Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.185
      1  1.185        ad /*	$NetBSD: vm.c,v 1.185 2020/03/14 19:54:06 ad Exp $	*/
      2    1.1     pooka 
      3    1.1     pooka /*
      4  1.114     pooka  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5    1.1     pooka  *
      6   1.76     pooka  * Development of this software was supported by
      7   1.76     pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8   1.76     pooka  * The Helsinki University of Technology.
      9    1.1     pooka  *
     10    1.1     pooka  * Redistribution and use in source and binary forms, with or without
     11    1.1     pooka  * modification, are permitted provided that the following conditions
     12    1.1     pooka  * are met:
     13    1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     14    1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     15    1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     17    1.1     pooka  *    documentation and/or other materials provided with the distribution.
     18    1.1     pooka  *
     19    1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20    1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21    1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22    1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23    1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24    1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25    1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26    1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27    1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28    1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29    1.1     pooka  * SUCH DAMAGE.
     30    1.1     pooka  */
     31    1.1     pooka 
     32    1.1     pooka /*
     33   1.88     pooka  * Virtual memory emulation routines.
     34    1.1     pooka  */
     35    1.1     pooka 
     36    1.1     pooka /*
     37    1.5     pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38    1.1     pooka  * for each page.  phys_addr would fit the job description better,
     39    1.1     pooka  * except that it will create unnecessary lossage on some platforms
     40    1.1     pooka  * due to not being a pointer type.
     41    1.1     pooka  */
     42    1.1     pooka 
     43   1.48     pooka #include <sys/cdefs.h>
     44  1.185        ad __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.185 2020/03/14 19:54:06 ad Exp $");
     45   1.48     pooka 
     46    1.1     pooka #include <sys/param.h>
     47   1.40     pooka #include <sys/atomic.h>
     48   1.80     pooka #include <sys/buf.h>
     49   1.80     pooka #include <sys/kernel.h>
     50   1.67     pooka #include <sys/kmem.h>
     51  1.121      para #include <sys/vmem.h>
     52   1.69     pooka #include <sys/mman.h>
     53    1.1     pooka #include <sys/null.h>
     54    1.1     pooka #include <sys/vnode.h>
     55  1.175        ad #include <sys/radixtree.h>
     56    1.1     pooka 
     57   1.34     pooka #include <machine/pmap.h>
     58   1.34     pooka 
     59    1.1     pooka #include <uvm/uvm.h>
     60   1.56     pooka #include <uvm/uvm_ddb.h>
     61   1.88     pooka #include <uvm/uvm_pdpolicy.h>
     62    1.1     pooka #include <uvm/uvm_prot.h>
     63   1.58        he #include <uvm/uvm_readahead.h>
     64  1.160       chs #include <uvm/uvm_device.h>
     65    1.1     pooka 
     66  1.169     pooka #include <rump-sys/kern.h>
     67  1.169     pooka #include <rump-sys/vfs.h>
     68  1.169     pooka 
     69  1.169     pooka #include <rump/rumpuser.h>
     70    1.1     pooka 
     71  1.174        ad kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
     72  1.152     pooka kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     73   1.88     pooka kmutex_t uvm_swap_data_lock;
     74   1.25        ad 
     75    1.1     pooka struct uvmexp uvmexp;
     76    1.7     pooka struct uvm uvm;
     77    1.1     pooka 
     78  1.112     pooka #ifdef __uvmexp_pagesize
     79  1.123    martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
     80  1.123    martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
     81  1.123    martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
     82  1.112     pooka #endif
     83  1.112     pooka 
     84  1.121      para static struct vm_map kernel_map_store;
     85  1.121      para struct vm_map *kernel_map = &kernel_map_store;
     86  1.121      para 
     87  1.130     pooka static struct vm_map module_map_store;
     88  1.130     pooka extern struct vm_map *module_map;
     89  1.130     pooka 
     90  1.164     pooka static struct pmap pmap_kernel;
     91  1.164     pooka struct pmap rump_pmap_local;
     92  1.164     pooka struct pmap *const kernel_pmap_ptr = &pmap_kernel;
     93  1.164     pooka 
     94  1.121      para vmem_t *kmem_arena;
     95  1.121      para vmem_t *kmem_va_arena;
     96   1.35     pooka 
     97   1.80     pooka static unsigned int pdaemon_waiters;
     98   1.80     pooka static kmutex_t pdaemonmtx;
     99   1.80     pooka static kcondvar_t pdaemoncv, oomwait;
    100   1.80     pooka 
    101  1.162     pooka /* all local non-proc0 processes share this vmspace */
    102  1.162     pooka struct vmspace *rump_vmspace_local;
    103  1.162     pooka 
    104   1.91     pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    105  1.147     pooka static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    106   1.84     pooka static unsigned long curphysmem;
    107   1.92     pooka static unsigned long dddlim;		/* 90% of memory limit used */
    108   1.92     pooka #define NEED_PAGEDAEMON() \
    109   1.92     pooka     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    110  1.158     pooka #define PDRESERVE (2*MAXPHYS)
    111   1.92     pooka 
    112   1.92     pooka /*
    113   1.92     pooka  * Try to free two pages worth of pages from objects.
    114   1.92     pooka  * If this succesfully frees a full page cache page, we'll
    115  1.120      yamt  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    116   1.92     pooka  */
    117   1.92     pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    118   1.92     pooka 
    119   1.92     pooka /*
    120   1.92     pooka  * Keep a list of least recently used pages.  Since the only way a
    121   1.92     pooka  * rump kernel can "access" a page is via lookup, we put the page
    122   1.92     pooka  * at the back of queue every time a lookup for it is done.  If the
    123   1.92     pooka  * page is in front of this global queue and we're short of memory,
    124   1.92     pooka  * it's a candidate for pageout.
    125   1.92     pooka  */
    126   1.92     pooka static struct pglist vmpage_lruqueue;
    127   1.92     pooka static unsigned vmpage_onqueue;
    128   1.84     pooka 
    129    1.1     pooka /*
    130    1.1     pooka  * vm pages
    131    1.1     pooka  */
    132    1.1     pooka 
    133   1.90     pooka static int
    134   1.90     pooka pgctor(void *arg, void *obj, int flags)
    135   1.90     pooka {
    136   1.90     pooka 	struct vm_page *pg = obj;
    137   1.90     pooka 
    138   1.90     pooka 	memset(pg, 0, sizeof(*pg));
    139  1.103     pooka 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    140  1.103     pooka 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    141  1.103     pooka 	return pg->uanon == NULL;
    142   1.90     pooka }
    143   1.90     pooka 
    144   1.90     pooka static void
    145   1.90     pooka pgdtor(void *arg, void *obj)
    146   1.90     pooka {
    147   1.90     pooka 	struct vm_page *pg = obj;
    148   1.90     pooka 
    149   1.90     pooka 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    150   1.90     pooka }
    151   1.90     pooka 
    152   1.90     pooka static struct pool_cache pagecache;
    153   1.90     pooka 
    154   1.92     pooka /*
    155   1.92     pooka  * Called with the object locked.  We don't support anons.
