22 pooka int i;
659 1.22 pooka
660 1.94 pooka KASSERT(npgs > 0);
661 1.115 rmind KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
662 1.94 pooka
663 1.22 pooka for (i = 0; i < npgs; i++) {
664 1.22 pooka pg = pgs[i];
665 1.22 pooka if (pg == NULL)
666 1.22 pooka continue;
667 1.22 pooka
668 1.22 pooka KASSERT(pg->flags & PG_BUSY);
669 1.22 pooka if (pg->flags & PG_WANTED)
670 1.22 pooka wakeup(pg);
671 1.36 pooka if (pg->flags & PG_RELEASED)
672 1.36 pooka uvm_pagefree(pg);
673 1.36 pooka else
674 1.36 pooka pg->flags &= ~(PG_WANTED|PG_BUSY);
675 1.22 pooka }
676 1.22 pooka }
677 1.22 pooka
678 1.22 pooka void
679 1.7 pooka uvm_estimatepageable(int *active, int *inactive)
680 1.7 pooka {
681 1.7 pooka
682 1.19 pooka /* XXX: guessing game */
683 1.19 pooka *active = 1024;
684 1.19 pooka *inactive = 1024;
685 1.7 pooka }
686 1.7 pooka
687 1.41 pooka int
688 1.41 pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
689 1.41 pooka {
690 1.41 pooka
691 1.41 pooka panic("%s: unimplemented", __func__);
692 1.41 pooka }
693 1.41 pooka
694 1.41 pooka void
695 1.41 pooka uvm_unloan(void *v, int npages, int flags)
696 1.41 pooka {
697 1.41 pooka
698 1.41 pooka panic("%s: unimplemented", __func__);
699 1.41 pooka }
700 1.41 pooka
701 1.43 pooka int
702 1.43 pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
703 1.43 pooka struct vm_page **opp)
704 1.43 pooka {
705 1.43 pooka
706 1.72 pooka return EBUSY;
707 1.43 pooka }
708 1.43 pooka
709 1.116 mrg struct vm_page *
710 1.116 mrg uvm_loanbreak(struct vm_page *pg)
711 1.116 mrg {
712 1.116 mrg
713 1.116 mrg panic("%s: unimplemented", __func__);
714 1.116 mrg }
715 1.116 mrg
716 1.116 mrg void
717 1.116 mrg ubc_purge(struct uvm_object *uobj)
718 1.116 mrg {
719 1.116 mrg
720 1.116 mrg }
721 1.116 mrg
722 1.68 pooka vaddr_t
723 1.168 martin uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
724 1.68 pooka {
725 1.68 pooka
726 1.68 pooka return 0;
727 1.68 pooka }
728 1.68 pooka
729 1.71 pooka int
730 1.71 pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
731 1.71 pooka vm_prot_t prot, bool set_max)
732 1.71 pooka {
733 1.71 pooka
734 1.71 pooka return EOPNOTSUPP;
735 1.71 pooka }
736 1.71 pooka
737 1.171 martin int
738 1.171 martin uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
739 1.171 martin struct uvm_object *uobj, voff_t uoffset, vsize_t align,
740 1.171 martin uvm_flag_t flags)
741 1.171 martin {
742 1.171 martin
743 1.172 martin *startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
744 1.172 martin return *startp != 0 ? 0 : ENOMEM;
745 1.172 martin }
746 1.172 martin
747 1.172 martin void
748 1.172 martin uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
749 1.172 martin {
750 1.172 martin
751 1.172 martin rump_hyperfree((void*)start, end-start);
752 1.171 martin }
753 1.171 martin
754 1.171 martin
755 1.9 pooka /*
756 1.12 pooka * UVM km
757 1.12 pooka */
758 1.12 pooka
759 1.12 pooka vaddr_t
760 1.12 pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
761 1.12 pooka {
762 1.82 pooka void *rv, *desired = NULL;
763 1.50 pooka int alignbit, error;
764 1.50 pooka
765 1.82 pooka #ifdef __x86_64__
766 1.82 pooka /*
767 1.82 pooka * On amd64, allocate all module memory from the lowest 2GB.
768 1.82 pooka * This is because NetBSD kernel modules are compiled
769 1.82 pooka * with -mcmodel=kernel and reserve only 4 bytes for
770 1.82 pooka * offsets. If we load code compiled with -mcmodel=kernel
771 1.82 pooka * anywhere except the lowest or highest 2GB, it will not
772 1.82 pooka * work. Since userspace does not have access to the highest
773 1.82 pooka * 2GB, use the lowest 2GB.
774 1.82 pooka *
775 1.82 pooka * Note: this assumes the rump kernel resides in
776 1.82 pooka * the lowest 2GB as well.
777 1.82 pooka *
778 1.82 pooka * Note2: yes, it's a quick hack, but since this the only
779 1.82 pooka * place where we care about the map we're allocating from,
780 1.82 pooka * just use a simple "if" instead of coming up with a fancy
781 1.82 pooka * generic solution.
782 1.82 pooka */
783 1.82 pooka if (map == module_map) {
784 1.82 pooka desired = (void *)(0x80000000 - size);
785 1.82 pooka }
786 1.82 pooka #endif
787 1.82 pooka
788 1.130 pooka if (__predict_false(map == module_map)) {
789 1.130 pooka alignbit = 0;
790 1.130 pooka if (align) {
791 1.130 pooka alignbit = ffs(align)-1;
792 1.130 pooka }
793 1.142 pooka error = rumpuser_anonmmap(desired, size, alignbit,
794 1.142 pooka flags & UVM_KMF_EXEC, &rv);
795 1.130 pooka } else {
796 1.142 pooka error = rumpuser_malloc(size, align, &rv);
797 1.50 pooka }
798 1.50 pooka
799 1.142 pooka if (error) {
800 1.50 pooka if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
801 1.50 pooka return 0;
802 1.50 pooka else
803 1.50 pooka panic("uvm_km_alloc failed");
804 1.50 pooka }
805 1.12 pooka
806 1.50 pooka if (flags & UVM_KMF_ZERO)
807 1.12 pooka memset(rv, 0, size);
808 1.12 pooka
809 1.12 pooka return (vaddr_t)rv;
810 1.12 pooka }
811 1.12 pooka
812 1.12 pooka void
813 1.12 pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
814 1.12 pooka {
815 1.12 pooka
816 1.130 pooka if (__predict_false(map == module_map))
817 1.130 pooka rumpuser_unmap((void *)vaddr, size);
818 1.130 pooka else
819 1.138 pooka rumpuser_free((void *)vaddr, size);
820 1.12 pooka }
821 1.12 pooka
822 1.170 christos int
823 1.170 christos uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
824 1.170 christos {
825 1.170 christos return 0;
826 1.170 christos }
827 1.170 christos
828 1.12 pooka struct vm_map *
829 1.12 pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
830 1.121 para vsize_t size, int pageable, bool fixed, struct vm_map *submap)
831 1.12 pooka {
832 1.12 pooka
833 1.12 pooka return (struct vm_map *)417416;
834 1.12 pooka }
835 1.40 pooka
836 1.121 para int
837 1.121 para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
838 1.121 para vmem_addr_t *addr)
839 1.40 pooka {
840 1.121 para vaddr_t va;
841 1.121 para va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
842 1.121 para (flags & VM_SLEEP), "kmalloc");
843 1.40 pooka
844 1.121 para if (va) {
845 1.121 para *addr = va;
846 1.121 para return 0;
847 1.121 para } else {
848 1.121 para return ENOMEM;
849 1.121 para }
850 1.40 pooka }
851 1.40 pooka
852 1.40 pooka void
853 1.121 para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
854 1.40 pooka {
855 1.40 pooka
856 1.121 para rump_hyperfree((void *)addr, size);
857 1.74 pooka }
858 1.74 pooka
859 1.57 pooka /*
860 1.102 pooka * VM space locking routines. We don't really have to do anything,
861 1.102 pooka * since the pages are always "wired" (both local and remote processes).