    156   1.92     pooka  */
    157    1.1     pooka struct vm_page *
    158   1.76     pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    159   1.76     pooka 	int flags, int strat, int free_list)
    160    1.1     pooka {
    161    1.1     pooka 	struct vm_page *pg;
    162    1.1     pooka 
    163  1.184        ad 	KASSERT(uobj && rw_write_held(uobj->vmobjlock));
    164   1.92     pooka 	KASSERT(anon == NULL);
    165   1.92     pooka 
    166  1.103     pooka 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    167  1.104     pooka 	if (__predict_false(pg == NULL)) {
    168  1.103     pooka 		return NULL;
    169  1.104     pooka 	}
    170  1.181        ad 	mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
    171  1.103     pooka 
    172    1.1     pooka 	pg->offset = off;
    173    1.5     pooka 	pg->uobject = uobj;
    174    1.1     pooka 
    175  1.185        ad 	if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
    176  1.185        ad 		struct vnode *vp = (struct vnode *)uobj;
    177  1.185        ad 		mutex_enter(vp->v_interlock);
    178  1.185        ad 		vp->v_iflag |= VI_PAGES;
    179  1.185        ad 		mutex_exit(vp->v_interlock);
    180   1.90     pooka 	}
    181    1.1     pooka 
    182  1.175        ad 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
    183  1.175        ad 	    pg) != 0) {
    184  1.175        ad 		pool_cache_put(&pagecache, pg);
    185  1.175        ad 		return NULL;
    186  1.175        ad 	}
    187  1.185        ad 	uobj->uo_npages++;
    188  1.185        ad 
    189  1.185        ad 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    190  1.185        ad 	if (flags & UVM_PGA_ZERO) {
    191  1.185        ad 		uvm_pagezero(pg);
    192  1.185        ad 	}
    193   1.89     pooka 
    194   1.92     pooka 	/*
    195   1.93     pooka 	 * Don't put anons on the LRU page queue.  We can't flush them
    196   1.93     pooka 	 * (there's no concept of swap in a rump kernel), so no reason
    197   1.93     pooka 	 * to bother with them.
    198   1.92     pooka 	 */
    199   1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    200   1.92     pooka 		atomic_inc_uint(&vmpage_onqueue);
    201  1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
    202   1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    203  1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
    204   1.92     pooka 	}
    205   1.92     pooka 
    206    1.1     pooka 	return pg;
    207    1.1     pooka }
    208    1.1     pooka 
    209   1.21     pooka /*
    210   1.21     pooka  * Release a page.
    211   1.21     pooka  *
    212   1.22     pooka  * Called with the vm object locked.
    213   1.21     pooka  */
    214    1.1     pooka void
    215   1.22     pooka uvm_pagefree(struct vm_page *pg)
    216    1.1     pooka {
    217    1.5     pooka 	struct uvm_object *uobj = pg->uobject;
    218  1.175        ad 	struct vm_page *pg2 __unused;
    219    1.1     pooka 
    220  1.184        ad 	KASSERT(rw_write_held(uobj->vmobjlock));
    221   1.92     pooka 
    222   1.22     pooka 	if (pg->flags & PG_WANTED)
    223   1.22     pooka 		wakeup(pg);
    224   1.22     pooka 
    225   1.59     pooka 	uobj->uo_npages--;
    226  1.175        ad 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    227  1.175        ad 	KASSERT(pg == pg2);
    228   1.92     pooka 
    229   1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    230  1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
    231   1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    232  1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
    233   1.92     pooka 		atomic_dec_uint(&vmpage_onqueue);
    234   1.92     pooka 	}
    235   1.92     pooka 
    236  1.185        ad 	if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
    237  1.185        ad 		struct vnode *vp = (struct vnode *)uobj;
    238  1.185        ad 		mutex_enter(vp->v_interlock);
    239  1.185        ad 		vp->v_iflag &= ~VI_PAGES;
    240  1.185        ad 		mutex_exit(vp->v_interlock);
    241  1.185        ad 	}
    242  1.185        ad 
    243  1.181        ad 	mutex_destroy(&pg->interlock);
    244   1.90     pooka 	pool_cache_put(&pagecache, pg);
    245    1.1     pooka }
    246    1.1     pooka 
    247   1.15     pooka void
    248   1.61     pooka uvm_pagezero(struct vm_page *pg)
    249   1.15     pooka {
    250   1.15     pooka 
    251  1.183        ad 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    252   1.61     pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    253   1.15     pooka }
    254   1.15     pooka 
    255    1.1     pooka /*
    256  1.178        ad  * uvm_page_owner_locked_p: return true if object associated with page is
    257  1.136      yamt  * locked.  this is a weak check for runtime assertions only.
    258  1.136      yamt  */
    259  1.136      yamt 
    260  1.136      yamt bool
    261  1.184        ad uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
    262  1.136      yamt {
    263  1.136      yamt 
    264  1.184        ad 	if (exclusive)
    265  1.184        ad 		return rw_write_held(pg->uobject->vmobjlock);
    266  1.184        ad 	else
    267  1.184        ad 		return rw_lock_held(pg->uobject->vmobjlock);
    268  1.136      yamt }
    269  1.136      yamt 
    270  1.136      yamt /*
    271    1.1     pooka  * Misc routines
    272    1.1     pooka  */
    273    1.1     pooka 
    274   1.61     pooka static kmutex_t pagermtx;
    275   1.61     pooka 
    276    1.1     pooka void
    277   1.79     pooka uvm_init(void)
    278    1.1     pooka {
    279   1.84     pooka 	char buf[64];
    280   1.84     pooka 
    281  1.141     pooka 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    282  1.105     pooka 		unsigned long tmp;
    283  1.105     pooka 		char *ep;
    284  1.105     pooka 		int mult;
    285  1.105     pooka 
    286  1.109     pooka 		tmp = strtoul(buf, &ep, 10);
    287  1.105     pooka 		if (strlen(ep) > 1)
    288  1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    289  1.105     pooka 
    290  1.105     pooka 		/* mini-dehumanize-number */
    291  1.105     pooka 		mult = 1;
    292  1.105     pooka 		switch (*ep) {
    293  1.105     pooka 		case 'k':
    294  1.105     pooka 			mult = 1024;
    295  1.105     pooka 			break;
    296  1.105     pooka 		case 'm':
    297  1.105     pooka 			mult = 1024*1024;
    298  1.105     pooka 			break;
    299  1.105     pooka 		case 'g':
    300  1.105     pooka 			mult = 1024*1024*1024;
    301  1.105     pooka 			break;
    302  1.105     pooka 		case 0:
    303  1.105     pooka 			break;
    304  1.105     pooka 		default:
    305  1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    306  1.105     pooka 		}
    307  1.105     pooka 		rump_physmemlimit = tmp * mult;
    308  1.105     pooka 
    309  1.105     pooka 		if (rump_physmemlimit / mult != tmp)
    310  1.105     pooka 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    311  1.147     pooka 
    312  1.147     pooka 		/* reserve some memory for the pager */
    313  1.158     pooka 		if (rump_physmemlimit <= PDRESERVE)
    314  1.158     pooka 			panic("uvm_init: system reserves %d bytes of mem, "
    315  1.158     pooka 			    "only %lu bytes given",
    316  1.158     pooka 			    PDRESERVE, rump_physmemlimit);
    317  1.147     pooka 		pdlimit = rump_physmemlimit;
    318  1.158     pooka 		rump_physmemlimit -= PDRESERVE;
    319  1.105     pooka 
    320  1.157     pooka 		if (pdlimit < 1024*1024)
    321  1.157     pooka 			printf("uvm_init: WARNING: <1MB RAM limit, "
    322  1.157     pooka 			    "hope you know what you're doing\n");
    323  1.157     pooka 
    324   1.84     pooka #define HUMANIZE_BYTES 9
    325   1.84     pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    326   1.91     pooka 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    327   1.84     pooka #undef HUMANIZE_BYTES
    328   1.92     pooka 		dddlim = 9 * (rump_physmemlimit / 10);
    329   1.84     pooka 	} else {
    330   1.84     pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    331   1.84     pooka 	}
    332   1.84     pooka 	aprint_verbose("total memory = %s\n", buf);
    333    1.1     pooka 
    334   1.92     pooka 	TAILQ_INIT(&vmpage_lruqueue);
    335   1.92     pooka 
    336  1.157     pooka 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    337  1.157     pooka 		uvmexp.npages = physmem;
    338  1.157     pooka 	} else {
    339  1.157     pooka 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    340  1.158     pooka 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    341  1.157     pooka 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    342  1.157     pooka 	}
    343  1.157     pooka 	/*
    344  1.157     pooka 	 * uvmexp.free is not used internally or updated.  The reason is
    345  1.157     pooka 	 * that the memory hypercall allocator is allowed to allocate
    346  1.157     pooka 	 * non-page sized chunks.  We use a byte count in curphysmem
    347  1.157     pooka 	 * instead.