862 1.57 pooka */
863 1.57 pooka int
864 1.57 pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
865 1.57 pooka {
866 1.57 pooka
867 1.57 pooka return 0;
868 1.57 pooka }
869 1.57 pooka
870 1.57 pooka void
871 1.57 pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
872 1.57 pooka {
873 1.57 pooka
874 1.57 pooka }
875 1.57 pooka
876 1.102 pooka /*
877 1.102 pooka * For the local case the buffer mappers don't need to do anything.
878 1.102 pooka * For the remote case we need to reserve space and copy data in or
879 1.102 pooka * out, depending on B_READ/B_WRITE.
880 1.102 pooka */
881 1.111 pooka int
882 1.57 pooka vmapbuf(struct buf *bp, vsize_t len)
883 1.57 pooka {
884 1.111 pooka int error = 0;
885 1.57 pooka
886 1.57 pooka bp->b_saveaddr = bp->b_data;
887 1.102 pooka
888 1.102 pooka /* remote case */
889 1.106 pooka if (!RUMP_LOCALPROC_P(curproc)) {
890 1.102 pooka bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
891 1.102 pooka if (BUF_ISWRITE(bp)) {
892 1.111 pooka error = copyin(bp->b_saveaddr, bp->b_data, len);
893 1.111 pooka if (error) {
894 1.111 pooka rump_hyperfree(bp->b_data, len);
895 1.111 pooka bp->b_data = bp->b_saveaddr;
896 1.111 pooka bp->b_saveaddr = 0;
897 1.111 pooka }
898 1.102 pooka }
899 1.102 pooka }
900 1.111 pooka
901 1.111 pooka return error;
902 1.57 pooka }
903 1.57 pooka
904 1.57 pooka void
905 1.57 pooka vunmapbuf(struct buf *bp, vsize_t len)
906 1.57 pooka {
907 1.57 pooka
908 1.102 pooka /* remote case */
909 1.106 pooka if (!RUMP_LOCALPROC_P(bp->b_proc)) {
910 1.102 pooka if (BUF_ISREAD(bp)) {
911 1.110 pooka bp->b_error = copyout_proc(bp->b_proc,
912 1.102 pooka bp->b_data, bp->b_saveaddr, len);
913 1.102 pooka }
914 1.102 pooka rump_hyperfree(bp->b_data, len);
915 1.102 pooka }
916 1.102 pooka
917 1.57 pooka bp->b_data = bp->b_saveaddr;
918 1.57 pooka bp->b_saveaddr = 0;
919 1.57 pooka }
920 1.61 pooka
921 1.61 pooka void
922 1.83 pooka uvmspace_addref(struct vmspace *vm)
923 1.83 pooka {
924 1.83 pooka
925 1.83 pooka /*
926 1.103 pooka * No dynamically allocated vmspaces exist.
927 1.83 pooka */
928 1.83 pooka }
929 1.83 pooka
930 1.83 pooka void
931 1.66 pooka uvmspace_free(struct vmspace *vm)
932 1.66 pooka {
933 1.66 pooka
934 1.66 pooka /* nothing for now */
935 1.66 pooka }
936 1.66 pooka
937 1.61 pooka /*
938 1.61 pooka * page life cycle stuff. it really doesn't exist, so just stubs.