    348  1.157     pooka 	 */
    349  1.157     pooka 	uvmexp.free = uvmexp.npages;
    350   1.21     pooka 
    351  1.112     pooka #ifndef __uvmexp_pagesize
    352  1.112     pooka 	uvmexp.pagesize = PAGE_SIZE;
    353  1.112     pooka 	uvmexp.pagemask = PAGE_MASK;
    354  1.112     pooka 	uvmexp.pageshift = PAGE_SHIFT;
    355  1.112     pooka #else
    356  1.112     pooka #define FAKE_PAGE_SHIFT 12
    357  1.112     pooka 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    358  1.112     pooka 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    359  1.112     pooka 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    360  1.112     pooka #undef FAKE_PAGE_SHIFT
    361  1.112     pooka #endif
    362  1.112     pooka 
    363  1.140     pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    364  1.174        ad 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
    365  1.140     pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    366   1.35     pooka 
    367  1.152     pooka 	/* just to appease linkage */
    368  1.152     pooka 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    369  1.152     pooka 
    370  1.140     pooka 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    371   1.80     pooka 	cv_init(&pdaemoncv, "pdaemon");
    372   1.80     pooka 	cv_init(&oomwait, "oomwait");
    373   1.80     pooka 
    374  1.130     pooka 	module_map = &module_map_store;
    375  1.130     pooka 
    376   1.50     pooka 	kernel_map->pmap = pmap_kernel();
    377  1.121      para 
    378  1.122     njoly 	pool_subsystem_init();
    379  1.128     pooka 
    380  1.121      para 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    381  1.121      para 	    NULL, NULL, NULL,
    382  1.121      para 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    383  1.121      para 
    384  1.135      para 	vmem_subsystem_init(kmem_arena);
    385  1.121      para 
    386  1.121      para 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    387  1.121      para 	    vmem_alloc, vmem_free, kmem_arena,
    388  1.124      para 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    389   1.90     pooka 
    390   1.90     pooka 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    391   1.90     pooka 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    392  1.162     pooka 
    393  1.175        ad 	radix_tree_init();
    394  1.175        ad 
    395  1.162     pooka 	/* create vmspace used by local clients */
    396  1.162     pooka 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    397  1.164     pooka 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    398    1.1     pooka }
    399    1.1     pooka 
    400   1.83     pooka void
    401  1.145    martin uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    402  1.145    martin     bool topdown)
    403   1.83     pooka {
    404   1.83     pooka 
    405  1.162     pooka 	vm->vm_map.pmap = pmap;
    406   1.83     pooka 	vm->vm_refcnt = 1;
    407   1.83     pooka }
    408    1.1     pooka 
    409  1.173       nat int
    410  1.173       nat uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
    411  1.173       nat     bool new_pageable, int lockflags)
    412  1.173       nat {
    413  1.173       nat 	return 0;
    414  1.173       nat }
    415  1.173       nat 
    416    1.1     pooka void
    417    1.7     pooka uvm_pagewire(struct vm_page *pg)
    418    1.7     pooka {
    419    1.7     pooka 
    420    1.7     pooka 	/* nada */
    421    1.7     pooka }
    422    1.7     pooka 
    423    1.7     pooka void
    424    1.7     pooka uvm_pageunwire(struct vm_page *pg)
    425    1.7     pooka {
    426    1.7     pooka 
    427    1.7     pooka 	/* nada */
    428    1.7     pooka }
    429    1.7     pooka 
    430  1.177        ad int
    431  1.179        ad uvm_availmem(void)
    432  1.177        ad {
    433  1.177        ad 
    434  1.177        ad 	return uvmexp.free;
    435  1.177        ad }
    436  1.177        ad 
    437  1.180        ad void
    438  1.180        ad uvm_pagelock(struct vm_page *pg)
    439  1.180        ad {
    440  1.180        ad 
    441  1.180        ad 	mutex_enter(&pg->interlock);
    442  1.180        ad }
    443  1.180        ad 
    444  1.180        ad void
    445  1.180        ad uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
    446  1.180        ad {
    447  1.180        ad 
    448  1.180        ad 	if (pg1 < pg2) {
    449  1.180        ad 		mutex_enter(&pg1->interlock);
    450  1.180        ad 		mutex_enter(&pg2->interlock);
    451  1.180        ad 	} else {
    452  1.180        ad 		mutex_enter(&pg2->interlock);
    453  1.180        ad 		mutex_enter(&pg1->interlock);
    454  1.180        ad 	}
    455  1.180        ad }
    456  1.180        ad 
    457  1.180        ad void
    458  1.180        ad uvm_pageunlock(struct vm_page *pg)
    459  1.180        ad {
    460  1.180        ad 
    461  1.180        ad 	mutex_exit(&pg->interlock);
    462  1.180        ad }
    463  1.180        ad 
    464  1.180        ad void
    465  1.180        ad uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
    466  1.180        ad {
    467  1.180        ad 
    468  1.180        ad 	mutex_exit(&pg1->interlock);
    469  1.180        ad 	mutex_exit(&pg2->interlock);
    470  1.180        ad }
    471  1.180        ad 
    472   1.83     pooka /* where's your schmonz now? */
    473   1.83     pooka #define PUNLIMIT(a)	\
    474   1.83     pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    475   1.83     pooka void
    476   1.83     pooka uvm_init_limits(struct proc *p)
    477   1.83     pooka {
    478   1.83     pooka 
    479  1.155     pooka #ifndef DFLSSIZ
    480  1.155     pooka #define DFLSSIZ (16*1024*1024)
    481  1.155     pooka #endif
    482  1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    483  1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    484   1.83     pooka 	PUNLIMIT(RLIMIT_DATA);
    485   1.83     pooka 	PUNLIMIT(RLIMIT_RSS);
    486   1.83     pooka 	PUNLIMIT(RLIMIT_AS);
    487   1.83     pooka 	/* nice, cascade */
    488   1.83     pooka }
    489   1.83     pooka #undef PUNLIMIT
    490   1.83     pooka 
    491   1.69     pooka /*
    492   1.69     pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    493   1.69     pooka  */
    494   1.49     pooka int
    495  1.160       chs uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    496   1.49     pooka {
    497   1.69     pooka 	int error;
    498   1.49     pooka 
    499   1.69     pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    500  1.160       chs 	if (*addrp != NULL)
    501   1.69     pooka 		panic("uvm_mmap() variant unsupported");
    502   1.69     pooka 
    503  1.106     pooka 	if (RUMP_LOCALPROC_P(curproc)) {
    504  1.160       chs 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    505   1.98     pooka 	} else {
    506  1.166     pooka 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
    507  1.160       chs 		    size, addrp);
    508   1.98     pooka 	}
    509  1.160       chs 	return error;
    510  1.160       chs }
    511   1.69     pooka 
    512  1.160       chs /*
    513  1.160       chs  * Stubs for things referenced from vfs_vnode.c but not used.
    514  1.160       chs  */
    515  1.160       chs const dev_t zerodev;
    516  1.160       chs 
    517  1.160       chs struct uvm_object *
    518  1.160       chs udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    519  1.160       chs {
    520  1.160       chs 	return NULL;
    521   1.49     pooka }
    522   1.49     pooka 
    523   1.61     pooka struct pagerinfo {
    524   1.61     pooka 	vaddr_t pgr_kva;
    525   1.61     pooka 	int pgr_npages;
    526   1.61     pooka 	struct vm_page **pgr_pgs;
    527   1.61     pooka 	bool pgr_read;
    528   1.61     pooka 
    529   1.61     pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    530   1.61     pooka };
    531   1.61     pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    532   1.61     pooka 
    533   1.61     pooka /*
    534   1.61     pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    535  1.159     pooka  * and copy page contents there.  The reason for copying instead of
    536  1.159     pooka  * mapping is simple: we do not assume we are running on virtual
    537  1.159     pooka  * memory.  Even if we could emulate virtual memory in some envs
    538  1.159     pooka  * such as userspace, copying is much faster than trying to awkardly
    539  1.159     pooka  * cope with remapping (see "Design and Implementation" pp.95-98).
    540  1.159     pooka  * The downside of the approach is that the pager requires MAXPHYS
    541  1.159     pooka  * free memory to perform paging, but short of virtual memory or
    542  1.159     pooka  * making the pager do I/O in page-sized chunks we cannot do much
    543  1.159     pooka  * about that.
    544   1.61     pooka  */
    545    1.7     pooka vaddr_t
    546   1.61     pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    547    1.7     pooka {
    548   1.61     pooka 	struct pagerinfo *pgri;
    549   1.61     pooka 	vaddr_t curkva;
    550   1.61     pooka 	int i;
    551   1.61     pooka 
    552   1.61     pooka 	/* allocate structures */
    553   1.61     pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    554   1.61     pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    555   1.61     pooka 	pgri->pgr_npages = npages;
    556   1.61     pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    557   1.61     pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    558   1.61     pooka 
    559   1.61     pooka 	/* copy contents to "mapped" memory */
    560   1.61     pooka 	for (i = 0, curkva = pgri->pgr_kva;
    561   1.61     pooka 	    i < npages;
    562   1.61     pooka 	    i++, curkva += PAGE_SIZE) {
    563   1.61     pooka 		/*
    564   1.61     pooka 		 * We need to copy the previous contents of the pages to
    565   1.61     pooka 		 * the window even if we are reading from the
    566   1.61     pooka 		 * device, since the device might not fill the contents of
    567   1.61     pooka 		 * the full mapped range and we will end up corrupting
    568   1.61     pooka 		 * data when we unmap the window.
    569   1.61     pooka 		 */
    570   1.61     pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    571   1.61     pooka 		pgri->pgr_pgs[i] = pgs[i];
    572   1.61     pooka 	}
    573   1.61     pooka 
    574   1.61     pooka 	mutex_enter(&pagermtx);
    575   1.61     pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    576   1.61     pooka 	mutex_exit(&pagermtx);
    577    1.7     pooka 
    578   1.61     pooka 	return pgri->pgr_kva;
    579    1.7     pooka }
    580    1.7     pooka 
    581   1.61     pooka /*
    582   1.61     pooka  * map out the pager window.  return contents from VA to page storage
    583   1.61     pooka  * and free structures.
    584   1.61     pooka  *
    585   1.61     pooka  * Note: does not currently support partial frees
    586   1.61     pooka  */
    587   1.61     pooka void
    588   1.61     pooka uvm_pagermapout(vaddr_t kva, int npages)
    589    1.7     pooka {
    590   1.61     pooka 	struct pagerinfo *pgri;
    591   1.61     pooka 	vaddr_t curkva;
    592   1.61     pooka 	int i;
    593    1.7     pooka 
    594   1.61     pooka 	mutex_enter(&pagermtx);
    595   1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    596   1.61     pooka 		if (pgri->pgr_kva == kva)
    597   1.61     pooka 			break;
    598   1.61     pooka 	}
    599   1.61     pooka 	KASSERT(pgri);
    600   1.61     pooka 	if (pgri->pgr_npages != npages)
    601   1.61     pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    602   1.61     pooka 	LIST_REMOVE(pgri, pgr_entries);
    603   1.61     pooka 	mutex_exit(&pagermtx);
    604   1.61     pooka 
    605   1.61     pooka 	if (pgri->pgr_read) {
    606   1.61     pooka 		for (i = 0, curkva = pgri->pgr_kva;
    607   1.61     pooka 		    i < pgri->pgr_npages;
    608   1.61     pooka 		    i++, curkva += PAGE_SIZE) {
    609   1.61     pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    610   1.21     pooka 		}
    611   1.21     pooka 	}
    612   1.10     pooka 
    613   1.61     pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    614   1.61     pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    615   1.61     pooka 	kmem_free(pgri, sizeof(*pgri));
    616    1.7     pooka }
    617    1.7     pooka 
    618   1.61     pooka /*
    619   1.61     pooka  * convert va in pager window to page structure.
    620   1.61     pooka  * XXX: how expensive is this (global lock, list traversal)?
    621   1.61     pooka  */
    622   1.14     pooka struct vm_page *
    623   1.14     pooka uvm_pageratop(vaddr_t va)
    624   1.14     pooka {
    625   1.61     pooka 	struct pagerinfo *pgri;
    626   1.61     pooka 	struct vm_page *pg = NULL;
    627   1.61     pooka 	int i;
    628   1.14     pooka 
    629   1.61     pooka 	mutex_enter(&pagermtx);
    630   1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    631   1.61     pooka 		if (pgri->pgr_kva <= va
    632   1.61     pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    633   1.21     pooka 			break;
    634   1.61     pooka 	}
    635   1.61     pooka 	if (pgri) {
    636   1.61     pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    637   1.61     pooka 		pg = pgri->pgr_pgs[i];
    638   1.61     pooka 	}
    639   1.61     pooka 	mutex_exit(&pagermtx);
    640   1.21     pooka 
    641   1.61     pooka 	return pg;
    642   1.61     pooka }
    643   1.15     pooka 
    644   1.97     pooka /*
    645   1.97     pooka  * Called with the vm object locked.