939 1.61 pooka */
940 1.61 pooka
941 1.61 pooka void
942 1.61 pooka uvm_pageactivate(struct vm_page *pg)
943 1.61 pooka {
944 1.61 pooka
945 1.61 pooka /* nada */
946 1.61 pooka }
947 1.61 pooka
948 1.61 pooka void
949 1.61 pooka uvm_pagedeactivate(struct vm_page *pg)
950 1.61 pooka {
951 1.61 pooka
952 1.61 pooka /* nada */
953 1.61 pooka }
954 1.61 pooka
955 1.61 pooka void
956 1.61 pooka uvm_pagedequeue(struct vm_page *pg)
957 1.61 pooka {
958 1.61 pooka
959 1.61 pooka /* nada*/
960 1.61 pooka }
961 1.61 pooka
962 1.61 pooka void
963 1.61 pooka uvm_pageenqueue(struct vm_page *pg)
964 1.61 pooka {
965 1.61 pooka
966 1.61 pooka /* nada */
967 1.61 pooka }
968 1.80 pooka
969 1.88 pooka void
970 1.88 pooka uvmpdpol_anfree(struct vm_anon *an)
971 1.88 pooka {
972 1.88 pooka
973 1.88 pooka /* nada */
974 1.88 pooka }
975 1.88 pooka
976 1.80 pooka /*
977 1.99 uebayasi * Physical address accessors.
978 1.99 uebayasi */
979 1.99 uebayasi
980 1.99 uebayasi struct vm_page *
981 1.99 uebayasi uvm_phys_to_vm_page(paddr_t pa)
982 1.99 uebayasi {
983 1.99 uebayasi
984 1.99 uebayasi return NULL;
985 1.99 uebayasi }
986 1.99 uebayasi
987 1.99 uebayasi paddr_t
988 1.99 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
989 1.99 uebayasi {
990 1.99 uebayasi
991 1.99 uebayasi return 0;
992 1.99 uebayasi }
993 1.99 uebayasi
994 1.153 pooka vaddr_t
995 1.153 pooka uvm_uarea_alloc(void)
996 1.153 pooka {
997 1.153 pooka
998 1.153 pooka /* non-zero */
999 1.153 pooka return (vaddr_t)11;
1000 1.153 pooka }
1001 1.153 pooka
1002 1.153 pooka void
1003 1.153 pooka uvm_uarea_free(vaddr_t uarea)
1004 1.153 pooka {
1005 1.153 pooka
1006 1.153 pooka /* nata, so creamy */
1007 1.153 pooka }
1008 1.153 pooka
1009 1.99 uebayasi /*
1010 1.80 pooka * Routines related to the Page Baroness.
1011 1.80 pooka */
1012 1.80 pooka
1013 1.80 pooka void
1014 1.80 pooka uvm_wait(const char *msg)
1015 1.80 pooka {
1016 1.80 pooka
1017 1.80 pooka if (__predict_false(rump_threads == 0))
1018 1.80 pooka panic("pagedaemon missing (RUMP_THREADS = 0)");
1019 1.80 pooka
1020 1.147 pooka if (curlwp == uvm.pagedaemon_lwp) {
1021 1.147 pooka /* is it possible for us to later get memory? */
1022 1.147 pooka if (!uvmexp.paging)
1023 1.147 pooka panic("pagedaemon out of memory");
1024 1.147 pooka }
1025 1.147 pooka
1026 1.80 pooka mutex_enter(&pdaemonmtx);
1027 1.80 pooka pdaemon_waiters++;
1028 1.80 pooka cv_signal(&pdaemoncv);
1029 1.80 pooka cv_wait(&oomwait, &pdaemonmtx);
1030 1.80 pooka mutex_exit(&pdaemonmtx);
1031 1.80 pooka }
1032 1.80 pooka
1033 1.80 pooka void
1034 1.80 pooka uvm_pageout_start(int npages)
1035 1.80 pooka {
1036 1.80 pooka
1037 1.113 pooka mutex_enter(&pdaemonmtx);
1038 1.113 pooka uvmexp.paging += npages;
1039 1.113 pooka mutex_exit(&pdaemonmtx);
1040 1.80 pooka }
1041 1.80 pooka
1042 1.80 pooka void
1043 1.80 pooka uvm_pageout_done(int npages)
1044 1.80 pooka {
1045 1.80 pooka
1046 1.113 pooka if (!npages)