    646   1.97     pooka  *
    647   1.97     pooka  * Put vnode object pages at the end of the access queue to indicate
    648   1.97     pooka  * they have been recently accessed and should not be immediate
    649   1.97     pooka  * candidates for pageout.  Do not do this for lookups done by
    650   1.97     pooka  * the pagedaemon to mimic pmap_kentered mappings which don't track
    651   1.97     pooka  * access information.
    652   1.97     pooka  */
    653   1.61     pooka struct vm_page *
    654   1.61     pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    655   1.61     pooka {
    656   1.92     pooka 	struct vm_page *pg;
    657   1.97     pooka 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    658   1.61     pooka 
    659  1.175        ad 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    660   1.97     pooka 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    661  1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
    662   1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    663   1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    664  1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
    665   1.92     pooka 	}
    666   1.92     pooka 
    667   1.92     pooka 	return pg;
    668   1.14     pooka }
    669   1.14     pooka 
    670    1.7     pooka void
    671   1.22     pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    672   1.22     pooka {
    673   1.22     pooka 	struct vm_page *pg;
    674   1.22     pooka 	int i;
    675   1.22     pooka 
    676   1.94     pooka 	KASSERT(npgs > 0);
    677  1.184        ad 	KASSERT(rw_write_held(pgs[0]->uobject->vmobjlock));
    678   1.94     pooka 
    679   1.22     pooka 	for (i = 0; i < npgs; i++) {
    680   1.22     pooka 		pg = pgs[i];
    681   1.22     pooka 		if (pg == NULL)
    682   1.22     pooka 			continue;
    683   1.22     pooka 
    684   1.22     pooka 		KASSERT(pg->flags & PG_BUSY);
    685   1.22     pooka 		if (pg->flags & PG_WANTED)
    686   1.22     pooka 			wakeup(pg);
    687   1.36     pooka 		if (pg->flags & PG_RELEASED)
    688   1.36     pooka 			uvm_pagefree(pg);
    689   1.36     pooka 		else
    690   1.36     pooka 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    691   1.22     pooka 	}
    692   1.22     pooka }
    693   1.22     pooka 
    694   1.22     pooka void
    695    1.7     pooka uvm_estimatepageable(int *active, int *inactive)
    696    1.7     pooka {
    697    1.7     pooka 
    698   1.19     pooka 	/* XXX: guessing game */
    699   1.19     pooka 	*active = 1024;
    700   1.19     pooka 	*inactive = 1024;
    701    1.7     pooka }
    702    1.7     pooka 
    703   1.41     pooka int
    704   1.41     pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    705   1.41     pooka {
    706   1.41     pooka 
    707   1.41     pooka 	panic("%s: unimplemented", __func__);
    708   1.41     pooka }
    709   1.41     pooka 
    710   1.41     pooka void
    711   1.41     pooka uvm_unloan(void *v, int npages, int flags)
    712   1.41     pooka {
    713   1.41     pooka 
    714   1.41     pooka 	panic("%s: unimplemented", __func__);
    715   1.41     pooka }
    716   1.41     pooka 
    717   1.43     pooka int
    718   1.43     pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    719   1.43     pooka 	struct vm_page **opp)
    720   1.43     pooka {
    721   1.43     pooka 
    722   1.72     pooka 	return EBUSY;
    723   1.43     pooka }
    724   1.43     pooka 
    725  1.116       mrg struct vm_page *
    726  1.116       mrg uvm_loanbreak(struct vm_page *pg)
    727  1.116       mrg {
    728  1.116       mrg 
    729  1.116       mrg 	panic("%s: unimplemented", __func__);
    730  1.116       mrg }
    731  1.116       mrg 
    732  1.116       mrg void
    733  1.116       mrg ubc_purge(struct uvm_object *uobj)
    734  1.116       mrg {
    735  1.116       mrg 
    736  1.116       mrg }
    737  1.116       mrg 
    738   1.68     pooka vaddr_t
    739  1.168    martin uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
    740   1.68     pooka {
    741   1.68     pooka 
    742   1.68     pooka 	return 0;
    743   1.68     pooka }
    744   1.68     pooka 
    745   1.71     pooka int
    746   1.71     pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    747   1.71     pooka 	vm_prot_t prot, bool set_max)
    748   1.71     pooka {
    749   1.71     pooka 
    750   1.71     pooka 	return EOPNOTSUPP;
    751   1.71     pooka }
    752   1.71     pooka 
    753  1.171    martin int
    754  1.171    martin uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
    755  1.171    martin     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
    756  1.171    martin     uvm_flag_t flags)
    757  1.171    martin {
    758  1.171    martin 
    759  1.172    martin 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
    760  1.172    martin 	return *startp != 0 ? 0 : ENOMEM;
    761  1.172    martin }
    762  1.172    martin 
    763  1.172    martin void
    764  1.172    martin uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
    765  1.172    martin {
    766  1.172    martin 
    767  1.172    martin 	rump_hyperfree((void*)start, end-start);
    768  1.171    martin }
    769  1.171    martin 
    770  1.171    martin 
    771    1.9     pooka /*
    772   1.12     pooka  * UVM km
    773   1.12     pooka  */
    774   1.12     pooka 
    775   1.12     pooka vaddr_t
    776   1.12     pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    777   1.12     pooka {
    778   1.82     pooka 	void *rv, *desired = NULL;
    779   1.50     pooka 	int alignbit, error;
    780   1.50     pooka 
    781   1.82     pooka #ifdef __x86_64__
    782   1.82     pooka 	/*
    783   1.82     pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    784   1.82     pooka 	 * This is because NetBSD kernel modules are compiled
    785   1.82     pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    786   1.82     pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    787   1.82     pooka 	 * anywhere except the lowest or highest 2GB, it will not
    788   1.82     pooka 	 * work.  Since userspace does not have access to the highest
    789   1.82     pooka 	 * 2GB, use the lowest 2GB.
    790   1.82     pooka 	 *
    791   1.82     pooka 	 * Note: this assumes the rump kernel resides in
    792   1.82     pooka 	 * the lowest 2GB as well.
    793   1.82     pooka 	 *
    794   1.82     pooka 	 * Note2: yes, it's a quick hack, but since this the only
    795   1.82     pooka 	 * place where we care about the map we're allocating from,
    796   1.82     pooka 	 * just use a simple "if" instead of coming up with a fancy
    797   1.82     pooka 	 * generic solution.
    798   1.82     pooka 	 */
    799   1.82     pooka 	if (map == module_map) {
    800   1.82     pooka 		desired = (void *)(0x80000000 - size);
    801   1.82     pooka 	}
    802   1.82     pooka #endif
    803   1.82     pooka 
    804  1.130     pooka 	if (__predict_false(map == module_map)) {
    805  1.130     pooka 		alignbit = 0;
    806  1.130     pooka 		if (align) {
    807  1.130     pooka 			alignbit = ffs(align)-1;
    808  1.130     pooka 		}
    809  1.142     pooka 		error = rumpuser_anonmmap(desired, size, alignbit,
    810  1.142     pooka 		    flags & UVM_KMF_EXEC, &rv);
    811  1.130     pooka 	} else {
    812  1.142     pooka 		error = rumpuser_malloc(size, align, &rv);
    813   1.50     pooka 	}
    814   1.50     pooka 
    815  1.142     pooka 	if (error) {
    816   1.50     pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    817   1.50     pooka 			return 0;
    818   1.50     pooka 		else
    819   1.50     pooka 			panic("uvm_km_alloc failed");
    820   1.50     pooka 	}
    821   1.12     pooka 
    822   1.50     pooka 	if (flags & UVM_KMF_ZERO)
    823   1.12     pooka 		memset(rv, 0, size);
    824   1.12     pooka 
    825   1.12     pooka 	return (vaddr_t)rv;
    826   1.12     pooka }
    827   1.12     pooka 
    828   1.12     pooka void
    829   1.12     pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    830   1.12     pooka {
    831   1.12     pooka 
    832  1.130     pooka 	if (__predict_false(map == module_map))
    833  1.130     pooka 		rumpuser_unmap((void *)vaddr, size);
    834  1.130     pooka 	else
    835  1.138     pooka 		rumpuser_free((void *)vaddr, size);
    836   1.12     pooka }
    837   1.12     pooka 
    838  1.170  christos int
    839  1.170  christos uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
    840  1.170  christos {
    841  1.170  christos 	return 0;
    842  1.170  christos }
    843  1.170  christos 
    844   1.12     pooka struct vm_map *
    845   1.12     pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    846  1.121      para 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    847   1.12     pooka {
    848   1.12     pooka 
    849   1.12     pooka 	return (struct vm_map *)417416;
    850   1.12     pooka }
    851   1.40     pooka 
    852  1.121      para int
    853  1.121      para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    854  1.121      para     vmem_addr_t *addr)
    855   1.40     pooka {
    856  1.121      para 	vaddr_t va;
    857  1.121      para 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    858  1.121      para 	    (flags & VM_SLEEP), "kmalloc");
    859   1.40     pooka 
    860  1.121      para 	if (va) {
    861  1.121      para 		*addr = va;
    862  1.121      para 		return 0;
    863  1.121      para 	} else {
    864  1.121      para 		return ENOMEM;
    865  1.121      para 	}
    866   1.40     pooka }
    867   1.40     pooka 
    868   1.40     pooka void
    869  1.121      para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    870   1.40     pooka {
    871   1.40     pooka 
    872  1.121      para 	rump_hyperfree((void *)addr, size);
    873   1.74     pooka }
    874   1.74     pooka 
    875   1.57     pooka /*
    876  1.102     pooka  * VM space locking routines.  We don't really have to do anything,
    877  1.102     pooka  * since the pages are always "wired" (both local and remote processes).
    878   1.57     pooka  */
    879   1.57     pooka int
    880   1.57     pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    881   1.57     pooka {
    882   1.57     pooka 
    883   1.57     pooka 	return 0;
    884   1.57     pooka }
    885   1.57     pooka 
    886   1.57     pooka void
    887   1.57     pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    888   1.57     pooka {
    889   1.57     pooka 
    890   1.57     pooka }
    891   1.57     pooka 
    892  1.102     pooka /*
    893  1.102     pooka  * For the local case the buffer mappers don't need to do anything.
    894  1.102     pooka  * For the remote case we need to reserve space and copy data in or
    895  1.102     pooka  * out, depending on B_READ/B_WRITE.
    896  1.102     pooka  */
    897  1.111     pooka int
    898   1.57     pooka vmapbuf(struct buf *bp, vsize_t len)
    899   1.57     pooka {
    900  1.111     pooka 	int error = 0;
    901   1.57     pooka 
    902   1.57     pooka 	bp->b_saveaddr = bp->b_data;
    903  1.102     pooka 
    904  1.102     pooka 	/* remote case */
    905  1.106     pooka 	if (!RUMP_LOCALPROC_P(curproc)) {
    906  1.102     pooka 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    907  1.102     pooka 		if (BUF_ISWRITE(bp)) {
    908  1.111     pooka 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    909  1.111     pooka 			if (error) {
    910  1.111     pooka 				rump_hyperfree(bp->b_data, len);
    911  1.111     pooka 				bp->b_data = bp->b_saveaddr;
    912  1.111     pooka 				bp->b_saveaddr = 0;
    913  1.111     pooka 			}
    914  1.102     pooka 		}
    915  1.102     pooka 	}
    916  1.111     pooka 
    917  1.111     pooka 	return error;
    918   1.57     pooka }
    919   1.57     pooka 
    920   1.57     pooka void
    921   1.57     pooka vunmapbuf(struct buf *bp, vsize_t len)
    922   1.57     pooka {
    923   1.57     pooka 
    924  1.102     pooka 	/* remote case */
    925  1.106     pooka 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    926  1.102     pooka 		if (BUF_ISREAD(bp)) {
    927  1.110     pooka 			bp->b_error = copyout_proc(bp->b_proc,
    928  1.102     pooka 			    bp->b_data, bp->b_saveaddr, len);
    929  1.102     pooka 		}
    930  1.102     pooka 		rump_hyperfree(bp->b_data, len);
    931  1.102     pooka 	}
    932  1.102     pooka 
    933   1.57     pooka 	bp->b_data = bp->b_saveaddr;
    934   1.57     pooka 	bp->b_saveaddr = 0;
    935   1.57     pooka }
    936   1.61     pooka 
    937   1.61     pooka void
    938   1.83     pooka uvmspace_addref(struct vmspace *vm)
    939   1.83     pooka {
    940   1.83     pooka 
    941   1.83     pooka 	/*
    942  1.103     pooka 	 * No dynamically allocated vmspaces exist.
    943   1.83     pooka 	 */
    944   1.83     pooka }
    945   1.83     pooka 
    946   1.83     pooka void
    947   1.66     pooka uvmspace_free(struct vmspace *vm)
    948   1.66     pooka {
    949   1.66     pooka 
    950   1.66     pooka 	/* nothing for now */
    951   1.66     pooka }
    952   1.66     pooka 
    953   1.61     pooka /*
    954   1.61     pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    955   1.61     pooka  */
    956   1.61     pooka 
    957   1.61     pooka void
    958   1.61     pooka uvm_pageactivate(struct vm_page *pg)
    959   1.61     pooka {
    960   1.61     pooka 
    961   1.61     pooka 	/* nada */
    962   1.61     pooka }
    963   1.61     pooka 
    964   1.61     pooka void
    965   1.61     pooka uvm_pagedeactivate(struct vm_page *pg)
    966   1.61     pooka {
    967   1.61     pooka 
    968   1.61     pooka 	/* nada */
    969   1.61     pooka }
    970   1.61     pooka 
    971   1.61     pooka void
    972   1.61     pooka uvm_pagedequeue(struct vm_page *pg)
    973   1.61     pooka {
    974   1.61     pooka 
    975   1.61     pooka 	/* nada*/
    976   1.61     pooka }
    977   1.61     pooka 
    978   1.61     pooka void
    979   1.61     pooka uvm_pageenqueue(struct vm_page *pg)
    980   1.61     pooka {
    981   1.61     pooka 
    982   1.61     pooka 	/* nada */
    983   1.61     pooka }
    984   1.80     pooka 
    985   1.88     pooka void
    986   1.88     pooka uvmpdpol_anfree(struct vm_anon *an)
    987   1.88     pooka {
    988   1.88     pooka 
    989   1.88     pooka 	/* nada */
    990   1.88     pooka }
    991   1.88     pooka 
    992   1.80     pooka /*
    993   1.99  uebayasi  * Physical address accessors.