1047 1.113 pooka return;
1048 1.113 pooka
1049 1.113 pooka mutex_enter(&pdaemonmtx);
1050 1.113 pooka KASSERT(uvmexp.paging >= npages);
1051 1.113 pooka uvmexp.paging -= npages;
1052 1.113 pooka
1053 1.113 pooka if (pdaemon_waiters) {
1054 1.113 pooka pdaemon_waiters = 0;
1055 1.113 pooka cv_broadcast(&oomwait);
1056 1.113 pooka }
1057 1.113 pooka mutex_exit(&pdaemonmtx);
1058 1.80 pooka }
1059 1.80 pooka
1060 1.95 pooka static bool
1061 1.104 pooka processpage(struct vm_page *pg, bool *lockrunning)
1062 1.95 pooka {
1063 1.95 pooka struct uvm_object *uobj;
1064 1.95 pooka
1065 1.95 pooka uobj = pg->uobject;
1066 1.115 rmind if (mutex_tryenter(uobj->vmobjlock)) {
1067 1.95 pooka if ((pg->flags & PG_BUSY) == 0) {
1068 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
1069 1.95 pooka uobj->pgops->pgo_put(uobj, pg->offset,
1070 1.95 pooka pg->offset + PAGE_SIZE,
1071 1.95 pooka PGO_CLEANIT|PGO_FREE);
1072 1.115 rmind KASSERT(!mutex_owned(uobj->vmobjlock));
1073 1.95 pooka return true;
1074 1.95 pooka } else {
1075 1.115 rmind mutex_exit(uobj->vmobjlock);
1076 1.95 pooka }
1077 1.104 pooka } else if (*lockrunning == false && ncpu > 1) {
1078 1.104 pooka CPU_INFO_ITERATOR cii;
1079 1.104 pooka struct cpu_info *ci;
1080 1.104 pooka struct lwp *l;
1081 1.104 pooka
1082 1.115 rmind l = mutex_owner(uobj->vmobjlock);
1083 1.104 pooka for (CPU_INFO_FOREACH(cii, ci)) {
1084 1.104 pooka if (ci->ci_curlwp == l) {
1085 1.104 pooka *lockrunning = true;
1086 1.104 pooka break;
1087 1.104 pooka }
1088 1.104 pooka }
1089 1.95 pooka }
1090 1.95 pooka
1091 1.95 pooka return false;
1092 1.95 pooka }
1093 1.95 pooka
1094 1.80 pooka /*
1095 1.92 pooka * The Diabolical pageDaemon Director (DDD).
1096 1.113 pooka *
1097 1.113 pooka * This routine can always use better heuristics.
1098 1.80 pooka */
1099 1.80 pooka void
1100 1.80 pooka uvm_pageout(void *arg)
1101 1.80 pooka {
1102 1.92 pooka struct vm_page *pg;
1103 1.80 pooka struct pool *pp, *pp_first;
1104 1.92 pooka int cleaned, skip, skipped;
1105 1.113 pooka bool succ;
1106 1.104 pooka bool lockrunning;
1107 1.80 pooka
1108 1.80 pooka mutex_enter(&pdaemonmtx);
1109 1.80 pooka for (;;) {
1110 1.113 pooka if (!NEED_PAGEDAEMON()) {
1111 1.92 pooka kernel_map->flags &= ~VM_MAP_WANTVA;
1112 1.92 pooka }
1113 1.92 pooka
1114 1.113 pooka if (pdaemon_waiters) {
1115 1.113 pooka pdaemon_waiters = 0;
1116 1.113 pooka cv_broadcast(&oomwait);
1117 1.104 pooka }
1118 1.92 pooka
1119 1.113 pooka cv_wait(&pdaemoncv, &pdaemonmtx);
1120 1.113 pooka uvmexp.pdwoke++;
1121 1.113 pooka
1122 1.92 pooka /* tell the world that we are hungry */
1123 1.80 pooka kernel_map->flags |= VM_MAP_WANTVA;
1124 1.80 pooka mutex_exit(&pdaemonmtx);
1125 1.80 pooka
1126 1.92 pooka /*
1127 1.92 pooka * step one: reclaim the page cache. this should give
1128 1.92 pooka * us the biggest earnings since whole pages are released
1129 1.92 pooka * into backing memory.
1130 1.92 pooka */
1131 1.92 pooka pool_cache_reclaim(&pagecache);
1132 1.92 pooka if (!NEED_PAGEDAEMON()) {
1133 1.92 pooka mutex_enter(&pdaemonmtx);
1134 1.92 pooka continue;
1135 1.92 pooka }
1136 1.92 pooka
1137 1.92 pooka /*
1138 1.92 pooka * Ok, so that didn't help. Next, try to hunt memory
1139 1.92 pooka * by pushing out vnode pages. The pages might contain
1140 1.92 pooka * useful cached data, but we need the memory.
1141 1.92 pooka */
1142 1.92 pooka cleaned = 0;
1143 1.92 pooka skip = 0;
1144 1.104 pooka lockrunning = false;
1145 1.92 pooka again:
1146 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
1147 1.92 pooka while (cleaned < PAGEDAEMON_OBJCHUNK) {
1148 1.92 pooka skipped = 0;
1149 1.92 pooka TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1150 1.92 pooka
1151 1.92 pooka /*
1152 1.92 pooka * skip over pages we _might_ have tried
1153 1.92 pooka * to handle earlier. they might not be
1154 1.92 pooka * exactly the same ones, but I'm not too
1155 1.92 pooka * concerned.
1156 1.92 pooka */
1157 1.92 pooka while (skipped++ < skip)
1158 1.92 pooka continue;
1159 1.92 pooka
1160 1.104 pooka if (processpage(pg, &lockrunning)) {
1161 1.95 pooka cleaned++;
1162 1.95 pooka goto again;
1163 1.92 pooka }
1164 1.92 pooka
1165 1.92 pooka skip++;
1166 1.92 pooka }
1167 1.92 pooka break;
1168 1.92 pooka }
1169 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
1170 1.92 pooka
1171 1.92 pooka /*
1172 1.104 pooka * Ok, someone is running with an object lock held.
1173 1.104 pooka * We want to yield the host CPU to make sure the
1174 1.104 pooka * thread is not parked on the host. Since sched_yield()
1175 1.104 pooka * doesn't appear to do anything on NetBSD, nanosleep
1176 1.104 pooka * for the smallest possible time and hope we're back in
1177 1.104 pooka * the game soon.
1178 1.104 pooka */
1179 1.104 pooka if (cleaned == 0 && lockrunning) {
1180 1.144 pooka rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
1181 1.104 pooka
1182 1.104 pooka lockrunning = false;
1183 1.104 pooka skip = 0;
1184 1.104 pooka
1185 1.104 pooka /* and here we go again */
1186 1.104 pooka goto again;
1187 1.104 pooka }
1188 1.104 pooka
1189 1.104 pooka /*
1190 1.92 pooka * And of course we need to reclaim the page cache
1191 1.92 pooka * again to actually release memory.
1192 1.92 pooka */
1193 1.92 pooka pool_cache_reclaim(&pagecache);
1194 1.92 pooka if (!NEED_PAGEDAEMON()) {
1195 1.92 pooka mutex_enter(&pdaemonmtx);
1196 1.92 pooka continue;
1197 1.92 pooka }
1198 1.92 pooka
1199 1.92 pooka /*
1200 1.92 pooka * And then drain the pools. Wipe them out ... all of them.