    994   1.99  uebayasi  */
    995   1.99  uebayasi 
    996   1.99  uebayasi struct vm_page *
    997   1.99  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    998   1.99  uebayasi {
    999   1.99  uebayasi 
   1000   1.99  uebayasi 	return NULL;
   1001   1.99  uebayasi }
   1002   1.99  uebayasi 
   1003   1.99  uebayasi paddr_t
   1004   1.99  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
   1005   1.99  uebayasi {
   1006   1.99  uebayasi 
   1007   1.99  uebayasi 	return 0;
   1008   1.99  uebayasi }
   1009   1.99  uebayasi 
   1010  1.153     pooka vaddr_t
   1011  1.153     pooka uvm_uarea_alloc(void)
   1012  1.153     pooka {
   1013  1.153     pooka 
   1014  1.153     pooka 	/* non-zero */
   1015  1.153     pooka 	return (vaddr_t)11;
   1016  1.153     pooka }
   1017  1.153     pooka 
   1018  1.153     pooka void
   1019  1.153     pooka uvm_uarea_free(vaddr_t uarea)
   1020  1.153     pooka {
   1021  1.153     pooka 
   1022  1.153     pooka 	/* nata, so creamy */
   1023  1.153     pooka }
   1024  1.153     pooka 
   1025   1.99  uebayasi /*
   1026   1.80     pooka  * Routines related to the Page Baroness.
   1027   1.80     pooka  */
   1028   1.80     pooka 
   1029   1.80     pooka void
   1030   1.80     pooka uvm_wait(const char *msg)
   1031   1.80     pooka {
   1032   1.80     pooka 
   1033   1.80     pooka 	if (__predict_false(rump_threads == 0))
   1034   1.80     pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
   1035   1.80     pooka 
   1036  1.147     pooka 	if (curlwp == uvm.pagedaemon_lwp) {
   1037  1.147     pooka 		/* is it possible for us to later get memory? */
   1038  1.147     pooka 		if (!uvmexp.paging)
   1039  1.147     pooka 			panic("pagedaemon out of memory");
   1040  1.147     pooka 	}
   1041  1.147     pooka 
   1042   1.80     pooka 	mutex_enter(&pdaemonmtx);
   1043   1.80     pooka 	pdaemon_waiters++;
   1044   1.80     pooka 	cv_signal(&pdaemoncv);
   1045   1.80     pooka 	cv_wait(&oomwait, &pdaemonmtx);
   1046   1.80     pooka 	mutex_exit(&pdaemonmtx);
   1047   1.80     pooka }
   1048   1.80     pooka 
   1049   1.80     pooka void
   1050   1.80     pooka uvm_pageout_start(int npages)
   1051   1.80     pooka {
   1052   1.80     pooka 
   1053  1.113     pooka 	mutex_enter(&pdaemonmtx);
   1054  1.113     pooka 	uvmexp.paging += npages;
   1055  1.113     pooka 	mutex_exit(&pdaemonmtx);
   1056   1.80     pooka }
   1057   1.80     pooka 
   1058   1.80     pooka void
   1059   1.80     pooka uvm_pageout_done(int npages)
   1060   1.80     pooka {
   1061   1.80     pooka 
   1062  1.113     pooka 	if (!npages)
   1063  1.113     pooka 		return;
   1064  1.113     pooka 
   1065  1.113     pooka 	mutex_enter(&pdaemonmtx);
   1066  1.113     pooka 	KASSERT(uvmexp.paging >= npages);
   1067  1.113     pooka 	uvmexp.paging -= npages;
   1068  1.113     pooka 
   1069  1.113     pooka 	if (pdaemon_waiters) {
   1070  1.113     pooka 		pdaemon_waiters = 0;
   1071  1.113     pooka 		cv_broadcast(&oomwait);
   1072  1.113     pooka 	}
   1073  1.113     pooka 	mutex_exit(&pdaemonmtx);
   1074   1.80     pooka }
   1075   1.80     pooka 
   1076   1.95     pooka static bool
   1077  1.184        ad processpage(struct vm_page *pg)
   1078   1.95     pooka {
   1079   1.95     pooka 	struct uvm_object *uobj;
   1080   1.95     pooka 
   1081   1.95     pooka 	uobj = pg->uobject;
   1082  1.184        ad 	if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
   1083   1.95     pooka 		if ((pg->flags & PG_BUSY) == 0) {
   1084  1.174        ad 			mutex_exit(&vmpage_lruqueue_lock);
   1085   1.95     pooka 			uobj->pgops->pgo_put(uobj, pg->offset,
   1086   1.95     pooka 			    pg->offset + PAGE_SIZE,
   1087   1.95     pooka 			    PGO_CLEANIT|PGO_FREE);
   1088  1.184        ad 			KASSERT(!rw_write_held(uobj->vmobjlock));
   1089   1.95     pooka 			return true;
   1090   1.95     pooka 		} else {
   1091  1.184        ad 			rw_exit(uobj->vmobjlock);
   1092  1.104     pooka 		}
   1093   1.95     pooka 	}
   1094   1.95     pooka 
   1095   1.95     pooka 	return false;
   1096   1.95     pooka }
   1097   1.95     pooka 
   1098   1.80     pooka /*
   1099   1.92     pooka  * The Diabolical pageDaemon Director (DDD).
   1100  1.113     pooka  *
   1101  1.113     pooka  * This routine can always use better heuristics.
   1102   1.80     pooka  */
   1103   1.80     pooka void
   1104   1.80     pooka uvm_pageout(void *arg)
   1105   1.80     pooka {
   1106   1.92     pooka 	struct vm_page *pg;
   1107   1.80     pooka 	struct pool *pp, *pp_first;
   1108   1.92     pooka 	int cleaned, skip, skipped;
   1109  1.113     pooka 	bool succ;
   1110   1.80     pooka 
   1111   1.80     pooka 	mutex_enter(&pdaemonmtx);
   1112   1.80     pooka 	for (;;) {
   1113  1.113     pooka 		if (!NEED_PAGEDAEMON()) {
   1114   1.92     pooka 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1115   1.92     pooka 		}
   1116   1.92     pooka 
   1117  1.113     pooka 		if (pdaemon_waiters) {
   1118  1.113     pooka 			pdaemon_waiters = 0;
   1119  1.113     pooka 			cv_broadcast(&oomwait);
   1120  1.104     pooka 		}
   1121   1.92     pooka 
   1122  1.113     pooka 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1123  1.113     pooka 		uvmexp.pdwoke++;
   1124  1.113     pooka 
   1125   1.92     pooka 		/* tell the world that we are hungry */
   1126   1.80     pooka 		kernel_map->flags |= VM_MAP_WANTVA;
   1127   1.80     pooka 		mutex_exit(&pdaemonmtx);
   1128   1.80     pooka 
   1129   1.92     pooka 		/*
   1130   1.92     pooka 		 * step one: reclaim the page cache.  this should give
   1131   1.92     pooka 		 * us the biggest earnings since whole pages are released
   1132   1.92     pooka 		 * into backing memory.
   1133   1.92     pooka 		 */
   1134   1.92     pooka 		pool_cache_reclaim(&pagecache);
   1135   1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1136   1.92     pooka 			mutex_enter(&pdaemonmtx);
   1137   1.92     pooka 			continue;
   1138   1.92     pooka 		}
   1139   1.92     pooka 
   1140   1.92     pooka 		/*
   1141   1.92     pooka 		 * Ok, so that didn't help.  Next, try to hunt memory
   1142   1.92     pooka 		 * by pushing out vnode pages.  The pages might contain
   1143   1.92     pooka 		 * useful cached data, but we need the memory.