1201 1.92 pooka */
1202 1.127 jym for (pp_first = NULL;;) {
1203 1.156 pooka rump_vfs_drainbufs(10 /* XXX: estimate! */);
1204 1.92 pooka
1205 1.127 jym succ = pool_drain(&pp);
1206 1.127 jym if (succ || pp == pp_first)
1207 1.80 pooka break;
1208 1.127 jym
1209 1.127 jym if (pp_first == NULL)
1210 1.127 jym pp_first = pp;
1211 1.80 pooka }
1212 1.92 pooka
1213 1.92 pooka /*
1214 1.92 pooka * Need to use PYEC on our bag of tricks.
1215 1.92 pooka * Unfortunately, the wife just borrowed it.
1216 1.92 pooka */
1217 1.80 pooka
1218 1.113 pooka mutex_enter(&pdaemonmtx);
1219 1.113 pooka if (!succ && cleaned == 0 && pdaemon_waiters &&
1220 1.113 pooka uvmexp.paging == 0) {
1221 1.80 pooka rumpuser_dprintf("pagedaemoness: failed to reclaim "
1222 1.80 pooka "memory ... sleeping (deadlock?)\n");
1223 1.167 pooka kpause("pddlk", false, hz, &pdaemonmtx);
1224 1.80 pooka }
1225 1.80 pooka }
1226 1.80 pooka
1227 1.80 pooka panic("you can swap out any time you like, but you can never leave");
1228 1.80 pooka }
1229 1.80 pooka
1230 1.80 pooka void
1231 1.80 pooka uvm_kick_pdaemon()
1232 1.80 pooka {
1233 1.80 pooka
1234 1.92 pooka /*
1235 1.92 pooka * Wake up the diabolical pagedaemon director if we are over
1236 1.92 pooka * 90% of the memory limit. This is a complete and utter
1237 1.92 pooka * stetson-harrison decision which you are allowed to finetune.
1238 1.92 pooka * Don't bother locking. If we have some unflushed caches,
1239 1.92 pooka * other waker-uppers will deal with the issue.
1240 1.92 pooka */
1241 1.92 pooka if (NEED_PAGEDAEMON()) {
1242 1.92 pooka cv_signal(&pdaemoncv);
1243 1.92 pooka }
1244 1.80 pooka }
1245 1.80 pooka
1246 1.80 pooka void *
1247 1.80 pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1248 1.80 pooka {
1249 1.150 pooka const unsigned long thelimit =
1250 1.150 pooka curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1251 1.84 pooka unsigned long newmem;
1252 1.80 pooka void *rv;
1253 1.142 pooka int error;
1254 1.80 pooka
1255 1.92 pooka uvm_kick_pdaemon(); /* ouch */
1256 1.92 pooka
1257 1.84 pooka /* first we must be within the limit */
1258 1.84 pooka limitagain:
1259 1.150 pooka if (thelimit != RUMPMEM_UNLIMITED) {
1260 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, howmuch);
1261 1.150 pooka if (newmem > thelimit) {
1262 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1263 1.103 pooka if (!waitok) {
1264 1.84 pooka return NULL;
1265 1.103 pooka }
1266 1.84 pooka uvm_wait(wmsg);
1267 1.84 pooka goto limitagain;
1268 1.84 pooka }
1269 1.84 pooka }
1270 1.84 pooka
1271 1.84 pooka /* second, we must get something from the backend */
1272 1.80 pooka again:
1273 1.142 pooka error = rumpuser_malloc(howmuch, alignment, &rv);
1274 1.142 pooka if (__predict_false(error && waitok)) {
1275 1.80 pooka uvm_wait(wmsg);
1276 1.80 pooka goto again;
1277 1.80 pooka }
1278 1.80 pooka
1279 1.80 pooka return rv;
1280 1.80 pooka }
1281 1.84 pooka
1282 1.84 pooka void
1283 1.84 pooka rump_hyperfree(void *what, size_t size)
1284 1.84 pooka {
1285 1.84 pooka
1286 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1287 1.84 pooka atomic_add_long(&curphysmem, -size);
1288 1.84 pooka }
1289 1.138 pooka rumpuser_free(what, size);
1290 1.84 pooka }
1291