   1144   1.92     pooka 		 */
   1145   1.92     pooka 		cleaned = 0;
   1146   1.92     pooka 		skip = 0;
   1147   1.92     pooka  again:
   1148  1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
   1149   1.92     pooka 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1150   1.92     pooka 			skipped = 0;
   1151   1.92     pooka 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1152   1.92     pooka 
   1153   1.92     pooka 				/*
   1154   1.92     pooka 				 * skip over pages we _might_ have tried
   1155   1.92     pooka 				 * to handle earlier.  they might not be
   1156   1.92     pooka 				 * exactly the same ones, but I'm not too
   1157   1.92     pooka 				 * concerned.
   1158   1.92     pooka 				 */
   1159   1.92     pooka 				while (skipped++ < skip)
   1160   1.92     pooka 					continue;
   1161   1.92     pooka 
   1162  1.184        ad 				if (processpage(pg)) {
   1163   1.95     pooka 					cleaned++;
   1164   1.95     pooka 					goto again;
   1165   1.92     pooka 				}
   1166   1.92     pooka 
   1167   1.92     pooka 				skip++;
   1168   1.92     pooka 			}
   1169   1.92     pooka 			break;
   1170   1.92     pooka 		}
   1171  1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
   1172   1.92     pooka 
   1173   1.92     pooka 		/*
   1174  1.104     pooka 		 * Ok, someone is running with an object lock held.
   1175  1.104     pooka 		 * We want to yield the host CPU to make sure the
   1176  1.184        ad 		 * thread is not parked on the host.  nanosleep
   1177  1.104     pooka 		 * for the smallest possible time and hope we're back in
   1178  1.104     pooka 		 * the game soon.
   1179  1.104     pooka 		 */
   1180  1.184        ad 		if (cleaned == 0) {
   1181  1.144     pooka 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1182  1.104     pooka 
   1183  1.104     pooka 			skip = 0;
   1184  1.104     pooka 
   1185  1.104     pooka 			/* and here we go again */
   1186  1.104     pooka 			goto again;
   1187  1.104     pooka 		}
   1188  1.104     pooka 
   1189  1.104     pooka 		/*
   1190   1.92     pooka 		 * And of course we need to reclaim the page cache
   1191   1.92     pooka 		 * again to actually release memory.
   1192   1.92     pooka 		 */
   1193   1.92     pooka 		pool_cache_reclaim(&pagecache);
   1194   1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1195   1.92     pooka 			mutex_enter(&pdaemonmtx);
   1196   1.92     pooka 			continue;
   1197   1.92     pooka 		}
   1198   1.92     pooka 
   1199   1.92     pooka 		/*
   1200   1.92     pooka 		 * And then drain the pools.  Wipe them out ... all of them.
   1201   1.92     pooka 		 */
   1202  1.127       jym 		for (pp_first = NULL;;) {
   1203  1.156     pooka 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1204   1.92     pooka 
   1205  1.127       jym 			succ = pool_drain(&pp);
   1206  1.127       jym 			if (succ || pp == pp_first)
   1207   1.80     pooka 				break;
   1208  1.127       jym 
   1209  1.127       jym 			if (pp_first == NULL)
   1210  1.127       jym 				pp_first = pp;
   1211   1.80     pooka 		}
   1212   1.92     pooka 
   1213   1.92     pooka 		/*
   1214   1.92     pooka 		 * Need to use PYEC on our bag of tricks.
   1215   1.92     pooka 		 * Unfortunately, the wife just borrowed it.
   1216   1.92     pooka 		 */
   1217   1.80     pooka 
   1218  1.113     pooka 		mutex_enter(&pdaemonmtx);
   1219  1.113     pooka 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1220  1.113     pooka 		    uvmexp.paging == 0) {
   1221   1.80     pooka 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1222   1.80     pooka 			    "memory ... sleeping (deadlock?)\n");
   1223  1.167     pooka 			kpause("pddlk", false, hz, &pdaemonmtx);
   1224   1.80     pooka 		}
   1225   1.80     pooka 	}
   1226   1.80     pooka 
   1227   1.80     pooka 	panic("you can swap out any time you like, but you can never leave");
   1228   1.80     pooka }
   1229   1.80     pooka 
   1230   1.80     pooka void
   1231   1.80     pooka uvm_kick_pdaemon()
   1232   1.80     pooka {
   1233   1.80     pooka 
   1234   1.92     pooka 	/*
   1235   1.92     pooka 	 * Wake up the diabolical pagedaemon director if we are over
   1236   1.92     pooka 	 * 90% of the memory limit.  This is a complete and utter
   1237   1.92     pooka 	 * stetson-harrison decision which you are allowed to finetune.
   1238   1.92     pooka 	 * Don't bother locking.  If we have some unflushed caches,
   1239   1.92     pooka 	 * other waker-uppers will deal with the issue.
   1240   1.92     pooka 	 */
   1241   1.92     pooka 	if (NEED_PAGEDAEMON()) {
   1242   1.92     pooka 		cv_signal(&pdaemoncv);
   1243   1.92     pooka 	}
   1244   1.80     pooka }
   1245   1.80     pooka 
   1246   1.80     pooka void *
   1247   1.80     pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1248   1.80     pooka {
   1249  1.150     pooka 	const unsigned long thelimit =
   1250  1.150     pooka 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1251   1.84     pooka 	unsigned long newmem;
   1252   1.80     pooka 	void *rv;
   1253  1.142     pooka 	int error;
   1254   1.80     pooka 
   1255   1.92     pooka 	uvm_kick_pdaemon(); /* ouch */
   1256   1.92     pooka 
   1257   1.84     pooka 	/* first we must be within the limit */
   1258   1.84     pooka  limitagain:
   1259  1.150     pooka 	if (thelimit != RUMPMEM_UNLIMITED) {
   1260   1.84     pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1261  1.150     pooka 		if (newmem > thelimit) {
   1262   1.84     pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1263  1.103     pooka 			if (!waitok) {
   1264   1.84     pooka 				return NULL;
   1265  1.103     pooka 			}
   1266   1.84     pooka 			uvm_wait(wmsg);
   1267   1.84     pooka 			goto limitagain;
   1268   1.84     pooka 		}
   1269   1.84     pooka 	}
   1270   1.84     pooka 
   1271   1.84     pooka 	/* second, we must get something from the backend */
   1272   1.80     pooka  again:
   1273  1.142     pooka 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1274  1.142     pooka 	if (__predict_false(error && waitok)) {
   1275   1.80     pooka 		uvm_wait(wmsg);
   1276   1.80     pooka 		goto again;
   1277   1.80     pooka 	}
   1278   1.80     pooka 
   1279   1.80     pooka 	return rv;
   1280   1.80     pooka }
   1281   1.84     pooka 
   1282   1.84     pooka void
   1283   1.84     pooka rump_hyperfree(void *what, size_t size)
   1284   1.84     pooka {
   1285   1.84     pooka 
   1286   1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1287   1.84     pooka 		atomic_add_long(&curphysmem, -size);
   1288   1.84     pooka 	}
   1289  1.138     pooka 	rumpuser_free(what, size);
   1290   1.84     pooka }
   1291